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Abstract: We present here a computational model based on
the Lattice Boltzmann scheme to investigate the accessibil-
ity of active adsorption sites in hierarchical porous materials
to adsorbates in a flowing liquid. By studying the transport
and adsorption of tracers after they enter in the pore space of
the virtual sample, we characterize their kinetics as they pass
through the pore space and adsorb on the solid–liquid inter-
face. The model is validated on simple geometries with known
analytical solution. We then use it to investigate the influence
of regular grooves or disordered roughness on the walls of a slit
pore geometry, looking at the impact on adsorption and trans-
port. In particular, we highlight the importance of adsorption
site accessibility, which depends on shape and connectivity of
the pore space as well as the fluid flow profile and velocity.

1 Introduction

Materials with hierarchical porosity, ranging from nanome-
ters to micrometers, are of interest for a wide range of in-
dustrial applications, because they can potentially combine
high specific surface area and high permeability, i.e. low re-
sistance to fluid flow. Such applications typically rely on the
host–guest surface interactions, for example in phase separa-
tion, gas mixture separation, or ions exchange and capture.
In the liquid phase, practical applications at large scale in-
clude, for example, water decontamination and removal of
pollutants such as heavy metals or radioactive ions.

Understanding the physical and chemical phenomena in-
volved in fluid transport and adsorption in hierarchical
porous materials is crucial for the optimization of existing
materials and the design of new materials. In particular,
the optimization of the pore space (pore dimensions and
pore geometry) for a chosen application is a great challenge.
The study of transport and adsorption in hierarchical porous
materials raises several open fundamental questions. One of
them deals with the kinetics of exchange between intercon-
nected pores of different sizes — between macropores and
mesopores, or between mesopores and micropores. The in-
fluence of the macroporosity on the accessibility of species to
the mesoporosity is both a very fundamental question and
yet one directly relevant to applications. It depends in non-
trivial ways on the geometry of the macropores and meso-
pores, as well as the topology and interconnectivity of the
two pore networks, each of these factors affecting the overall
performance of the material.

Despite its fundamental importance and impact, the pub-

lished literature is relatively scarce on investigations of ki-
netic accessibility of adsorption sites in porous materials
with hierarchical pore networks. The problem of fluid flow in
complex geometries and chromatographic systems has been
widely addressed by computational studies, including many
based on the Lattice Boltzmann method.1–3. However, the
question of adsorption/desorption and kinetics of tracers has
been less studied. One possible approach to this problem has
recently been proposed by Boţan et. al., who developed a
lattice-based bottom-up model of adsorption and transport
in multiscale porous media4 by relying on a local thermody-
namic description.

We describe here another approach, building upon a Lat-
tice Boltzmann model recently extended to incorporate an
accurate description of adsorption of solutes at the fluid–
solid interface.5,6 However, this model cannot in itself an-
swer the question of the accessibility, as it describes the
steady state of fluid flow and solute dynamics. In this work,
we present an extension of the Lattice Boltzmann model to
evaluate the accessibility of active sites by simulating a sys-
tem out of the steady state. We illustrate it on the kinetics
of adsorption on a pore model of a crenelated slit pore, i.e.
a larger main pore interconnected with smaller side pockets.

2 Methods

The method used in this work is based on a well-known nu-
merical simulation scheme for fluid dynamics, namely the
Lattice Boltzmann (LB) model.7 The Lattice Boltzmann
model finds its roots in the 1980s and has several advantages
compared to other computational fluid dynamic methods,
making it suitable to address systems at scales intermediate
between atomistic or coarse grained simulations (at smaller
scale) and finite element-based computational fluid dynam-
ics (at larger scale), as shown on Figure 1.

Figure 1. Experimental and modelisation techniques employed
for porous materials characterization.

1

fx.coudert@chimie-paristech.fr
anne.boutin@ens.fr


In particular, the relative simplicity of the computational
method make it easy to implement and to parallelize. The
LB method works through the propagation of the one-
particle velocity distribution function f(r, c, t) equivalent to
the probability of a particle to be at position r with ve-
locity c at time t. For numerical integration, time, space
and velocities are all discretized. The distribution function
is propagated in time through the following equation:

fi(r + ci∆t, t+ ∆t)

= fi(r, t) + (fe
i (r, t)− fi(r, t))

τ
+ F ext

i

(1)

where fi is the component of f on velocity vector i, i.e.
fi(r, t) = f(r, ci, t). fe

i corresponds to the local Maxwell-
Boltzmann equilibrium distribution, τ is the relaxation time,
and F ext

i accounts for external forces acting on the liquid and
responsible for the fluid flow. This equation is implemented
following the method of Ladd and Verberg,8 relevant for
simulations of fluid dynamics in porous materials. To simu-
late the dynamical properties of solute dispersed in the fluid
we use the moment propagation method proposed by Lowe
and Frenkel9,10 and further validated by Merks et al.11 A
quantity P (r, t) is defined on the lattice and propagated fol-
lowing:

P (r, t+ ∆t) =
∑

i

P (r − ci∆t, t)pi(r − ci∆t, t)

+ P (r, t)

(
1−

∑
i

pi(r, t)

) (2)

where pi(r, t) corresponds to the probability of leaving node
r with velocity ci:

pi(r, t) = fi(r, t)
ρ(r, t) − wi + wiλ with λ = 2Db

v2
T ∆t (3)

Here ρ is the fluid density, wi are constant weights of the
velocity model (we chose in this work the D3Q19 model for
discretization of velocities), Db is the diffusion coefficient of
the tracers in the fluid in bulk phase, and vT is the fluid’s
speed of sound (v2

T = 1
3 ∆x2/∆t2, with ∆x the lattice spac-

ing).
In the published literature, there are relatively few compu-

tational lattice-based fluid dynamics models that explicitly
take into account the dispersion of solutes and their adsorp-
tion at fluid–solid interfaces.12–23 In this work, we account
for adsorption at the solid–liquid interface by following the
technique developped by Levesque et al.5 and refined in later
work from our group,6,24 — accounting for adsorption and
desorption in a generic lattice Boltzmann scheme, by mod-
elling these processes through kinetic rates of adsorption and
desorption taking place at interfacial lattice nodes. The ad-
sorption of tracers in the fluid occurs on fluid nodes having
at least one solid node as a neighbour. It is described using
the adsorbed density of tracersDads, which is defined only on
adsorption sites, and the free density of tracersDfree, defined
everywhere in the fluid. The adsorption kinetic is described
by three physical parameters: the adsorption coefficient Ka,
the desorption coefficient Kd, and the saturation coefficient
Dmax (or maximal uptake of a fluid node). The balance be-
tween adsorbed and free density is integrated numerically in

Figure 2. Schematic representation of the simulation box used
in this work.

time following first-order kinetics:6

Dads(r, t+ ∆t) =
[

1− Dads(r, t)
Dmax

]
Dfree(r, t)pa

+Dads(r, t)(1− pd)

Dfree(r, t+ ∆t) =Dfree(r, t)
[

1− pa + pa
Dads(r, t)
Dmax

]
+Dads(r, t)pd

(4)

where pa = Ka∆t/∆x and pd = Kd∆t.
In the simulations reported in this work, a slab of porous

material (our “sample”) is placed within a bigger simula-
tion box, whose dimension is larger along the direction of
fluid flow (see Figure 2). This leads to the presence of two
fluid reservoirs, one upstream from the porous matrix, and
the other one downstream. We consider a no slip boundary
condition at the fluid/solid interface, and periodic bound-
ary conditions at four faces of the simulation box (in the xy
and yz planes). However, the periodic boundary conditions
are removed in the moment propagation on the two faces
perpendicular to the flow (in the xz plane). This general ap-
proach is relatively simple to implement, and has been used
and validated once in earlier literature for lattice-based com-
putational fluid dynamics of flow, dispersion and catalysis in
a packed bed of catalytic spherical particles.25

In order to compute the transient kinetics of the tracers
in the fluid we proceeded to modify the initialization of the
free density at time t = 0. The free density is homogeneously
initialized on the upstream face of the simulation box per-
pendicular to the flow, i.e. the free density is initialized to
a constant value on all fluid nodes in the plane y = 0 when
the flux is applied along the y direction, while the initial free
density on all other fluid nodes is set to zero.

3 Practical details

The data shown here are obtained in a laminar flow regime.
We use periodic boundary conditions on two axes (x and
z), and no slip boundary conditions at the liquid/solid in-
terface for the Lattice Boltzmann scheme. We used a con-
vergence criterion of 10−14 (in relative step-to-step varia-
tion) for the average velocity of the fluid along the three di-
rections of space. The Lattice Boltzmann scheme employed
here works in reduced units (∆x,∆t,∆p). The method to
switch between reduced units and SI units is available in
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Figure 3. Example of an elution curve γ(t) for a pore with slit
geometry, with l = 50∆x, lm = 800δx, Ka = 0 and Fext =
2E − 6∆p/∆x.

supplementary information. Throughout the simulations we
fixed the bulk diffusion coefficient (Db = 6.04 10−8 m2.s−1),
the kinematic viscosity (ν = 10−6 m2.s−1), the density of
the fluid (ρ = 1000 kg.m−3), and the density of the solid
(ρs = 4970 kg.m−3).

We used the open-source Lattice Boltzmann code
laboetie,5 available online at https://github.com/
maxlevesque/laboetie. Simulations reported in this work
were performed with a modified version of the code,
available at https://github.com/maxlevesque/laboetie/
tree/jmvanson (commit 809d0b7). Input files and additional
information can be found at our group’s data repository, at
https://github.com/fxcoudert/citable-data.

4 Model validation

This section is devoted to the validation of the modified mo-
ment propagation scheme, without periodic boundary con-
dition in the flow direction. The key quantity for this is the
dispersion coefficient K, which represents the spreading of
the species inside the material, accounting for both advec-
tion and diffusion. It characterizes the influence of the ma-
terial on the motion of species. In a periodic system it can
be computed from the velocity auto-correlation function Z
as:

K =
∫ ∞

0
[Z(t)− Z(∞)] dt (5)

However, in the specific case of our modified technique with
no periodic boundary conditions in one direction, we validate
the model by computing the dispersion coefficient using a
macroscopic procedure common in the field of chromatogra-
phy.26 At a given position y = lm in the column (see Fig. 2),
we measure the flux of tracers passing through the section
as a function of time:

γ(t) =
lx∑

i=1

lz∑
k=1

Dfree(i, lm, k, t) (6)

The evolution of γ with time is the familiar elution curve,
an example of which is represented on Figure 3 for a pore
with slit geometry, a height of l = 50∆x, where lm has been
set to 800δx, with no adsorption (Ka = 0) and Fext = 2E −
6∆p/∆x.

Once the simulation has finished and the elution curve is
obtained, we fit it to a mathematical model. An impressive
number of functions have been proposed in the literature to
fit elution curves, and a review on the topic counts up to

Figure 4. Evolution of the dispersion coefficient K as a function
of lm for different values of Fext (2 10−6, 4 10−6, 6 10−6, 8 10−6,
10 10−6∆p/∆x) in a slit pore geometry, with l = 50∆x, Ka = 0.

90 different mathematical functions used for this purpose.27
Here, we have chosen simplicity and fit elution curves with
a Gaussian function:

f(t) = Ae

−(t−tR)2

2σ2
t (7)

The Gaussian is the most widely used model in the litera-
ture, and our goal here is not to test in detail the influence
of one model or another, but to validate our moment propa-
gation scheme. The results obtained do not depend much on
the shape of the fitting function, as we only use the peak po-
sition and half-maximum width. From the Gaussian fit, we
then calculate the Height Equivalent to a Theoretical Plate
(HETP), H, with the following equation:28

H = lmσ
2
t

t2R
(8)

where σt is the width of the Gaussian fit and tR is the elution
time (time t at which γ(t) is maximal). Finally, the disper-
sion coefficient K is computed using the HETP as:26,29

K = 〈vy〉H
2 = 〈vy〉lmσ2

t

2t2R
(9)

where 〈vy〉 corresponds to the average velocity of the tracers
in the fluid.

We can see in the simplest test case, that of a slit pore
with no adsorption (Ka = 0) (Fig. 4), that the value of the
dispersion coefficient measured through the above procedure
is clearly dependent on the position of the measurement (the
value of lm) and converges at high lm. This converged value,
obtained far from the sample, increases with external force
Fext as is expected. We then compare the values of the dis-
persion coefficients thus obtained with the analytical solu-
tion, which is known for a pore with slit geometry (of width
lh):5,6

K

Db
= 1− Fa + Pe2

(
102α2 + 18α+ 1

210(1 + 2α)3 + Db

l2hKd

2α
(1 + 2α)3

)
(10)

where Pe = lh 〈v〉 /Db is the Péclet number and α =
Ka/Kdh.

Figure 5 compares the values obtained from our model
with the analytical solution, for cases without adsorption
and in presence of adsorption (panels a and b respectively).
We can see that the results agree reasonably well with ana-
lytical values, especially considering the numerous assump-
tions made in the indirect “macroscopic” determination (in
particular the Gaussian fit). The difference between indirect
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Figure 5. Comparaison of the dispersion coefficient computed
numerically from our model and the known analytical solution.
(a) As a function of the average velocity of the fluid on y direction,
in the absence of adsorption (Ka = 0). lx = 1∆x, ly = 1450∆x,
lz = 52∆x, lm = 1400∆x. (b) In presence of adsorption, as a func-
tion of the ratio between the adsorption coefficient Ka and the
desorption coefficient Kd, with Fext = 5 107 Pa.m−1. Other pa-
rameters are: lx = 1∆x, ly = 1450∆x, lz = 52∆x, lm = 1400∆x
.

and analytical results increases with the velocity of the fluid
due to the fact that the convergence ofK with lm is slower at
high value of the fluid velocity. This difference also increases
with the ratio Ka/Kd because we employed a simplified Van
Deemter equation (Eq. 9).

5 Results and discussion

In this section, we use the extended Lattice Boltzmann
model to characterize the evolution with time of the trac-
ers’ density inside the fluid and adsorbed at the fluid–solid
interface. This yields useful information about the tracer ki-
netic and the accessibility of the active adsorption sites in
two different geometries.

5.1 Crenelated pore
We first study the kinetics of solute transport and adsorption
in a model geometry of a slit pore with crenels. The geom-
etry is characterized by the aspect ratio of the crenels (or
grooves), i.e. the ratio r between the crenel depth and crenel
width. Figure 6 shows the time evolution of the density of
tracers in the fluid in a slit pore with grooves having an as-
pect ratio of r = 1 (whose depth and width are equal). Three
snapshots of the density are taken at three moments along
the simulation, as the “pulse” of tracers, starting from the
left side of the picture, moves towards the right side follow-
ing the fluid flow. We can see that in this case, the tracers’
density follows the profile of the fluid flow, with faster flow

Figure 6. Time evolution of the density of a pulse of tracers in a
crenelated pore with liquid flow (flow from left to right). Aspect
ratio of the crenels r = 1, with h = 5, w = 5, and l = 20. a:
t = 1000∆t; b: t = 10000∆t; c: t = 20000∆t. Other parameters of
the simulation are: lx = 1∆x, ly = 120∆x, lz = 32∆x, Fext = 109

Pa.m−1, Ka = 6.04 m.s−1, Kd = 6.04 106 s−1, ∆x = 100 nm.

in the center of the pore. We can also observe the effect of
adsorption at the solid–liquid interface on Fig. 6b, where it
seems clear that the solute has access to the whole internal
area of the pores (i.e., that all adsorption sites are active
within the timeframe of the simulation).

We depict the time evolution of tracers in a slit pore with
deeper crenels (r = 4, all other parameters being equal) on
Figure 7. In contrast with the previous case (aspect ratio
r = 1), it is clear that for the deeper crenels the tracers do
not have access to the entirety of the pores’ internal surface.
With the chosen flow, it is clear that advection along the
y axis is too fast compared to the diffusion of the tracers
along the perpendicular x and z axes, which would give them
access to the bottom of the grooves. Thus, a dead volume
exits in the material, and not all adsorption sites are active
in these given conditions. This result parallels what we have
seen in earlier work,6 in which we studied the velocity profile
for fluid flow in crenelated pore systems and showed the
existence of “dead volume”, i.e. a non negligible part of the
crenel where the velocity of the fluid is close to zero. We
observe that this dead volume, which can depend on the
velocity of the fluid, becomes significant for r > 1, when the
grooves’ depth is larger than their width, as the fluid flow
cannot enter the channel.

To quantify this effect we have plotted in Figure 8 the
evolution of the adsorbed fraction as a function of simula-
tion time, for various values of crenels’ aspect ratio r. In all
cases, we see that the adsorbed fraction (i.e., the adsorbate
uptake) goes through a maximum as a function of time, then
decays at long times. The maximum corresponds to the mo-
ment when the “cloud” of tracers goes through the sample.
For r < 1 the maximum of the adsorbed fraction increase
clearly with r: there, all the adsorption sites are accessible
to the adsorbate, and the adsorbed fraction is proportional
to the specific surface area, which itself grows as a func-
tion of r (since we keep the distance between the top of the
crennels constant). For r > 1, on the other hand, the ad-
sorbed fraction is lower than for r < 1. Even though, the
total specific surface area increases, the adsorbed fraction
decreases because not all the sites are accessible for a given
fluid velocity. This highlights the fact that, for an adsorbent
material to perform best under fluid flow, it is not merely
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Figure 7. Time evolution of the density of a pulse of tracers in a
crenelated pore with liquid flow (flow from left to right). Aspect
ratio of the crenels r = 4, with h = 20, w = 5, and l = 20 a:
t = 1000∆t, b: t = 5000∆t, c: t = 10000∆t. Other parameters of
the simulation are the same as in Fig. 6.

dictated by the absolute specific surface area, but also by its
accessibility in specific conditions, as the system is not at
thermodynamic equilibrium (as is often considered the case
for gas adsorption) or in a steady state.

5.2 Random roughness
The crenels studied in the previous section can be consid-
ered as an ordered “roughness” or small-scale disorder on
the surface of the walls of a slit pore. Here, we extend this
study by looking at the impact of a disordered (or “random”)
roughness of the adsorbent walls on the kinetics of tracers in
the fluid. The process by which our rough slit pore models
were generated — which relies on aggregation of smaller par-
ticles onto pre-existing walls — is described in Supporting
Information. The roughness is controlled by the parameter
controlling the aggregation, Ac, so that decreasing values of
Ac lead to increase in the roughness of the walls.

Figure 9 presents a timelapse of 3D views of the advection
and adsorption of a pulse of tracers in a randomly aggregated
slit pore. The tracers start at t = 0 on the left side of the
sample (upstream), and the fluid flow goes from left to right.
As in the simpler geometry, the tracers follows the fluid flow
profile, with higher density at the center of the pore, and
lower close to the solid–liquid interface. At long times (see
t = 9000 on Fig. 9) we observe a direct effect of adsorption
on the distribution of tracers, as the tracer density is lower
downstream than upstream — in spite of the fact that the

Figure 8. Effect of the ratio r between the height and the width
of the crenels on fraction adsorbed. The simulation parameters
are the same as in Fig. 7.

adsorption and desorption coefficients are identical for all
adsorption sites. A large amount of solute is adsorbed up-
stream at the solid–liquid interface, thus the density of free
tracers decreases close to the interface. There is therefore
a lower concentration of available tracers on the adsorption
sites located downstream, the adsorbed density is thus lower.

Quantitatively, we show on Figure 10 the maximum value
of the adsorbed fraction over time (the peak value of the elu-
tion curve, max γ(t)) as a function of the external force Fext.
The different values of aggregation criterion Ac represent
three different values of the roughness, where Ac = 1/8 cor-
responds to the lowest roughness coefficient and Ac = 1/32
to the highest roughness coefficient. In all cases, we observe
that Fa decreases when Fext increases i.e. the fraction ad-
sorbed is lower for high velocities of the fluid. The tracers
close to the interface are adsorbed at the entrance of the ma-
terial leading to a lower density close to the adsorption sites.
Then, the tracers do not have time to diffuse perpendicularly
to the flow to reach the active sites. This effect increase with
fluid velocity at constant bulk diffusion coefficient and is, in
a broader fashion, dependent on the Péclet number of the
fluid flow.

We can see that, in the case of random heterogeneous
roughness, we do not observe the effect seen in the ordered
crenels: as roughness increases, most adsorption sites remain
active and thus higher roughness coefficient does not yield
to a lower fraction adsorbed (as was the case for crenels).
That is because the “side pockets” of the slit pore created
by our aggregation procedure are well-connected to the cen-
tral area of the slit pore, and have an effective aspect ratio
(width over depth) that corresponds to the r < 1 case in the
crenelated slit pore. We thus see that having disordered mul-
tiscale porosity can in this case be more efficient, in terms
of fluid transport and solute adsorption, than a well-ordered
porous space of similar dimensions.

6 Conclusion

We have here extended and applied a Lattice Boltzmann
scheme for fluid transport in nanoporous materials, taking
into account adsorption of solutes on the solid–liquid inter-
face. We use it to study the kinetics of tracer adsorption
and the accessibility of adsorption sites in simple models
of hierarchical (or multi-scale) porosity. We validated this
model on a simple slit pore geometry, then used it to study
a slit pore with grooves (or side pockets) of various aspect
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Figure 9. 3D view of spatial repartition of Free density in slit pore geometry with random roughness on the walls. The units of time is
the reduced ones (∆t). Input parameters for the simulations: lx = 50∆x, ly = 150∆x, lz = 52∆x, Fext = 109 Pa.m−1, Ka = 6.04 m.s−1,
Kd = 6.04 106 s−1, ∆x = 100 nm.

Figure 10. Maximum values of the fraction adsorbed as a func-
tion of Fext for different roughness. The simulation parameters
are the same as in Fig. 9.

ratio. We demonstrate the potential limitations due to ina-
cessibility of some adsorption sites in the presence of deep
grooves, highlighting the problem of access of the solute to
the mesoporosity (here crenels) in the walls of the material in
presence of flow. We then studied the effect of a more disor-
dered type of porosity, through computer-generated models
of rough slit pores with controlled rugosity. This opens the
way to future work on complex, realistic models of hierar-
chical porous materials, e.g. coming from reconstructed 3D
images obtained by X-ray tomography.

Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website. Description of the random rough-
ness aggregation model. Relations between reduced units
and SI units.
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