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We study here the interplay between transport and adsorption in porous systems with complex
geometries under a fluid flow. Using a Lattice Boltzmann scheme extended to take into account
adsorption at solid/fluid interfaces, we investigate the influence of pore geometry and internal surface
roughness on the efficiency of fluid flow and the adsorption of molecular species inside the pore
space. We show how the occurrence of roughness on pore walls acts effectively as a modification
of the solid/fluid boundary conditions, introducing slippage at the interface. We then compare
three common pore geometries, namely honeycomb pores, inverse opal, and materials produced
by spinodal decomposition. Finally, we quantify the influence of those three geometries on fluid
transport and tracer adsorption. This opens perspectives for the optimization of materials geometries
for applications in dynamic adsorption under fluid flow.

INTRODUCTION

Due to their high specific surface area, porous mate-
rials are widely used in industrial-scale processes for a
broad range of applications involving surface interactions
such as phase separation, gas mixture separation, or ions
exchange and capture. In the liquid phase, practical ap-
plications at large scale include, for example, water de-
contamination and removal of pollutants such as heavy
metals or radioactive ions.[1–3]

Understanding at the microscopic scale the physical
phenomena occurring in these materials is key to improve
and optimize their working capacity. The adsorption ca-
pacity itself, namely the density of adsorption sites and
their activity, is the first parameter to consider. Never-
theless, the best adsorbent would be completely useless
if the topology of the material’s pore space does not al-
low the species to move freely to the active adsorption
sites, and thus transport of molecular and ionic species
are also of paramount importance. Both transport and
adsorption properties of porous material directly depend
on the internal pore geometry. As a consequence, under-
standing how the geometry of porous materials impacts
both transport and adsorption represents a great stake
to design more and more efficient systems.

The topics of fluid transport[4] and physical
adsorption[5] in porous materials have been thoroughly
investigated using computational methods in the litera-
ture. However, there exist relatively few studies demon-
strating how to use numerical methods to study the cou-
pling of fluid transport and adsorption, especially in com-
plex or “realistic” porous materials. Of the examples
available in the recent literature, some use atomistic-scale
modelling, studying for example the adsorption and dif-
fusion in mesoporous silica through molecular dynamics
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and Monte Carlo methods.[6, 7] Another approach, at the
other end of the scale, is to perform three-dimensional
numerical studies based on stochastic models, for ex-
ample to shed light on the adsorption kinetics of chro-
matographic packed beds.[8, 9] More recently, Botan et
al. proposed a bottom-up model, rooted on statisti-
cal mechanics, to upscale molecular simulation and de-
scribe adsorption and transport at larger time and length
scales.[10]

It is important to note that, when dealing with hi-
erarchical porous materials which present complex pore
geometries presenting multiple length scales, atomistic
molecular simulation methods become computational
prohibitive, because of the large system sizes necessary
for an accurate representation of the pore space. While
those methods perform well for nano-sized systems and
can describe in detail the local phenomenon of adsorp-
tion, they do not allow to efficiently compute solute prop-
erties at a macroscopic level and in the time scale re-
quired for fluid dynamics. On the other hand, at a macro-
scopic level computational fluid dynamics is the focus of
an entire field of research, and simulates very well the be-
havior of the fluid. However, they are difficult to adapt
to multi-phase systems and to take into account the ad-
sorption process in heterogeneous systems. There has
thus been in recent years a focus on the development of
methods aimed at modeling transport and adsorption in
hierarchical porous materials of various nature and pore
sizes. For an introduction to those, we refer the reader
to the recent review of Coasne.[11]

In this work, we use a lattice-based mesoscopic
fluid simulation method, namely a Lattice Boltzmann
model[12, 13] recently expanded to take into account
adsorption,[14, 15] to investigate the effects of pore ge-
ometry on the adsorption and transport of species in a
fluid flow. In the following sections, we first describe the
Lattice Boltzmann model used in this study. We then
investigate the effect of random roughness on transport
and adsorption and finally study the influence of three
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different geometries on transport and adsorption.

I. METHODS

A. The Lattice Boltzmann method

The Lattice Boltzmann (LB) simulation method finds
its origins in the 1980s and comes from bringing to-
gether the idea behind Lattice Gas Cellular Automata
and concepts of statistical physics, through the Boltz-
mann equation.[16–18] As a lattice-based technique gov-
erned by local time-evolution equations, it is relatively
simple to implement and to parallelize on multi-core sys-
tems. Moreover, local microscopic interactions can be
readily implemented in the model, which is of high in-
terest in our case for modeling fluid behavior in porous
media.[12] Unlike classical computational fluid dynamic
methods, the Lattice Boltzmann method does not solve
explicitly the Navier–Stokes equation; however, by nu-
merical integration of the Boltzmann equation it can
be shown to satisfy the incompressible Navier–Stokes
equation.[19]

At the center of the Lattice Boltzmann method is the
propagation of the one-particle velocity distribution func-
tion f(r, c, t) equivalent to the probability of a particle
to be at node r of the underlying lattice, with velocity c
at a given time t. Time, space and velocities are all dis-
crete quantities in this scheme. Space is discretized by
adopting a cubic mesh (or lattice) as a basis for the sim-
ulation. Velocities are discretized by projecting them on
a finite number of lattice vectors. In three dimensions,
several different models of discretized velocities exists,
such as D3Q15, D3Q19, D3Q27 (featuring 15, 19 and 27
lattice vectors respectively).[12, 18] Here we chose to use
the D3Q19 model (see Fig. 1b), as a best compromise
between precision and computational speed.[20]

Time is discretized by integrating the propagation
equation numerically, by finite time steps ∆t. The dy-
namics of the fluid on the lattice are governed by the
following propagation equation:

fi(r + ci∆t, t+ ∆t)

= fi(r, t) +
(fei (r, t)− fi(r, t))

τ
+ F exti

(1)

where fi is the component of f on velocity vector i, i.e.
fi(r, t) = f(r, ci, t). The field fei corresponds to the
local Maxwell-Boltzmann equilibrium distribution, and
τ is the relaxation time. The term F exti accounts for
external forces acting on the fluid and creating the fluid
flow; in our case, they will correspond to a unidirectional
pressure gradient throughout the system. This equation
is implemented in our simulations following the method
of Ladd and Verberg,[13] relevant for simulations of fluid
dynamics in porous materials. We assume, in this type
of materials, a laminar flow regime. The permeability of

the fluid can thus be computed using the Darcy law:

Kj
Φ = νρ

〈vj〉
F jext

, (2)

where j = x, y, z corresponds to one of the three direc-
tions of space, 〈vj〉, to the mean velocity of the fluid, Fext
to the external forces, ν to the kinematic viscosity of the
fluid, and ρ the volumetric mass density of the fluid.

B. The moment propagation method

To simulate the dynamical properties of solute dis-
persed in the fluid we use the moment propagation
method proposed by Lowe and Frenkel[21, 22] and fur-
ther validated by Merks et al.[23] In this method, a prop-
agated quantity P (r, t) is defined on the lattice which
evolves following:

P (r, t+ ∆t) =
∑
i

P (r − ci∆t, t)pi(r − ci∆t, t)

+ P (r, t)

(
1−

∑
i

pi(r, t)

) (3)

where pi(r, t) corresponds to the probability of leaving
node r with speed ci:

pi(r, t) =
fi(r, t)

ρ(r, t)
− wi + wiλ with λ =

2Db

v2
T∆t

(4)

Here ρ is the fluid density, wi are constant weights of
the speed model (D3Q19 in this case), Db is the diffusion
coefficient of the tracers in the fluid in bulk phase, and
vT is the fluid’s speed of sound (v2

T = 1
3∆x2/∆t2, with

∆x the lattice spacing). The propagated quantity is not
a physically understandable parameter but, by its math-
ematical construction, provides access to the behavior of
tracers inside the fluid. For a particular choice of the
propagated quantity, namely the probability to arrive at
position r at time t, weighted by the initial velocity of the
tracers (in practice, one quantity is propagated for each
component of the velocity), the velocity auto-correlation
function Z is then computed by:

Z(t) =
∑
r

P (r, t)

(∑
i

pi(r, t)ci

)
(5)

The dispersion coefficient K is an interesting dynamical
property of the tracers inside the fluid.[24–26] It quan-
tifies the spreading of particles inside the fluid and may
be defined from the standard deviation of the position of
tracers over long times:

K = lim
t→∞

σ2

2t
where σ2 = 〈r − r̄〉2 (6)

with r̄ the average position of the particles at the consid-
ered time. In practice, we compute it from the offsetted
integration of the velocity auto-correlation function:

K =

∫ ∞
0

[Z(t)−Z(∞)] dt (7)
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C. Accounting for adsorption

Only a a few studies exist in the literature about
modeling transport and adsorption using Lattice Boltz-
mann model. Argawal et al. developed, in 2005, a
Lattice Boltzmann model for one dimensional break-
through curves to model the behavior of toluene on sil-
ica gels.[27] Manjhi et al. studied with this model the
two-dimensional unsteady state concentration profiles for
packed bed adsorbents.[28] Zalzale et al. used another
scheme to study the permeability of cement pastes.[29]
Anderl et al. used the Lattice Boltzmann to simulate
bubble interactions and adsorption in protein foams.[30]
Pham et al. and Tallarek et al. employed the Lattice
Boltzmann model to study the transport and the adsorp-
tion in packed beds. [8, 31]With the growing interest
for the shale gas, we find also some studies about the
transport and adsorption in kerogen pores.[32, 33]More
recently Long et al.[34] developped a new scheme to in-
troduce all the IUPAC adsorption isotherms in Lattice
Boltzmann scheme.

We use in this work a novel Lattice Boltzmann model
coupling transport of species and adsorption developed
recently[14] and extended recently by the authors of the
present paper to account for saturation and heterogene-
ity in the adsorbed density.[15] In this scheme adsorption
takes place on the interfacial sites of the material it i.e.
the fluid nodes having at least one neighboring solid node.
The neighbors are detected following the D3Q19 speeds
model. The adsorption process is described as an equi-
librium between two populations: adsorbed and non ad-
sorbed (free) species. The adsorption kinetic is set up us-
ing three parameters: the adsorption coefficient Ka, the
desorption coefficient Kd and the saturation coefficient
Dmax. The interplay between transport and adsorption
is computed using the adsorbed and free densities:

Dads(r, t+ ∆t) =

[
1− Dads(r, t)

Dmax

]
Dfree(r, t)pa

+Dads(r, t)(1− pd)

Dfree(r, t+ ∆t) =Dfree(r, t)

[
1− pa + pa

Dads(r, t)

Dmax

]
+Dads(r, t)pd

(8)

where pa = ka∆t/∆x and pd = kd∆t. At t = 0. This
two quantities are then equilibrated. This scheme corre-
sponds to a Langmuir adsorption model. The adsorbed
quantity nads follows:

nads(Cext) =
Qmax

ms

κCext

1 + κCext
(9)

where ms corresponds to the mass of material. Qmax =
DmaxSs, Cext = Ctot(1 − Fa) and κ = Ka/(KdDmax).
The adsorbed fraction Fa may be computed analytically
with the relation:

Fa =

(
1 +

pdVp
paSs

)−1

(10)

Nevertheless this equation does not take account for satu-
ration of the adsorption sites neither for eventual hetero-
geneities on the adsorbed density due to fluid flow. After
this preliminary step to compute the adsorbed and free
densities we propagate on the same scheme the two prop-
agated quantities P and Pads to compute the dynamic
of the tracers and their interactions with the adsorption
sites to reach thermodynamic equilibrium:

P ads(r, t+ ∆t) =

[
1− Dads(r, t)

Dmax

]
P (r, t)pa

+ P ads(r, t)(1− pd)

P (r, t+ ∆t) =P (r, t)

[
1− pa + pa

Dads(r, t)

Dmax

]
+ P ads(r, t)pd

(11)

This last equation gives the framework to compute
the Velocity auto-correlation function, the diffusion
coefficient and the dispersion coefficient thanks to
Eq. 5 and Eq 7.

D. Practical details

The simulation reported here are performed consider-
ing a laminar flow regime. We also use periodic bound-
ary conditions on the three axis (x, y, z) and no slip
boundary conditions at the liquid/solid interface for the
Lattice Boltzmann scheme and the moment propagation
method. We employed convergence criteria during sim-
ulations to ensure the convergence and verify the pa-
rameter rely on a the steady-state. We used a con-
vergence criteria of 10−14 (in relative step-to-step vari-
ation) for the average velocity of the fluid along the
three directions of space, 10−12∆x/∆t on the velocity
autocorrelation function, 10−11 for the step-to-step vari-
ations of the fraction adsorbed, and 10−9 for the step-
to-step variations of the dispersion coefficient. For the
heterogeneity coefficient and its probability distribution
function we did not use any convergence criteria but
we performed several simulations at different number of
time step to be sure to reach the steady state. The
Lattice-Boltzmann scheme employed here works in re-
duced units. The results presented in this study are
in scientific international (SI) units (except the mesh
size `x, `y, `z). The method to switch between reduced
units and SI units is available in supplementary infor-
mation. Throughout the simulations we fixed: the bulk
diffusion coefficient (Db = 6.04 10−8 m2.s−1), the kine-
matic viscosity (ν = 10−6 m2.s−1), the density of the
fluid (ρ = 1000 kg.m−3) and the density of the solid
(ρs = 4970 kg.m−3).
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Figure 1. a. Roughness generation process based on LB
weights. b. D3Q19 speed model scheme.

II. IMPACT OF ROUGHNESS ON TRANSPORT
AND ADSORPTION

From the published literature, many studies of adsorp-
tion and transport of fluids in porous media focus on
simple geometrical model of the porosity, with “regu-
lar” or smooth surfaces. The impact of surface rough-
ness at the local scale on the adsorption properties has
been treated by some studies in gas phase[35, 36] and
on protein adsorption.[37, 38] In an earlier Lattice Boltz-
mann study of adsorption and transport, we have seen
an impact of local surface patterning, e.g. by compar-
ing a smooth slit pore to one with grooves on the solid
walls.[15] Herein we want to go further and investigate
the effect of roughness on fluid flow and adsorption in a
more realistic and geometrically complex model of pores
with rough surfaces.

We focus here on roughness as a microscopic geometric
heterogeneity on the internal surface of a pore of larger
dimensions. The roughness thus represents a deviation
— or the presence of defects — from an ideal geome-
try. It may have several origins, such as mechanical,
chemical process or physical processes. It is omnipresent
in real materials, but its scale and thus its impact de-
pend drastically on the synthesis, activation, and chem-
ical and physical history of each porous material. The
effect of surface roughness has been studied in many re-
search fields like biology[38, 39], optic[40], coatings[41] or
fluid dynamic.[42, 43] For fluids in particular, in the case
of hydrophobic interactions at the solid/liquid interface,
the roughness can strongly affect the flow profile and in
some cases it leads to a very low drop pressure due to
slippage at the liquid/solid interface.[44, 45]

A. Generating rough surface models and
measuring roughness

We describe here a simple model used to generate ge-
ometries of porous solids with roughness on their internal
surface by a stochastic process of aggregation that mim-
icks the random deposition of nano-sized solid particles
on the walls of an pre-existing pore system. To do so, we
rely on the Lattice Boltzmann’s underlying lattice vec-
tors and definitions of neighboring nodes. Starting from

an initial geometry (which we call skeleton), a fluid node
is randomly selected. We evaluate its degree of connec-
tivity with solid neighbors (see Fig. 1a) by computing an
aggregation coefficient α:

α =
∑

(solid)

wi (12)

α corresponds to a sum over all the node’s solid neigh-
bors, weighted by the coefficient of the D3Q19 speed
model (see Fig. 1b). As an input parameter of the gen-
eration algorithm, we define the aggregation condition
Ac. If α > Ac the node becomes solid, otherwise it re-
mains fluid — this mimicks a process of aggregation of
smaller particles, which are allowed to “stick” to the ex-
isting surface if the contact is large enough. Then, we
repeat the aggregation process to another node chosen
randomly again and again until we reach a convergence
criterion on porosity or specific surface area.

After obtaining a new model of porous solid from this
algorithm, we apply a filter to remove all nonconnected
porosity (inaccessible cages) which may have been cre-
ated during the aggregation process. This process en-
sures the connectivity of all the fluid nodes for the Lattice
Boltzmann simulation and avoids artifacts in the moment
propagation.[46] To do that we use a simple neighbor to
neighbor propagation process. We initialize a quantity on
one of the two sides of the simulation box orthogonal to
Fext, Then we propagate the quantity from neighbor to
neighbor. At the end of the propagation the fluid nodes
where the quantity is not set up becomes solids. After
that the process is repeated with an initialization on the
opposite side of the simulation box.

This entire procedure allows us to create models of
rough porous materials based on any given geometry de-
fined on a cubic lattice, and through the parameter Ac
we can tune the extent of roughness. To quantify this,
we define the following roughness coefficient:

Rr =
√∑

(|yi| − 〈yi〉)2 (13)

corresponding to standard deviation of the minimal dis-
tance between the surface of the aggregated geometry
and the original skeleton. There exist many other defini-
tions of the roughness coefficient, mainly from the field of
mechanical engineering,[47] but as our goal here is merely
to compare between different geometries a universal def-
inition is not necessary.

Figure 2 shows the evolution of the roughness coeffi-
cient as function of the number of aggregation steps. In
this case, we chose as skeleton geometry a slit pore with
a mesh size of `x = 50∆x, `y = 50∆x, `z = 52∆x (size
of the simulation box) and a convergence criterion on the
porosity Φ = 0.7. Each point corresponds to the mean
value of a set of 10 generations having the same input
parameters. The errors bars corresponds to the standard
deviation. We see that each aggregation condition Ac
gives rise to different values of roughness coefficient Rr
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Figure 2. Mean value of roughness coefficient as a function of
the number of steps of the generation procedure, with differ-
ent aggregation conditions Ac. Values come from a sampling
of 10 geometries having the same input parameters, and error
bars correspond to the standard deviation.

and its evolution as a function of number of steps in the
generation algorithm. The error bars are small, showing
that although we chose a stochastic procedure, the over-
all result is not very sensitive to the randomness. The
value of Rr stabilizes at high number of steps Tmax, and
the parameter Ac acts as a good control parameter to
tune the roughness coefficient.

B. Impact of roughness and disorder

Before we set out to explore the influence of roughness
on dynamical properties of transport and adsorption, in
this section we quantify the impact of the randomness
(or disorder) in the roughness on these properties. For
this purpose, we created a series of 10 porous geometries
for each value of Ac(1/8, 1/16, 1/32) having otherwise the
same values of inputs parameters[48]

Figure 3. Sensitivity of adsorption and transport properties
on roughness random aggregation. Rr: roughness, Ss: spe-
cific surface area, Kφ: permeability coefficient, 〈v〉: average
velocity of the fluid, Fa: fraction of tracers adsorbed, dp :
mean pore size, Φ: porosity, Vp: porous volume, K: disper-
sion coefficient, ξ: spatial heterogeneity of adsorbed density.

Looking at the standard deviation of the measured
quantities related to adsorption and transport in the ran-
dom pore spaces, we describe in Fig. 3 the roughness
coefficient (Rr), the specific surface area (Ss), the per-
meability (Kφ), the average velocity of the fluid on y
direction (〈vy〉), the fraction of tracers adsorbed (Fa),
the mean pore size ( dp), the porosity (Φ), the porous
volume (Vp), the dispersion coefficient (K), and the Het-
erogeneity of adsorbed density ξ. Although there clearly
are some variations on independent realizations of the
rough geometry for a given value of roughness, this is
relatively minor, with all the normalized standard devi-
ations below 6%. The quantities most impacted (more
than 2.5%) are related to heterogeneity of the adsorbed
tracers at high roughness and the dispersion coefficient.
Given the overall low sensitivity, for the two following
sections, we will neglect the deviation caused by the ran-
dom part of the roughness generation and describe the
roughness of the surfaces simply by the Rr coefficient.

C. Influence of adsorption on transport of tracers

We first study the impact of roughness on fluid proper-
ties, computing the velocity profile and the permeability
coefficient in order to quantify the importance of rough-
ness on geometries. Fig. 4 shows the flux profiles along
the pressure drop for a non aggregated geometry (slit
pore with an equivalent mean pore size of dp = 1.6 µm
and plane perpendicular to z axis on top and down plane
of the simulation box) and three aggregated geometries
having Ac = 1/8, 1/16, 1/32 on a slit pore (simulation
box of size `x = 50∆x, `y = 50∆x, `z = 52∆x, planes
perpendicular to z axis on top and down of the simulation
box and convergence criterion on porosity for roughness
aggregation (Φ = 0.7).

The velocity of the fluid inside the pore decreases when
the roughness is larger. The roughness obstructs the
pore while the mean size of the pore dp (see Tab. I) re-
mains constant. The difference in the flux profile comes
from the deviations of the surface, namely the rough-
ness. Computing the velocity profile for a slit pore with
a pore size corresponding to the mean pore size of ag-
gregated geometries highlights an unexpected effect. For
low roughness value (Ac = 1/8) the velocity is higher
compared to the slit pore whereas we were expecting a
value lower than the slit pore one. Investigating this
unexpected effect, we showed that it appears as an arte-
fact of the discretization in the simulation, and does not
have physical meaning. In fact, close surface of the pore,
the roughness creates some local pores only defined with
one or two nodes — i.e., the length scale of the rugosity
is close to the lattice spacing. Thus, the application of
the bounce back rules (to ensure no-slip boundary con-
ditions) combined with a single relaxation time may give
a local dependence of the viscosity of the fluid on the
local pore size.[49] To confirm this, we investigated the
influence of mesh size on fluid behavior, by performing



6

slit pore Slit pore aggregated
Ac − 1/8 1/16 1/32

Rr(µm) − 4.4 10−2 8.1 10−2 1.1 10−1

dp(µm) 1.6 1.6 1.6 1.6

KΦ (m2) 2.1 10−13 2.3 10−13 1.8 10−13 1.4 10−13

Table I. Values of the geometrical and permeability properties
of the slit pore with and without roughness.

Figure 4. a: Velocity profile in a slit pore with roughness
(Ac = 1/8, 1/16, 1/32) compared with a flat slit pore of equiv-
alent mean pore size dp = 1.6 µm. L corresponds to the dis-
tance between the planes of the slit pore. Here Fext is kept
constant to 5 109 Pa/m. b. Effect of roughness on permeabil-
ity for Ac = 1/8, 1/16, 1/32.

simulations on the same geometry with several refined
meshes. The results (detailed in supplementary informa-
tion) show a dependence of the results of permeability
coefficient on the discretisation of the little pores located
in the roughness. The presence of this artefact in ran-
domly generated surface of pore suggests to be careful
when we generate geometries, especially those coming
from tomography pictures where the surface roughness
is poorly controlled.

Fig. 4b shows the evolution of the permeability coeffi-
cient as a function of the roughness, and this evolution is
the same as that of the fluid’s velocity: it decreases with
increasing roughness coefficient. In the regime studied,
the evolution appears rather linear. The values of the
permeability coefficient confirm the unexpected behav-
ior seen previously on the flux profiles, namely that the
roughness withAc = 1/8 gives a higher permeability than
the slit pore. This counter-intuitive effect is very inter-
esting because it offers the opportunity to improve the
materials. Having the same mean pore size it is possible
to decrease the drop pressure just with the introduction
of some controlled roughness. Plus, the introduction of
this roughness will increase the specific surface area, i.e.
the adsorption capacity. We demonstrate here a way to
increase the adsorption capacities and the permeability
at the same time, through geometrical tuning of the inner
pore surface.

We now turn to the dispersion coefficient, which is rep-
resentative of the spreading of tracers in the fluid. In pre-
vious work we have studied the influence of an ordered
roughness (a slit pore with crenelated pores on the walls)
and have shown the ratio between the crenels’ height and

Figure 5. a. Influence of roughness on dispersion coef-
ficient (K) as a function of the fraction adsorbed (Fa) at
constant value of Fext = 5 109 Pa/m, Ka = 6.0 m.s−1

and Kd = [6.0 108; 3.4 108; 1.9 108; 1.1 108; 6.3 107 :
6.0 107; 2.4 107; 9.6 106; 3.8 106; 1.5 106] s−1. b. Influence
of roughness on dispersion coefficient (K) as a function of the
average velocity of the fluid (〈vy〉) withKa = 6.0 m.s−1, Kd =
6.0 107 s−1 and Fext = [2 108; 4 108; 6 108; 8 108; 10 108] Pa/m.
c. Influence of crenelated pores on dispersion coefficient
(K) as a function of the average velocity of the fluid (〈vy〉)
with Ka = 6.0 m.s−1, Kd = 6.0 106 s−1 and Fext =
[2 108; 4 108; 6 108; 8 108; 10 108] Pa/m.

width r = h/w, have an influence on the dispersion coeffi-
cient in presence of adsorption: the dispersion coefficient
increase with the ratio r.[15] As the crenels are analogous
to an ordered roughness of the pore surface, we expect
to observe something similar here.

And indeed, the random roughness generated here has
also an influence on the dispersion coefficient, as is shown
on Fig. 5a. For a given roughness value, the influence
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of Fa on the dispersion coefficient is the same as the
one observed previously with slit pore and crenelated
pores.[15, 50] For low adsorption strength, all the tracers
are free and have a dispersion due to fluid flow. When the
tracers start to adsorb, they create a disparity of position
compared to the tracers free in the fluid: the dispersion
coefficient increases. For high adsorption strength the
majority of the tracers are immobile (adsorbed): the dis-
persion tends to zero. At intermediate regime we thus
observe a maximum of dispersion.[15]

Nevertheless, the influence of roughness on dispersion
is inverted. With crenelated pores the dispersion coef-
ficient increases when the roughness increases, whereas
in the present case the dispersion coefficient surprisingly
decreases when the roughness coefficient increases.

Fig. 5b shows the dispersion coefficient as a function
of the mean velocity of the fluid. The curves obtained
for various values of roughness cross together in a single
point. That means the order between the curves of Fig.
5a may change regarding to the mean velocity of the fluid.
This was clearly not the case when we studied crenelated
pores. Another parameter play a key role in the phenom-
ena involved here at an order of magnitude higher than
the roughness coefficient: the mean pore size. When we
studied crenelated pores in earlier work, we kept con-
stant the distance between the tops of the crenels. Here,
in contrast, the mean pore size is kept constant. Fig. 5c
proves that the pore opening is the key parameter. Set-
ting the mean pore size constant, it shows the evolution
of the dispersion coefficient as a function of the mean
velocity of the fluid in different slit pore crenelated ge-
ometries having different value of r. We obtain the same
behavior as for random roughness.

This means, in terms of materials design, to increase
the separation performance of the materials by introduc-
ing some roughness, the minimal pore size (or minimal
opening diameter) is to be considered as key parameter,
rather that the average pore size.

D. Influence of flow on adsorption

In previous work we have shown the fluid flow can
create some heterogeneity in the adsorbed density, tak-
ing away species from the upstream adsorption sites and
accumulating tracers in downstream sites.[15] Here we
wanted to see if the same phenomenon occurs at the local
scale when disordered roughness is present (in contrast
to our previous work on regular grooved pores). Figure 6
plots the relative deviation Φads of the adsorbed density:

Φads =
Dads − 〈Dads〉
〈Dads〉

(14)

in presence of flow (Fext = 5 109 Pa/m) for three differ-
ent values of the roughness coefficient in a slit pore. We
notice on Fig. 6 some disparities in the adsorbed density
toward the flow. These heterogeneities are limited locally

Figure 6. Relative deviation in the adsorbed density (Φads)
in presence of flow with different roughness. a. Adsorbed
density, Ac = 1/8. b. Adsorbed density, Ac = 1/16. c. Ad-
sorbed density, Ac = 1/32. Points that appear unconnected
to the porosity, in this 2D slice, are actually connected along
the direction perpendicular to the plane of the figure.

to a few percents, and we report in table II the value of
the heterogeneity coefficient ξ in each case:

ξ =
√
〈φ2

ads〉 (15)

Ac 1/8 1/16 1/32

ξ(×10−3) 4.05± 0.04 4.4± 0.08 4.11± 0.12

< Vy > (m/s) 1.16 0.892 0.702

Table II. Heterogeneity of the density adsorbed for ag-
gregation conditions 1/8, 1/16, 1/32. Ka = 6.04 m.s−1,
Kd = 6.04 106 s−1.

Unlike for the crenelated slit pore geometry ξ does
not increase monotonically with the aggregation condi-
tion. The value at Ac = 1/32 is lower than the value
at Ac = 1/16. We already know from previous work the
heterogeneity is strongly dependent on the velocity of
the flow and here the rise up of the roughness coefficient
makes the fluid velocity decrease. We have a competi-
tion between the influence of the size of local geometrical
cavities (roughness) and the speed of the fluid. This phe-
nomenon, established in prior work on model geometries,
is here shown to be generic and applicable to disordered
and rough pore surfaces.

III. GEOMETRY COMPARISON

Comparing porous materials for adsorption applica-
tions under fluid flow, two main parameters need to be
taken into account to judge their efficiency: the total
adsorbed quantity (or adsorption capacity), and the per-
meability (to ensure the lowest pressure drop). We aim
here at finding a way to compare materials with the same
“chemistry”, i.e. locally the same adsorption sites, but
with distinct pore geometries, and study the influence
of the geometry on the two characteristics of adsorption
and transport.

To do so, we choose three totally different geometries,
displayed on Figure 7: a honeycomb geometry having
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Figure 7. Lattice-based models for three different pore ge-
ometries, and electron microscopy images from real-life mate-
rials with similar geometries. Left: honeycomb geometry;[51]
center: inverse opal;[52] right: spinodal decomposition
geometry.[53]

straight and smooth pores, a sphere replica geometry
having spherical interconnected pores, and a very dis-
ordered geometry with worm like pores. The honeycomb
geometry is typical of materials synthesized using ice-
templating methods,[54] the sphere replica is the charac-
teristic pore space of inverse opal materials,[55] and the
worm-like porosity is archetypal of materials produced
by spinodal decomposition.[56, 57] We first describe the
procedures we followed to created lattice-based models of
these geometries, and then go on to discuss their relative
performance for adsorption and fluid transport.

A. Geometries generation on lattice

Honeycomb — The honeycomb geometry is simple
due to its translational invariance. To create a lattice-
based model we use the same technique as the one used
usually in Computational Aided Design. In a plane
we design the cross section of the geometry: assembled
hexagons. To fit with the nodes on the grid the hexagons
does not have the same edges length (see Fig. 8). Assum-
ing a is the length of the horizontal edges the basic mesh
size is 2(2a−1) horizontally and 2(a−1) vertically. Once
the cross section is created we extrude the profile along
the direction perpendicular to the plane to have the 3D
geometry. To tune the amount of porosity of this geome-
try we assign some thickness w to the hexagonal profile.
Inverse opal — The inverse opal geometry is also

highly symmetric and can be constructed by similarly
(see Fig. 8). Starting with a solid block we create a spher-
ical holes of diameter ds. Then we replicate this hole in
each direction at a distance dint. This leaves windows of
diameter dr between the spherical cavities:

dr =
√
d2
s − d2

int (16)

Spinodal decomposition — Materials produced
by spinodal decomposition — a phase separation process

Figure 8. Sketchup of honeycomb and inverse opal geometries
and their geometric parameters.

— feature pore geometries that are very disordered and
worm-like channels with no symmetry. There are stud-
ies in the existing literature proposing numerical mod-
els of spinodal decomposition materials,[58–60] but for
our purposes taking into account the whole thermody-
namic of such process would be to much time consum-
ing. To create lattice-based models of very disordered ge-
ometries, like spinodal decomposition materials, we pro-
pose here a simple method based on the Ostwald ripening
principle.[61] This principle concerns the ability of phases
to rearrange themselves to minimize surface energy, with
small droplets tending to regroup themselves to form big-
ger ones, a process which is easy to model on a lattice.

Thus, we start by initializing the system as a random
distribution of solid/fluid nodes on the cubic lattice, with
a fixed ratio (the initial porosity). Then we choose a node
randomly, computes the sum of its links with neighbors
having the same nature (i.e. the sum of fluid–fluid or
solid–solid neighbors), accounting for periodic boundary
conditions. The sum of the links, which we note σ, is
weighted with the weights of the D3Q19 velocity scheme
(see Fig. 1b). We then compare σ to a threshold value,
which we set at σc = 0.4. If σ > σc, the node stays
the same otherwise we switch its nature (liquid node be-
comes solid, and solid node becomes liquid). This step
is repeated a number of N times. After the generation,
we use a filter to remove unconnected solid regions and
inaccessible porous regions.

Figure 9. Left: pore size distribution of a lattice-based model
created through the Oswald ripening procedure. Right: ex-
perimental pore size distribution of materials synthesized by
spinodal decomposition.[62]

Figure 9 compare the pore size distribution obtained
with our algorithm and some pore size distribution of
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spinodal decomposition available in the literature.[62][63]
The data is computed from a sampling of 10 geometries
having the same input parameters. The errors bars rep-
resents the standard deviation of the data obtained. The
shape of the experimental and the one we have computed
are very close. The algorithm we have developed is repre-
sentative of the geometries obtained experimentally using
spinodal decomposition. Moreover, the algorithm is very
fast. Its takes less than one minute to create a geome-
try on a 100× 100× 100 mesh. Finally, both the overall
porosity (fraction of porous volume) and the amount of
tortuosity can be controlled by the two parameters of the
algorithm, namely the initial porosity and the length N
of the ripening process.

B. Comparing pore geometries

Physical properties such as fluid transport and adsorp-
tion in porous materials are strongly linked to the geom-
etry of the material’s pore system. Modifying the pore
geometry, modifies on one hand the porosity and the spe-
cific surface area and on the other hand the behavior of
fluid and the motion of species. Transport and adsorp-
tion are often inversely linked. Modifying a material to
improve adsorption skills generally decrease its transport
properties and improve transport properties generally de-
crease adsorption skills. This makes the comparison be-
tween materials tricky. To avoid an enormous generation
of data and objectively compare our three geometries in
terms of transport and adsorption we can either maintain
constant the transport properties and see the influence on
adsorption or maintain the adsorption properties and see
the influence on transport properties. The easier way,in
our case, is to keep constant the adsorption and see the
influence on the transport properties. To do so we have
to keep constant the adsorbed quantity per mass of ma-
terial (Qa). We already know for low concentration of
tracers that

Fa =

(
1 +

KaSs
KdVp

)−1

(17)

where Fa is the fraction of tracers adsorbed (the ratio
between the amount of tracers adsorbed and the total
amount of tracers), Ka and Kd are respectively the ad-
sorption and desorption coefficient, Ss corresponds to the
specific surface area and Vp corresponds to the porous
volume. Qa can be written as a function of Fa:

Qa =
CiVp
ρsVs

Fa (18)

where Ci represents the initial concentration of tracers,
ρs is the volumetric mass of the solid part of the material
and Vs is the volume of solid. Considering Equations 17
and 18:

Qa =
CiVp
ρsVs

(
1 +

KaSs
KdVp

)−1

(19)

For our simulations we consider the adsorption sites
of the three geometries have the same characteristics
(Ka = 6.04 m.s−1 and Kd = 6.04 106 s−1), i.e. we
study only the influence of geometry at a fixed chemi-
cal composition of the porous material’s walls. We also
consider the solid part of the material as the same na-
ture (ρs = 4970 kg.m−3) and the initial concentration of
tracers is constant (Ci = 1 g.L−1). Considering this, to
keep Qa constant we have to keep the ratios Vp/Vs and
Ss/Vp constant. This is equivalent to keep the porosity
Φ and the ratio Ss/Vp constant.

In order to do so, we have tuned the geometry to have
the same porosity Φ and then adjust the ∆x (distance
between two nodes) to have the same ratio Ss/Vp. We
adjust the thickness of the wall of the honeycomb to make
variation of the porosity. We adjust the distance between
the spheres dint to vary the porosity in inverse opal ge-
ometry and we vary the number of time step to make
variations on the spinodal decomposition geometry. A
table with the detailed characteristics of the geometries
is available in supplementary information. The adsorp-
tion isotherms of the three geometries are also available in
supplementary information and show the adsorbed quan-
tity is the same for all the geometry at low and high
concentration in solute.

C. Pore geometry influence on adsorption

Having shown earlier that the fluid flow may create
some local heterogeneities in the adsorbed density, we
want to analyze it here and investigate whether the ge-
ometry has any influence on this heterogeneity. Figure 10
presents a 2D cut view of Φads for each material. The
colored gradient represents the values of the adsorbed
density. The flow creates disparities in case of the spin-
odal decomposition geometry, between the upstream and
the downstream part of the internal surface. This effect
happens also in the inverse opal geometry with a more
visible deviation between the two sides of the geometry.
No disparities occur in the honeycomb thanks to its slick
surface oriented along the flow. The heterogeneity is one
order of magnitude higher in the spinodal decomposition
than in the inverse opal.

To compare quantitatively the heterogeneities, Fig-
ure 11 shows the probability distribution of Φads for
each geometry. The distributions are completely differ-
ent. The distribution is a single peak for the honey-
comb, showing absence of any heterogeneity in the ad-
sorbed density. Indeed, the smooth walls oriented per-
fectly along the flow do not create heterogeneities. The
inverse opal distribution has a bimodal shape coming
from the two populations of the adsorbate stuck on the
upstream and downstream part of the geometry and the
spinodal decomposition’s one is a Gaussian like function.
In this geometry the heterogeneity is “averaged” by the
randomness of the geometry.

As a conclusion we see here that both the topology of
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Figure 10. Relative adsorbed density (Φads). Grey: solid part,
blue: fluid part, color gradient: adsorption sites. a: Spinodal
decomposition cut view at y = 1. b: Inverse opal cut view at
y = 45. c: Honeycomb cut view at z = 1.

the geometry and its symmetries, leads to completely dif-
ferent shape of heterogeneity distribution function. The
heterogeneity occurs only in geometries which are not flat
along the direction of the flow. A nonflat geometry al-
lows for different concentrations of tracer adsorbed in the
upstream part and the downstream part of the cavities.

D. Pore geometry influence on transport

Figure 12a presents the pore size (dp) values of the
three geometries for three different values of porosity. In
this case the porosity has no influence on the pore size.
It’s a counter-intuitive effect of keeping the adsorption
constant. This means the variations of porosity only in-
fluence the solid part of the material (the walls). Increas-
ing the porosity just increases the thickness of the wall
and does not modify the void part of the material. This
would mean the ratio Ss/Vp is constant because Ss and

Figure 11. Probability distribution function of the relative
adsorbed density (Φads), with porosity Φ = 70%.

Vp are constant independently but it is not the case here.
The phenomenon is more complex than just increasing
the thickness of the walls.

The pore size of the honeycomb is almost twice bigger
than the others. Straight pores allows to have the largest
pore size. As a consequence the value of the honeycomb’s
permeability (KΦ) is 2.5 times higher than the spinodal
decomposition and 5 times higher than the inverse opal
(see Fig. 12b). This demonstrates the real interest of hav-
ing porous materials with straight pores. At equivalent
adsorption skills it gives the highest permeability.

Figure 12c presents the values of the parameter:

ψ =
KΦ

d2
p

(20)

ratio between the permeability and the squared pore size.
Note this ratio is dimensionless. ψ is constant for all the
geometry. For this study the permeability only depends
on the pore size and the pore geometry has no influence
on it. This means to have a material with the best per-
meability skills for a given adsorption capacity we have
to find a way to increase the pore size independently to
the porosity and the ratio Ss/Vp.

IV. CONCLUSION

We have studied here the interplay between adsorption
and transport in porous materials under liquid flow, and
the impact of the geometry of the pore system on these
two properties. By using a Lattice Boltzmann scheme
extended to take into account adsorption of tracers in
the liquid phase, we showed how adsorption and fluid
transport are both affected by global geometric charac-
teristics (pore shape and alignment with the fluid flow)
as well as local geometric features (such as roughness of
the pore surface). In particular, we showed that rough-
ness of the pore walls effectively modifies the nature of
the solid/fluid interface, introducing slippage in a system
which would otherwise have a no-slip boundary condi-
tion. Moreover, we generated realistic models of complex
experimental materials and quantified the impact of ge-
ometry on fluid transport and tracer adsorption. This
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Figure 12. (a) Mean pore size (dp) of the three different ge-
ometries at constant adsorbed quantity (Qa). (b) Geometry
impact on permeability coefficient (K) at constant adsorbed
quantity, Qa. (c) Geometric coefficient (ψ) for the three dif-
ferent geometries at constant adsorbed quantity. The com-
parison is represented for three different values of porosity Φ
(as percentage).

sheds light into the optimization of materials for appli-
cations in dynamic separation of species by adsorption
under fluid flow. Future work will address the kinetics
of fluid adsorption and the dynamics at the scale of the
adsorbent sample, to bring the Lattice Boltzmann tech-
nique closer to model flow experiments in, e.g., liquid
chromatography. Moreover, more work will be neces-
sary to replace the complex model geometries used in
this work — as realistic as they may be — with actual
3D images of real-life materials, obtained for example by
X-ray tomography.
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