

Direct Comparison of Urea-SCR and NH3-SCR Activities Over Acidic Oxide and Exchanged Zeolite Prototype Powdered Catalysts

Michael Seneque, Xavier Courtois, F. Can, Daniel Duprez

▶ To cite this version:

Michael Seneque, Xavier Courtois, F. Can, Daniel Duprez. Direct Comparison of Urea-SCR and NH3-SCR Activities Over Acidic Oxide and Exchanged Zeolite Prototype Powdered Catalysts. Topics in Catalysis, 2016, 59 (10-12), pp.938 - 944. 10.1007/s11244-016-0572-4. hal-01685566

HAL Id: hal-01685566 https://hal.science/hal-01685566

Submitted on 22 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Topics in Catalysis 59 (2016) 938-944. DOI: 10.1007/s11244-016-0572-4

Direct comparison of Urea-SCR and NH₃-SCR activities over acidic oxide and exchanged zeolite prototype powdered catalysts.

Michael SENEQUE, Xavier COURTOIS*, F. CAN, Daniel DUPREZ

<u>Affiliation :</u> Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), UMR 7285 Université de Poitiers-CNRS, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers Cedex 9, France *Corresponding author: Tel.: 33(0)549453994, e-mail: <u>xavier.courtois@univ-poitiers.fr</u>.

Abstract

In order to develop new NOx selective catalytic reduction (SCR) catalysts for automotive application, the DeNOx catalytic activity is commonly evaluate at the laboratory scale using NH₃ as reductant. However, NH₃ is not directly used on board: an ammonia precursor based on urea aqueous solution is injected in the exhaust pipe upstream the SCR catalyst. It is admitted that ammonia is then obtained by two successive reactions: the thermal decomposition of urea, leading to HNCO and NH₃, and the HNCO hydrolysis, providing the second molecule of NH₃. However, the complete availability of ammonia from urea could be not achieved before the SCR catalyst. Then, the influence of the SCR catalyst on these reactions may impact the NOx reduction efficiency. With the aim to study the possible role of the SCR catalyst on the ammonia availability, an innovative synthetic gas bench adjusted to powdered material was developed, allowing the direct comparison of the use of gaseous NH₃ or urea (injected aqueous solution) for the NOx conversion, depending on the temperature (200-500°C). This work presents results obtained with an oxide based prototype SCR catalyst in comparison with a patented Fe-exchanged zeolite, evaluated in both standard and fast SCR stoichiometry. This study points out that, in contrast with the exchanged zeolite, the evaluated oxide based catalyst may not allow an optimal NOx conversion

Keywords: Urea; NH₃; SCR; residence time; oxide; zeolite.

1. Introduction

Recent regulations for Diesel or lean-burn engines like Euro 6/VI tend to impose three different catalytic processes to treat the exhaust gas, including (i) an oxidation catalyst for CO and unburned hydrocarbons, (ii) a particulate filter for soot trapping and combustion, and (iii) a specific process for NOx reduction. Concerning the NOx treatment, two main technologies are usually proposed. The NOx storage reduction (NSR) process works in transient condition, with alternating oxidizing and reducing phases [1]. It doesn't need additional reductant other than fuel, but the main drawbacks are fuel overconsumption, ageing (thermal ageing, poisoning) and NOx reduction selectivity. The second technology is adapted from the NOx selective catalytic reduction (SCR) by ammonia developed in the 1970' for stationary source application. The NH₃-SCR reactions are mainly known as "standard-SCR" (Eq. 1) and "fast-SCR" (Eq. 2) depending on the NO₂/NOx ratio, both reactions respecting the NH₃-NOx stoichiometry 1-1.

$$4NH_{3} + 4NO + O_{2} \rightarrow 4N_{2} + 6H_{2}O$$
 (1)
$$4NH_{3} + 2NO + 2NO_{2} \rightarrow 4N_{2} + 6H_{2}O$$
 (2)

However, the implementation of the NH₃-SCR process into passenger cars and heavy duty vehicles requires the use of an ammonia precursor, usually an urea aqueous solution. Ammonia is then obtained by two consecutive reactions: urea thermolysis (Eq. 3) and HNCO hydrolysis (Eq. 4):

$$(NH_2)CO(NH_2) \rightarrow NH_3 + HNCO \qquad (3)$$

HNCO + H₂O \rightarrow NH₃ + CO₂ (4)

Unfortunately, NH₃ may be not fully available due to a limited urea decomposition/hydrolysis. It leads to an imbalance in the SCR stoichiometry and it may cause deposit formation due to formation of biuret, cyanuric acid, ammelide, ammeline...[2].

In addition, the implementation of a particulate filter in the exhaust pipe, which induces strong exothermic reactions, does not allow the use of conventional vanadium based SCR catalysts. To reach the required high thermal stability, new SCR materials are developed. They are usually firstly evaluated in DeNOx efficiency at the laboratory scale in NH₃-SCR. However, this is not the on-board reductant, but only few works deal with urea-SCR at the laboratory scale [3,4], especially with powdered catalysts.

In order to evaluate these new catalysts in both urea-SCR and NH₃-SCR conditions, an innovative experimental synthetic gas bench was developed in our laboratory, specially designed for powdered samples, with the aim to obtain a direct comparison of both reductants. In the case of urea-SCR, the residence time between urea injection zone and the catalytic bed is a key parameter. This work presents the catalytic behaviour in terms of NOx and NH₃ conversions over an oxide based prototype SCR catalyst, in comparison with a patented Fe-exchanged zeolite, for standard and fast conditions.

2. Materials and Methods

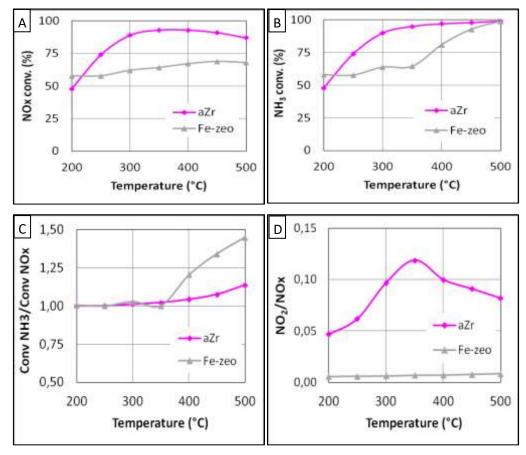
Two powdered samples were evaluated in this study, an oxide based catalyst and a zeolite based catalyst. The oxide was a modified acidic zirconia provided by Solvay, as proposed in [5]. It is denoted aZr. It was evaluated after hydrothermal ageing at 600°C and exhibited a specific surface area of 50 m²/g. Note that this solid appears very stable since its specific surface area was measured at 47 m²/g after hydrothermal ageing at 850°C. The second evaluated catalyst was a patented Fe-zeolite catalyst

[6], denoted as Fe-zeo. Before use, the catalysts were sieved in the 0.1-0.25 mm range and the apparent densities were approximately 0.77 g cm³ and 0.29 g cm³ for aZr and Fe-zeo, respectively.

The DeNOx efficiency was evaluated in "standard SCR" and "fast-SCR" conditions using the following mixture: 400 ppm NOx (*i.e.* 400 ppm NO in standard-SCR, or 200 ppm NO+200 ppm NO₂ in fast-SCR), 200 ppm urea or 400 ppm NH₃, 10% O₂, 8% H₂O, 10% CO₂ (total flow rate 20 L.h⁻¹). For water and urea addition, an aqueous solution containing urea (1.33 10⁻¹ M, *i.e.* 0.794_{wt}%) was vaporized via a micro-nozzle (ϕ =50µm) into a heated zone at 200°C upstream the catalytic bed. The liquid flow rate (19 µL.min⁻¹) was controlled by a HPLC micro pump (Δ P=9-10 bar). The catalyst (100 mg) was placed in a quartz reactor and positioned in an electric furnace. The residence time (noted Tr, corresponding to the elapsed time for the gaseous mixture between urea injection zone and the catalytic bed) was varied between 6.1 s and 4.0 s depending on the location of the catalytic bed in the oven. Note that the velocity of the urea ejection at the nozzle outlet is not taken into account for the Tr calculation. A scheme of the experimental bench is presented in Online Resource 1.

Supplementary tests were performed in order to evaluate the behaviour of materials in the oxidation of NH₃ or urea. Selective catalytic oxidation (SCO) tests were performed with the same mixture as for SCR tests, except that NOx were removed. All catalytic activities were evaluated in the 200-500°C temperature range, by step of 50°C. Reported data were recorded after stabilization. The gas composition was monitored with a MKS 2030 Multigas infrared analyser for NO, NO₂, N₂O, HNCO, NH₃, CO, CO₂ and H₂O. The urea conversion was calculated taking into account that the introduced urea is fully converted into NH₃ at the analyser level without catalyst.

NH₃-TPD were performed under a flow containing CO₂, O₂ and H₂O (each at 10%) balanced in N₂ from 120°C up to 550°C (5° /min) after adsorption and purge at 100°C.


3. Results and Discussion

The aim of the study was to evaluate SCR catalysts at the laboratory scale with the on-board reductant: an urea aqueous solution. However, the conversion obtained with gaseous ammonia (NH₃-SCR) using the same apparatus is required as reference for the direct comparison of both reductant. Results are presented in the next section.

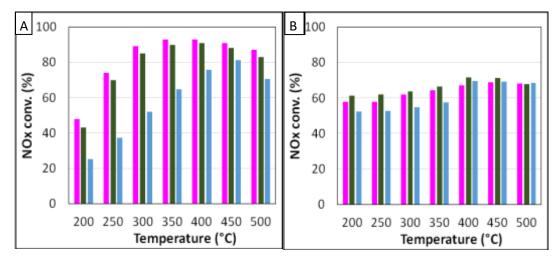
3.1 NH₃-SCR.

NOx and NH₃ conversions obtained in standard SCR condition (only NO as NOx _{inlet}) using ammonia as reductant agent are reported in Fig. 1.

Over the zirconia based catalyst (aZr), the NOx conversion starts at 48% at 200°C, it reaches a maximum of 93% near 350°C and it then decreases slowly to 87% at 500°C. Taking into account the ammonia conversion depicted in Fig.1B, it appears that the NH₃ conversion / NOx conversion ratio is very close to 1 until 400°C, indicating that the DeNOx process respects the fast and/or standard SCR stoichiometry (Eq. 1 and 2). For higher temperatures, this ratio increases and reaches 1.16 at 500°C (Fig. 1C). This NH₃ over-conversion at high temperatures is explained by the NH₃ oxidation by O₂ [7].

Fig. 1 standard-SCR activity obtained with gaseous NH₃ as introduced reductant over aZr (—) and Fezeo (—) catalysts. NOx conversion (A), NH₃ conversion (B), NOx conversion / NH₃ conversion ratio (C), and NO₂/NOx outlet ratio (D)

In this standard SCR condition, a lower NOx conversion is observed with the Fe-zeo sample compared with aZr. The NOx conversion slowly increases with temperature, it varies between 58% and 69% in the 200-500°C temperature range, with a maximum at 450°C. The NH₃ conversion is equal to the NOx conversion until 350°C, but the NH₃ conversion significantly differs for higher temperature, reaching 100% at 500°C. The "NH₃ conversion / NOx conversion" ratio was then 1.45 (Fig. 1C). It can be attributed to a pronounced oxidation of NH₃, most meaningful than over the acidic zirconia.


Comparison of both catalysts also shows that nearly no NO₂ is emitted outlet with Fe-zeo (Fig. 1D) whereas 5-10 ppm NO₂ are detected using aZr. One assumption can be a lower activity in the oxidation of NO to NO₂ of Fe-zeo, but in can be also attributable to a full consumption of the generated NO₂ by a fast-SCR stoichiometry (eq. 2). In fact, Fe-zeo exhibited high DeNOx efficiency in fast-SCR condition (section 3.2.3), and NO oxidation tests performed at 200°C showed that the exchanged zeolite is more active than the aZr oxide based sample: the NO oxidation into NO₂ reached 25% and almost 0%, respectively (tests not shown). Then, it confirms the preferential fast SCR stoichiometry pathway for NOx reduction on this zeolite material.

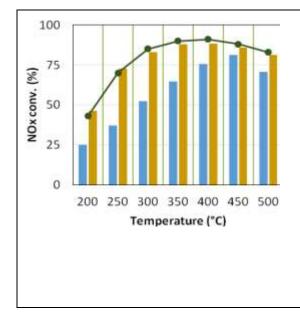
3.2 Urea-SCR.

3.2.1 Standard-SCR condition

Urea-SCR tests were firstly performed in "standard" conditions with various residence times (Tr) between the urea injector and the catalytic bed. For both studied catalysts, results obtained with residence time of 6.1 s (not shown) or 5.2 s are very close to those obtained with gaseous ammonia (Fig. 2). Taking into account that NH_3 is assumed to be the effective reductant, these results suggest that NH_3 is sufficiently available to ensure the expected NOx reduction.

On the opposite, the NOx reduction can be affected when the residence time is decreased to 4.0 s, especially with the aZr catalyst at low temperatures (Fig. 2A). For instance, the NOx conversion is two times lower at 250°C. On the opposite, this limitation was not clearly evidenced over Fe-zeo (Fig. 2B). This direct comparison between reductant agents (NH₃ *vs.* urea) and catalyst composition illustrates that at least a part of the successive reaction of urea decomposition (Eqs. 3, 4) can be catalysed. Moreover, even if the considered residence times are significantly higher than in real SCR process, a residence time of 4.0 s appears sufficiently low in the used experimental setup to highlight significant differences depending on the introduced reductant and the catalysts formulation.

Fig. 2 Influence of urea residence time (\blacksquare : Tr = 5.2s.; \blacksquare : Tr = 4.0 s.) in "standard-SCR" condition compared with the use of gaseous NH₃(\blacksquare). (A) aZr catalyst, (B) Fe-zeo catalyst.

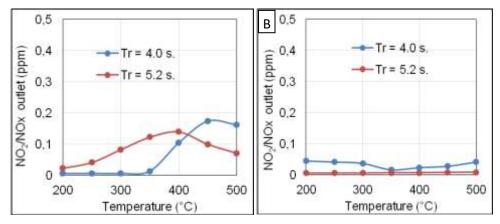

Various hypothesis can be proposed to explain the drop in DeNOx efficiency observed with the acidic zirconia catalyst for shorter urea residence time: (i) a catalyst poisoning due to deposit formation, as presented in the introduction section [2]; (ii) a lack of available NH₃ due to incomplete urea decomposition and/or HNCO hydrolysis (eq. 3 and 4); (iii) a lack of available NH₃ due to reactivity of the reductant(s) without NOx reduction; (iv) a change in the SCR stoichiometry (attributable for instance to the following reactions $4NH_3 + 3NO_2 \rightarrow 3.5N_2 + 6H_2O$ and/or $4 NH_3 + 2 NO_2 + O_2 \rightarrow 3 N_2 + 6 H_2O$).

3.2.2 Investigation of the DeNOx efficiency decrease over aZr catalyst for urea Tr = 4.0 s.

Additional tests were performed in order to clarify the reason for the loss in NOx conversion over aZr when the residence time dropped to 4.0 s. As the developed apparatus allows the simultaneous use of

urea and gaseous NH₃, it is possible to add gaseous NH₃ in the feed stream, in addition to the injection of urea with Tr = 4.0 s. The amount of added NH₃ was calculated to theoretically compensate the loss in NOx conversion for each tested temperature. Results presented in Fig. 3 show that this addition of gaseous NH₃ led to a full recovery of the NOx conversion obtained with a residence time of 5.2 s (full line). Then, the NOx conversion with Tr = 4.0 s appears limited by a lack of NH₃ availability.

Besides, SCO tests were also carried out to determine the behaviour of materials in the oxidation of the introduced reductant, NH_3 or urea (Tr = 4.0s). Table 1 reports the reductant conversion expressed in NH_3 conversion. It clearly appears that the reductant conversion is significantly improved when urea is used. It is deduced that (i) the effective reactant is not only ammonia when urea is injected, and (ii) the reactive species are more reactive toward oxidation than NH_3 .



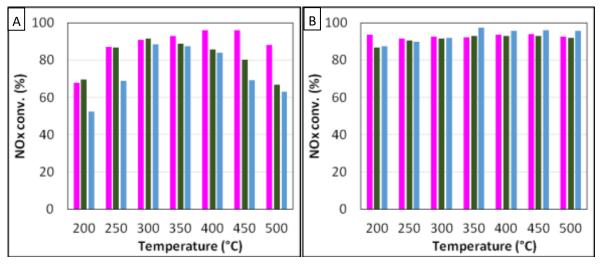
T(°C)	NOx conv. decrease (ppm) Tr=5.2s→Tr=4.0s	Amount of added NH ₃ (ppm) in Tr = 4.0s+NH ₃
200	80	= 4.05+NH3 75
250	133	120
300 350	130	120 100
400	57	60
450	30	20
500	50	50

Fig. 3 aZr catalyst: influence of gaseous NH₃ addition (\blacksquare) on the NOx conversion obtained in "standard-SCR" condition with urea (\blacksquare) at Tr = 4.0s. (-: Tr = 5.2 s.)

Table 1: reductant conversion over aZr in Selective Catalytic Oxidation (SCO) test (200 ppm urea or 400 ppm NH₃, 10% O₂, 8% H₂O, 10% CO₂)

Temperature (°C)	200	250	300	350	400	450
NH_3 conv. (%) with gaseous NH_3	0	5	8	15	28	47
"NH ₃ " conv. (%) with urea (Tr =4.0s)	0	19	30	31	38	49

Fig. 4 NO₂/NOx outlet ratio in "standard-SCR" for Tr = 4.0 s (—) and Tr = 5.2 s. (—). (A) aZr catalyst, (B) Fe-zeo catalyst


In addition, the urea residence time can also affect the NO₂/NOx outlet ratio, depending on the catalyst formulation. For the exchanged zeolite, no clear effect of the urea residence time is observed in NO₂/NOx outlet ratio (Fig. 4B). In fact, very low amount of NO₂ was emitted, whatever the urea residence time. These results are also in accordance with the test performed with gaseous ammonia (Fig. 1D). On the acidic zirconia sample, NO₂ can be emitted at low temperature for Tr = 5.2s (Fig. 4A) or using gaseous ammonia (Fig. 1D). On the contrary, no NO₂ was emitted until 350°C for the shorter urea residence time (4.0 s). It can be then supposed that the *in situ* produced NO₂ reacted with a product from the urea injection.

These results appear consistent with the previously detailed SCO tests which indicated an enhancement in the oxidation behaviour over the acidic zirconia catalyst when urea was injected with Tr = 4.0s instead of gaseous NH₃. The intermediate species, probably HNCO, is not only more reactive toward O₂, but also probably toward NO₂ (without NOx reduction).

3.2.3 Fast-SCR condition

The detrimental effect of urea residence time on NOx abatement was also examined in more favourable conditions for the NOx reduction, namely the fast-SCR condition. Corresponding catalytic results for both samples are presented in Fig. 5. It appears that the NOx conversion with Fe-zeo is then higher than over aZr. In fact, the NOx conversion was highly improved over Fe-zeo in fast SCR condition compared with the standard SCR condition. It reached 87-97% in the whole studied temperature range, whatever the introduced reductant, gaseous ammonia or urea with Tr= 5.2-4.0 s.

The NOx conversion is also improved with aZr in fast-SCR condition, which is particularly evidenced at low temperature: at 200°C, the NOx conversion reached 68% in fast-SCR condition (Fig. 5B), compared to 48% in standard condition (Fig. 2A).

Fig. 5 Influence of urea residence time (\blacksquare : Tr = 5.2s.; \blacksquare : Tr = 4.0 s.) in "fast-SCR" condition compared with the use of gaseous NH₃(\blacksquare). (A) aZr catalyst, (B) Fe-zeo catalyst

In addition, the detrimental impact of the shorter urea residence time is put in evidence again over the oxide-based sample, with a relative drop of about 25% at 200°C. Interestingly, the decrease of the urea residence time still has no influence over Fe-zeo catalyst. Note that the maximum N₂O outlet concentration is limited to 3 ppm at 500°C over aZr, and to 5 ppm at 350°C over Fe-zeo (recorded at stabilized temperatures), whatever the inlet condition (standard and/or fast).

3.2.4 Enhancement of DeNOx efficiency over the acidic zirconia oxide in standard-condition

Finally, the presented results suggest that the double ammonia formation from urea is not achieved at the catalyst level over the acidic zirconia oxide for shorter urea residence time (Tr = 4.0 s.), whatever the SCR conditions, namely standard or fast. The urea thermolysis (Eq. 3) is endothermic and thermally assisted compared to the HNCO hydrolysis which is exothermic. With pure urea, thermal decomposition can occur whereas the isocyanic acid is stable in the gas phase [8]. However, HNCO hydrolysis is catalysed on many solid oxides [9]. It is proposed that the rate of HNCO hydrolysis is much higher than the rate of the SCR reaction at low to medium temperatures on usual SCR catalysts.

However, both Eq.3 and Eq.4 reactions can be catalysed by transition metal oxides and the limiting step for ammonia formation also depends on the temperature [10]. Based on the results reported by Berhard *et al* [10], 100 mg of single oxide (TiO₂, 43 m²/g; ZrO₂, 46 m²/g; Al₂O₃, 185 m²/g) were added just ahead the aZr catalytic bed. These oxides were selected in regards to their respective behaviours in urea thermolysis and HNCO hydrolysis, but they don't exhibit any DeNOx activity (results not shown). The DeNOx efficiencies of these dual bed catalytic systems were evaluated in standard condition.

A partial recovery of the NOx conversion was observed (Table 2) according the following order: $ZrO_2 > TiO_2 > Al_2O_3$, which also corresponds to the reactivity toward the HNCO hydrolysis reported in [10]. It is concluded that the decrease in the DeNOx efficiency over aZr when the urea Tr is decreased to 4.0 s is mainly attributable to a lack in the HNCO hydrolysis. In opposition, Fe-zeo is able to convert HNCO into NH₃, or to use directly HNCO to reduce NOx, in both standard and fast SCR conditions.

Temperature (°C)	200	250	300	350	400	450
NOx conv. (%) ; aZr catalyst alone	25	37	52	64	75	81
NOx conv. (%) ; Al ₂ O ₃ +aZr catalyst	31	48	58	67	81	83
NOx conv. (%) ; TiO ₂ +aZr catalyst	27	48	62	71	83	84
NOx conv. (%) ; ZrO ₂ +aZr catalyst	37	56	72	80	82	82

Table 2: NOx conversion in standard-SCR condition using urea (Tr = 4.0s) as reductant: influence of the single oxide addition (100 mg) ahead the aZr catalytic bed.

Additionally, both catalysts present very different acidity behaviour. Ammonia temperature programmed desorption (TPD) were performed in order to evaluate this parameter (profiles not shown). The aZr catalyst presented a maximum desorption near 300°C, and NH₃ desorption was finished at approximately 450°C. As expected, the zeolite based sample exhibited higher acidic properties: the desorption profile showed a maximum near 400°C, and it occurred until 570°C. In addition the amount of desorbed ammonia was approximately two times higher over Fe-zeo than over aZr. This significant difference in acidity strength and site number may intervene in the zeolite behaviour toward HNCO, in accordance with the results obtained with the addition of singles oxides: ZrO₂ is the more acidic material compared with Al₂O₃ and TiO₂.

4. Conclusions

This study, carried out at the laboratory scale, clearly demonstrates the interest to evaluate catalysts in urea-SCR rather than in NH₃-SCR. A possible divergence in terms of DeNOx efficiency is evidenced depending on the nature of the reductant agent, *i.e.* gaseous ammonia or aqueous urea, in respect to the catalyst formulation, *i.e.* oxide or zeolite-based materials. Particularly, the influence of the urea residence time is more detrimental to the acidic zirconia oxide compared to iron exchanged zeolite. In fact, using urea aqueous solution, the evaluated aZr catalyst may not allow an optimal NOx conversion because of a lack in ammonia availability, attributed to insufficient activity in HNCO hydrolysis. The drop in DeNOx efficiency noticed over acidic zirconia sample for shorter urea residence time is evidenced whatever the inlet condition, namely standard or fast SCR. In contrast, the evaluated Fe-zeo did not exhibit such limitations, demonstrating the role of the catalyst in urea-SCR compared to NH₃-SCR and the interest to develop specific materials active with urea rather than with gaseous ammonia.

In addition, results suggest that HNCO is more reactive toward oxidation than ammonia over acidic zirconia. In order to highlight this probable inconvenient, SCR tests with excess of NO₂ will be investigated in a near future.

Acknowledgment

The authors gratefully acknowledge the French National Agency for Research (ANR) for its financial support (UreeNOx Project, Ref. ANR-11-VPTT-002).

References

1. Kobayashi T, Yamada T, Kayano K (1997) SAE Technical Papers 970745

2. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J (2004) Thermochim. Acta. 424:131-142

3. Koebel M, Elsener M, Kröcher O, Schär C, Röthlisberger R, Jaussi F, Mangold M (2004) Topics Catal. 30/31:43-48

- 4. Sullivan JA, Doherty JA (2005) Appl. Catal. B. 55:185-194
- 5. Verdier S, Rohart E, Bradshaw H, Harris D (2008) SAE Technical Paper 2008-01-1022
- 6. European patent EP2857084
- 7. Can F, Berland S, Royer S, Courtois X, Duprez D (2013) ACS Catal. 3:1120-1132
- 8. Koebel M, Elsener M, Kleemann M.(2000) Catal. Today 59:335-235
- 9. Koebel M., Strutz E.O.(2003) Ind. Eng. Chem. Res. 42:2093-2100
- 10. Berhard A.M., Peitz D., Elsener M., Schildhauer T., Kröcher O. (2013) Catal. Sc. Technol. 3:942-951