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Abstract

Aligned finger structures, with a characteristic width, emerge during the slow drainage of a liq-

uid/granular mixture in a tilted Hele-Shaw cell. A transition from vertical to horizontal alignment

of the finger structures is observed as the tilting angle and the granular density are varied. An

analytical model is presented, demonstrating that the alignment properties is the result of the

competition between fluctuating granular stresses and the hydrostatic pressure. The dynamics is

reproduced in simulations. We also show how the system explains patterns observed in nature,

created during the early stages of a dyke formation.

∗ jonaerik@fys.uio.no
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I. INTRODUCTION

Subsurface flows tend to converge on high-conductivity pathways such as rock fractures,

joints and faults. Flow of oil and gas in fractured reservoirs, groundwater transport, magma

flow and pollutant transport in fractured porous media are therefore often dominated by

the interactions between the flowing fluids, the confining geometries, and granular rock

fragments residing in the cracks or faults.

A range of flow patterns can emerge when one fluid displaces another fluid in such confined

spaces [1, 2]. These flow patterns are caused by the interplay between different stabilizing

and destabilizing effects, like surface tension, gravity, pore size fluctuations, wettability

properties and granular effects. Viscous fingering is a well-known example of a fluid flow

instability. An initially straight interface between two immiscible fluids of different viscosities

develops undulations that grow to form fingers when the less viscous fluid invades the more

viscous host fluid [3–6]. In rough factures or a porous medium, disorder in the form of

variations in pore sizes perturbs the invading interface, generating fractal two-phase flow

structures with no intrinsic length scale [7–11].

Gravity has a profound effect on the flow patterning in situations where a density dif-

ference between the fluids exists, and where the flow geometry is not strictly horizontal.

For example, in density driven convection, the interface between a dense fluid overlying a

less dense fluid becomes unstable, with dense fluid fingers sinking and low density fingers

rising [12–14]. With the less dense fluid on top on the other hand, the hydrostatic pres-

sure stabilizes the interface at a given height. During slow drainage of a porous medium, a

competition exists between the stabilizing effect of gravity, and the pore scale disorder that

increases the roughness of the invasion front [15, 16].

Rock fractures and other high permeability flow paths can be filled with granular debris

and fault gouge from cataclastic processes and erosion [17, 18], materials carried by fluid

flow, or, in the case of magma flow, crystal particles precipitated from the melt [19–21].

Multiphase flows involving both a combination of different fluids and a loose packing of

granular materials have proved a particularly rich vein of pattern formation as frictional fluid

dynamics is added to the well-known two-phase flow mechanisms [22]. Recently observed

flow patterning processes include multiphase fracturing of deformable granular packings [22–

27], decompaction fingers [28], frictional fingers and bubbles [22, 29, 30].
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Here we introduce gravity as a new parameter in experiments where air displaces a

liquid/granular mixture during drainage of a Hele-Shaw cell, by imposing shallow tilt angles.

The receding interface accumulates a front of granular material, and an instability caused by

a competition between surface tension and frictional forces results in an emerging pattern of

frictional fingers—canals of air separated by branches of compacted grains—as also observed

in horizontal systems [22, 29, 31]. In the case of the tilted system, the symmetry breaking by

gravity changes the pattern formation dynamics by stabilizing the drainage front, resulting

in alignment of the finger structures. We further expand a frictional finger simulation model

[32] to include hydrostatic pressure, and develop a theoretical prediction for transitions in

the pattern formation dynamics.

We find that the key to the finger alignment direction is a competition between gravity

and fluctuations of the inter-granular stresses. Analogous to drainage in porous media [15],

random fluctuations in threshold pressures cause a disruption of the stabilizing effect of

gravity. However, unlike porous media, there is in our system a spontaneous emergence of

a characteristic length, the finger width, 2Λ (Λ denotes here half the finger width). The

magnitude of the disruption of the invasion front becomes a relative quantity with respect

to this length scale. We show that the basic assumption that the effective granular friction

stresses at the interface arises as a sum of a set of uncorrelated random contributions, is

sufficient to give a theoretical prediction of the transition between the different pattern

morphologies.

We also show how the pattern forming mechanism provides a new understanding of the

small-scale flow properties during magmatic dyke formations, i.e. the penetration of a sheet

of magma into a fracture of a pre-existing rock body [33–35]. The small-scale flow properties

during this formation, when magma interacts with the host rock, is largely unknown [36], as

the formation occurs deep beneath the Earth’s crust. Rock faces in the Israeli desert [37, 38]

display aligned finger structures which were formed during a dyke formation. The structures

have previously been attributed to viscous fingers, due to the Saffman-Taylor instability [3],

between the fluidized host rock and a less viscous dyke-related fluid in front of the invading

magma [38]. We hypothesize here, that intergranular frictional forces between quartz grains

in the fluidized host rock, and not viscous forces of the fluids, govern the formation of the

pattern.

4



liquid

L

h

y

front 

front air

sedimented beads

α

liquid

y

R=κ -1

stagnant
interfaces

(mobile)

air

L

(a)

(b)

FIG. 1. (Color online) (a) Top view of the Hele-Shaw cell. The coordinate y is running from

the outlet towards the upper edge of the cell, κ is the curvature (inverse of the in-plane radius of

curvature R) along the interface (orange dashed line). The front is a region of accumulated grains

along the air-liquid interface; L is the thickness of this front. The cell is 20×30 cm2. (b) Side view.

The cell is tilted by an angle α. The cell gap is h = 0.5 mm. The filling fraction φ is the height of

the initial sedimented granular layer relative to h.

II. THE EXPERIMENT

Consider a rectangular 200 × 300 mm2 Hele-Shaw cell with a gap spacing h = 0.5 mm

[Fig. 1 (a)]. The cell is sealed along the sides and base; the upper end is open to the

ambient air. In preparation for the experiment a granular material suspended in a 50% (by

volume) water-glycerol mixture is injected into the horizontal cell through an inlet/outlet

hole close to the base of the cell. Excess mixture spills through the open edge such that the

granular suspension fills the entire cell. The granular material—spherical glass beads with

mean diameter 80±10 µm—settles out of suspension, forming a layer of grains resting on the

lower glass plate of the cell. The height of this layer, relative to the cell gap, is denoted φ, and

quantifies the initial filling fraction of the injected granular mixture relative to the random

loose packing fraction of the grains. The glass beads are polydisperse, and the variation in
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FIG. 2. (Color online) (a) Air finger displacing submerged grains. Air-liquid-grain interface appears

as black line. The interface is surrounded by a compaction front which appears darker than the

undisturbed sedimented layer of grains to the right in the image. Scale bar is 1.0 mm. (b) Close-up

of the interface showing grains in contact with the interface as a bright band due to to reflection of

illumination from the side. Scale bar is 0.5 mm. q = 0.07ml/min, φ = 0.4, α = 0 for both images.

size prevents crystallization of the sedimented bead packing. The density of the glass beads

and the water-glycerol mixture is ρg = 2.4 g/cm3 and ρ = 1.13 g/cm3 respectively. The

bead-fluid density contrast makes the beads sediment on the bottom plate. We note that

the invasion process described in this paper is limited to non-colloidal, sedimenting granular

material, with the capillary length of the interface as the upper limit in terms of grain size.

The gap to grain size ratio is 6-7 in the experiments presented here, and we don’t expect

that the results are transferable to mono-layered systems.
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The long side of the cell is tilted by an angle α relative to the horizontal plane [Fig. 1

(b)]. Here we report only results for shallow tilt angles (0◦ ≤ α ≤ 5◦) where no sliding of

the granular layer takes place. The experiment commences by slowly draining fluid from

the outlet at the base at constant withdrawal rate q = 0.07 ml/min unless otherwise noted,

using a syringe pump (WPI, Aladdin 1000). The value for the withdrawal rate is chosen

such that the experiment resides well within the frictional stick-slip regime [22], where the

dynamics is independent over a wide range of withdrawal rates. The withdrawal rate is slow

enough to leave the layer of grains resting on the bottom plate undisturbed by the fluid flow.

As fluid is slowly drained, air starts to invade the cell from the open, elevated edge. The

meniscus bulldozes the loose granular material ahead of it, and does not penetrate the pore

space between grains. The system is imaged from underneath using a PL-B742U Pixelink

camera, and illuminated by a white screen placed above.

As the air displaces the liquid-grain mixture, the air-liquid interface sweeps the grains

along, and granular material accumulates ahead of the invading interface. The granular

accumulation front forms a dense packing that fills the gap between the two confining plates

of the Hele-Shaw cell (see Fig. 1 and Fig. 2). Only a small section of the interface moves

at any given time, and the motion consists of incremental displacements, as the air fills an

ever-increasing volume. A moving section tends to continue its motion over many consecu-

tive increments before it stops and the motion continues at another section. The interface

develops frictional fingers of air surrounded by a front [22, 29, 31], with a characteristic

finger width. When different fingers move towards each other, their fronts combine, and

their interfaces stagnate. The evolution continues until either the whole cell is filled with

air and stagnant fronts, or the air reaches the outlet.

When the cell is fixed horizontally (α = 0◦), the finger directions are disordered and

isotropic, and the resulting patterns are labyrinth structures of stagnant fronts [29, 31].

When the cell is tilted, the frictional fingers are observed to align. The direction of alignment

changes as we vary α or φ. Fig. 3 shows the residual patterns of granular material in the shape

of narrow branches after all the grains have been packed at the end of each experiment. The

figure displays results from a series of experiments with increasing filling fraction, with the

tilt angle kept constant at α = 4◦. The pattern of residual granular material bears witness to

the dynamics of the invasion process. At low φ, the air fingers march downwards, from top

to bottom, leaving granular branches aligned with the direction of gravity (vertical in the
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φ = 0.025 0.05 0.1 0.2 0.4

FIG. 3. Final configuration of the experimentally observed pattern at constant tilt angle, α = 4◦,

with varying filling fraction φ. Residual compacted granular material appears dark, and empty

regions of the cell appear white. The finger alignment changes direction from vertical to horizontal

as φ increases. Each image frame is 200 mm wide.

FIG. 4. Final configuration of experimental pattern at different tilt angles α at filling fraction

φ = 0.05. Each image frame is 200 mm wide.

images). At high φ, the system makes a transition to sideways growing air fingers, leaving

a trail of horizontally aligned granular branches. Alternatively, by keeping φ constant and

increasing the tilt angle, it is possible to go from random labyrinthine pattern to horizontal

alignment and then to vertical alignment at high α. Fig. 4 shows the residual patterns imaged

at the time of air breakthrough at the outlet for α = 0◦, 2◦ and 4◦. Note the incomplete

drainage of the flat cell, α = 0◦. The absence of the height stabilization allows the air fingers

to invade in random directions, leaving pockets of grain-liquid mixture undisturbed behind

the actively growing fingers.

In the low φ/high α range, hydrostatic height stabilization of the receding interface domi-

nates the dynamics, the fingers advance side-by-side downwards, parallel to the gravitational

field along the cell [Fig. 5 (a), SM Video 1 [39]]. Lateral growth is inhibited by the presence
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of neighboring fingers on both sides; each finger is confined to downwards growth. A finger

will terminate its movement if it is bypassed and sealed off by its neighboring fingers. A

finger can also split in two if a small region along the finger tip gets stuck, and each side

of this region evolves to separate fingers. This typically happens when a finger tip widens,

which seems to happen in conjunction with the termination of a neighboring finger. Fin-

ger termination and tip-splitting occur at approximately equal frequencies [see Fig. 5 (a)],

maintaining a steady state evolution of the experiment, and a constant mean finger width.

We note that these patterns looks remarkably similar to patterns generated when simulating

retraction of a dewetting suspensions [40], although the setup is completely different.

As we increase φ and reduce α, we observe a gradual transition in the alignment; the

fingers tend to grow with a directional component transverse to the hydrostatic pressure

gradient. In the intermediate range of φ and α, hydrostatic stabilization of the front oc-

curs, but local pressure fluctuations enables some fingers to get ahead. Sideways growth

is preferred for a finger that extends beyond its neighbors due to the hydrostatic pressure

gradient. The finger which manages to get ahead fills a larger fraction of the horizontal

direction, and advances layer by layer, creating a pattern of horizontal lines (Fig. 5 (b), SM

Video 2 [39]). In the high φ/low α range the local pressure fluctuations dominate over the

stabilizing effects, and alignment is lost. A phase diagram of the alignment behavior of the

end configurations is shown in Fig. 6.

III. MODEL

As the dynamics are manifested by incremental movements of confined regions of the

interface, it is reasonable to assign a yield pressure threshold to every point along the

interface. When the pressure difference at the interface exceeds the threshold at the weakest

point along the interface, the interface locally to that point deforms and moves a small step

towards the liquid phase. This approach has successfully modeled labyrinth patterns in a

similar setup [29, 31], but without considering the hydrostatic pressure differences induced

by the tilting of the cell. In order to quantify the yield pressure threshold, we will assign two

local parameters to the interface: the front thickness L and the apparent in-plane curvature

κ.

The front thickness, L, is the distance from the air-liquid interface, in the perpendicular
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FIG. 5. (Color online) Snapshots of the dynamics, experiments versus simulations. (a) The pattern

is dominated by vertically aligned fingers at φ = 0.025 and α = 5◦. (b) The pattern is dominated

by horizontally aligned fingers at φ = 0.2 and α = 3◦. See (a) SM Video 1 and (b) SM Video 2 [39].

direction, to the region of the liquid mixture where the beads no longer fills the whole cell gap

(see Fig. 1). Note that the packing of beads in the front remains in a static configuration

before a potential movement. We assign a yield stress σY (L) to every point along the

interface, which captures the static frictional properties of the front. To be precise, σY is

the yield stress acting normal to the plane which approximate the air/liquid interface. This

yield stress has previously, in the context of labyrinth patterns [29] and of plug formations

in narrow tubes [41], been assumed to be exponentially increasing in front thickness L. The
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FIG. 6. (Color online) Pairwise comparison of the final configuration of experiments (black/left

frames) to simulations (blue/right frames), for different values of the filling fraction (φ), and the

tilting angle (α). The red lines indicate contours of constant η which are estimated up to a constant

factor in Eq. (9). As η increases, the vertical alignment turns into horizontal alignment, and then

into no alignment. The value of η doubles for every contour. The gravitational pull is pointing

downwards in every frame.

exponential behavior can be justified by considering Janssen’s model for stresses in packings

of grains, which assumes a linear relationship between the principal stresses in the packing,

in conjunction with the static Coloumb frictional stresses at the plate boundaries of the cell.

The yield stress may also have a curvature dependence, as described in Ref. [30]. In the

following, we will, however, describe the yield stress as a linear function in L,

σY (L) =
σξ
ξ
L, (1)

for simplicity. The numerical comparison to the experimental behavior in the subsequent

section, will validate this approximation as sufficient for the range of parameters that we
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consider here. The expression in the equation above has two interpretations. We can

interpret it as a linearization of a more complicated function of L, e.g. the exponential

behavior assumed in [29, 41]. In this case, the length parameter ξ should equal the cell

spacing h, up to geometric factors ' 1 (consider the Taylor expansion of Eq. 12 in Ref. [29]).

Alternatively, we can interpret the yield stress as a sum of consecutive force bearing arc

chains [32] which transmit frictional stresses, σξ, from the cell plates to the beads at the

air-liquid interface. The characteristic length of these chains is ξ, and the total number of

chains scales with the size of the front and therefore linearly in L. It is reasonable to assume

the ξ ' h, also in this approximation, due to the confined geometry.

The air-liquid surface tension at the interface acts at two different scales. At the small

scale, the interface makes bridges between wetting beads. Each point on a meniscus can

be characterized by two principal radii of curvature. By the Young–Laplace equation, the

pressure drop over a meniscus is proportional to the mean of the principal curvatures. This

means that in a static configuration, each meniscus has the exact same mean curvature,

up to differences in the hydrostatic liquid potential, which we can ignore in a horizontally

oriented cell.

At a larger scale, we can identify a curvature which is averaged over several neighboring

beads. For our Hele-Shaw setup, the principle directions of the average curvature are the

in-plane and the out-of-plane directions with respect to the cell plane. We will disregard

the curvature component in the out-of-plane direction of the cell, i.e. the curvature of the

interface as it is illustrated in the cross section in Fig. 1 b. The out of plane curvature is

supposed roughly constant, i.e. the surface stress related to this component is constant along

the in-plane direction of the interface, and does, at our level of description, only contribute

to a constant global pressure drop. It plays no role when we later need to determine the

minimal yield stress.

The large scale surface behavior, i.e. the surface behavior averaged over many neighboring

inter bead menisci, can be characterized by an effective surface tension γ [29]. The effective

tension acts against the increase of the apparent interface area during the displacement

process, and the associated pressure difference is simply γκ.

We can now quantify the local yield pressure threshold. Let ∆p be the difference between

the air pressure, pair, which is considered constant, and the liquid pressure at the outlet of

the cell, poutlet. We assume that a section of the interface is mobilized if
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∆p ≥ γκ+
σξ
ξ
L− yρg sinα. (2)

The first and second terms on the right hand side is the effective surface stress and the yield

stress [Eq. (1)] described above. The last remaining term is the hydrostatic pressure relative

to the base of the cell, y is a coordinate running along the cell from the outlet, g is the

gravitational acceleration and ρ is the liquid density. This amounts to say that the local

pressure in the fluid behind the meniscus, pair− γκ, is equal to the sum of the solid and the

fluid stress there. The fluid stress there is poutlet − yρg sinα, Hence, the solid stress there

is σ⊥solid = pair − (poutlet − yρg sinα)− γκ. If the solid stress is equal or larger than σξ/ξL,

the grain pack slides locally. The pressure difference, ∆p, will increase when the whole

interface remains static and liquid is drained from the system. The next moving section, at

any given time, is identified by local parameters κ, L and y, which minimizes the right hand

side of Eq. (2). As the section yields and moves a small step towards the liquid, the local

parameters are changed due to the deformation and the accumulation of new beads onto

the front.

A. Numerical Validation

We can reproduce the experimental behavior in a numerical simulation. The numerical

scheme has previously been used to simulate finger behavior in a flat cell [32]. We present

here a summary of the numerical strategy, and the modifications which are needed for the

tilting of the cell. Further details of the numerical scheme are described in Ref. [32].

The fluid interface (i.e. the boundary of the gas phase), can be represented as a chain of

nodes, labeled by an index i, where each node carries information of the spatial coordinates

(xi, yi), and its nearest neighbors, i ± 1. Such a chain can conveniently be implemented

like a doubly linked list. We couple this chain of nodes to a two dimensional mass field,

representing the grains. The complete filling of the cell gap, i.e. the region which constitutes

the front, is indicated by the region of the mass field which exceeds a threshold value. We

make sure that the region of the mass field adjacent to the chain, i.e. the region of the front,

exceeds this threshold in the initial configuration of the system. The imposed dynamics

described below will maintain this state.

For each node we can identify the two local properties. First, the local front length Li is
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represented as the shortest distance from any given node, to a cell in the mass field which

take a value below the threshold. This cell will be referred to as the link cell associated

to the node. Second, we can approximate the local curvature, κi, at node i, by numerical

differentiation of a spline approximation of the nearest and next nearest neighbors {i, i ±

1, i ± 2}. By discretizing the right hand side of Eq. (2), we can now identify a pressure

threshold Ti for each node,

Ti = γκi +
σξ
ξ
Li − yiρg sinα. (3)

The dynamics of the system is generated by iteratively moving the node with the minimal

value of Ti, an infinitesimal distance towards the fluid phase, in the perpendicular direction

to the interface. At each step we need to accumulate new beads from the initial distribution

to the front. This can be achieved by adding the gathered bead mass which corresponds to

the infinitesimal displacement, to the link cell of the node. If this cell reaches the threshold

value, a new link cell will be assigned, and the rest mass will be distributed there. This

approach will make sure the bead mass field is conserved. The chain is interpolated with

new nodes as the interface grows, keeping the resolution of the representation of the interface

constant, and the local quantities, κi and Li, are recalculated in a neighborhood along the

chain near the moving node.

Note that there is no time in this numerical approach. We can, however, estimate the

time from the volume of the air phase, as we know that the drainage rate q is constant.

This allows us to compare the experimental results to the numerical simulation during the

evolution of the patterns. The dynamics is deterministic, and the random behavior is a

result of perturbed initial conditions, and imposed quenched fluctuations in the initial mass

field. Note that the random fluctuations in the mass field will induce fluctuations in Li,

as mass is accumulated. These fluctuations scale with
√
Li as Li correspond to a sum of

multiple randomly distributed masses. This effectively induces fluctuations in Ti evaluated

at each node.

We use σξ/ξ = 16 kPa/m, which is an estimate based on comparison between experi-

mental results and the theoretical expression for finger width [32]. For the effective surface

tension we use γ = 60 mN/m [29]. The similarity between the simulated and experimen-

tally observed patterns (see Fig. 6 and SM Videos 1 and 2 [39]) validates our theoretical

understanding. A noticeable difference between simulations and experiments is that the
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experiments terminate once the interface reaches the outlet, which can result in incomplete

drainage and fluid pockets left behind the advancing front (see e.g. Fig. 4 α = 0, and

high φ/low α results in Fig. 6). The simulations run until the interface reaches the bottom

boundary.

B. Transition of alignment direction

To understand the transition between horizontally and vertically oriented finger behavior,

we need first to quantify the variations in the yield pressure threshold [Eq. (2)]. It is hard to

quantify the exact numerical value of these variations, but it will suffice for our purposes to

determine how the variance scales with L. We argue that the simplest and most plausible

scaling is that the variance is linear in L, i.e. Var(σY ) ∝ L, such that the standard deviation

of σY is proportional to
√
L. A sum of n uncorrelated and identically distributed variates

exhibit a linear scaling in n. It is reasonable to assume that the yield stress σY , also arises

as the sum of uncorrelated contributions. If we interpret Eq. (1) to be a sum of force bearing

arc chains of length ξ, each of which contributes with a varying yield stress with a mean value

of σξ, then the total variation will scale with the number of these chains. As the number

of chains scales with the size of the front, we have that Var(σY ) ∝ L. Alternatively, the

variations in σY might be induced by variations in front thickness L itself. The front length L

is a result of the accumulation of beads after many small incremental steps. Heterogeneity in

the initial packing fraction will therefore induce a variance in L which also is proportional to

L itself. Note that in the numerical simulations, this is indeed how we induce the fluctuations

in σY . The value of σξ is kept fixed (it is not a random variable), and the fluctuation are

imposed in the initial bead field.

We can compare these variations to the hydrostatic pressure difference over a horizontally

oriented finger. The finger width is 2Λ, and the corresponding hydrostatic difference is

2Λgρ sinα. The ratio between the standard deviation of the yield stress, and the hydrostatic

difference of a horizontally oriented finger is therefore,

η =
[Var(σY )]1/2

2Λgρ sinα
∝
√
L

Λ sinα
. (4)

The last expression, which is proportional to η, contains all the terms which implicitly depend

on α and φ. This expression indicates the behavior of the alignment, up to an unknown
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constant. When the contribution of stress fluctuations is comparable to the stabilizing

pressure (η ' 1) a finger can get ahead of its neighbors and grow sideways, orthogonal to

the direction of gravity. For η < 1, the fluctuations fail to disrupt the side-by-side finger

growth. For η > 1, the fluctuations dominate over the stabilizing effect, and the alignment

is lost. We can only estimate η up to a multiplicative constant, as the numerical value of

the stress variations of σY is hard to identify. This will, however, suffice for identifying the

contour lines in the (α, φ) plane, which have similar alignment properties. To identify these

contour lines, we first need to express Λ and L in terms of φ.

Let A and C be respectively the area and the circumference of the air phase, as seen from

above, and let h be the cell gap. The pattern is dominated by finger structures, such that

A = CΛ. We assume that L is approximately constant along the interface, such that CL is

the total area of the front. Mass conservation gives that h(CL + A)φ = hCL, which under

the substitution Λ = A/C, implies that

L = Λ
φ

1− φ
. (5)

A more detailed derivation, which differentiates between the front thickness at the sides and

the tip of the fingers, yields correction terms to this expression (see Ref. [32]).

The work of a typical displacement, δw, has two contributions when we set α = 0 for

simplicity. First, the stretching of the interface contributes with γh δC, where δC = δA/Λ,

which follows from the assumption of constant Λ.

Second, there is the work done against the granular stresses, σ, in the front. This work

has a slightly more complicated origin as it depends on variations in the front thickness, as

is described in Ref. [32]. At the fingertip where most of the displacement takes place, the

curvature κ and the corresponding surface tension forces is largest, while the front thickness

and friction will be smallest. Away from the fingertip the front thickness increases to its

final value L.

However, for the present purposes of estimating η, we will be content with the leading

order behavior of this work, and this follows from the simplifying assumption that the

frictional value is done against a front thickness of constant value L. Then the work is

simply given as shδxσ, where s is the typical width of a moving segment and δx is the

distance the interface advances. Since all forces act normal to the interface we have that

sδx = δA. Finally, we can approximate σ, by the yield stress, σY [Eq. (1)]. Putting the
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terms together, and dividing by the displacement duration, gives the work rate,

δw

δt
=

(
γ

Λ
+ L

σξ
ξ

)
h
δA

δt
, (6)

where hδA/δt equals the constant compression rate, when averaged over many stick-slip

events. Substituting Eq. (5) and minimizing Eq. (6) with respect to Λ gives

0 =
d

dΛ

δw

δt
⇒ 0 =

d

dΛ

(
γ

Λ
+ Λ

φ

1− φ
σξ
ξ

)
, (7)

which corresponds to the assumption that the pattern evolves in a way that minimizes the

work. Note that the assumption of minimization of work is equivalent to minimization of

the yield stress threshold at the finger tip [29, 32]. This implies

Λ =

√
γξ

σξ

1− φ
φ
∝

√
1− φ
φ

. (8)

This expression differs from the one given in Ref. [32] (Eq. 15), as the inclusion of L-

variations along the front produces a φ-dependent prefactor to the effective surface tension

in Eq. (6), which is absent here. However, the expressions agree to leading order in φ/(1−

φ), which will suffice for our present purposes. Note that the model predicts a Λ ∝
√
h

dependency on cell gap (assuming ξ ' h), which is consistent with previously obtained

experimental and numerical results for varying gap height in horizontal systems [29, 31].

We can now use Eqs. (5) and (8) to rewrite Eq. (4) as a function of φ and α,

η ∝ 1

sinα

(
φ

1− φ

)3/4

. (9)

Indeed, contours of constant η correspond to equal qualitative alignment behavior, as shown

in Fig. 6.

To better quantify the transition of the finger direction, we investigate the statistical

properties of the air-grain interface in the patterns presented in Fig. 6. Standard image

processing techniques allow us to identify the contour paths of the air-liquid interface. To

get a statistical measure of the direction of the finger structures, we investigate the properties

of a random sample of tangents associated to points along these contours. The contour paths

are smoothed at a length scale which corresponds to 1 mm for the experimental images, such

that variations due to the presence of grains are ignored. Moreover, we restrict our sample
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to only include tangents from points along the contours which are at least 1 cm from the

cell boundaries, i.e. we disregard a margin corresponding to 5% of the cell width. This is

done to remove fingers which grow along the boundaries from the tangent sample. For each

tangent, we can associate an angle, θ, which is defined to be the smallest angle between

the tangent line and any line parallel to the length direction of the cell, i.e. parallel to the

average flow. θ is therefore an acute angle in the interval θ ∈ [0, π/2], which takes the

value θ = 0 for points along the interface of fingers which grow parallel to the gravitational

field along the cell, and θ = π/2 for fingers which grow in the perpendicular direction.

Figure 7 shows histograms corresponding to samples from each of the patterns in Fig. 6,

both for the experimental and simulated results. We see that the histograms corresponding

to parameters (α, φ) for which the system is dominated by vertical fingers, are skewed

towards θ = 0 (e.g. for α = 5◦, φ = 0.025). In contrast, the histograms corresponding to

parameters for which the system is dominated by horizontal fingers, are skewed towards

θ = π/2 (e.g. for α = 5◦, φ = 0.4).

To better illustrate the alignment transition, we consider two properties of each sample.

First, the median, i.e. the value which separates the larger half from the smaller half of the

sample. Second, the smallest interval of the θ-sample, which contains a fixed proportion,

p, of the sample data. We will denote this interval by SI(p). While the median serves as a

measure of the center of the underlying distribution, SI(p) indicates the an interval with a

high probability in the underlying distribution. If the underlying distribution is unimodal,

the mode (i.e. the maximum) of the distribution will be contained in this interval.

We plot the median and SI(p) with p = 0.3, for each sample against log η in Fig. 8. As

η increases we see the transition from vertically to horizontally aligned fingers, i.e. from

θ = 0 to θ = π/2. Note that SI(p) captures this transition better than the median, as the

underlying distributions seems to have its maximum at the boundaries of the domain of θ,

i.e. at θ = 0 for low η and at θ = π/2 for the intermediate range of η.

Figure 8 nicely illustrate the transition from horizontally to vertically aligned fingers,

but the transition from vertically to random alignment is harder to capture. For randomly

aligned fingers we expect a uniform underlying distribution for θ. The median should take

values close to the center of the domain, θ = π/4, whereas SI(p) could be any range deter-

mined by the fluctuation of the sample (the smallest interval containing a given fraction less

than one of a distribution, is non-unique for a uniform distribution). The Figure also reveals
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FIG. 7. (Color online) Histograms of the alignment angle θ sample from the finger contour for each

data point in the phase diagram in Fig. 6. Sample contains 10 000 values of θ, and the histograms

consist of 15 equally spaced bins. θ = 0 and θ = π/2 correspond respectively to vertically and

horizontally aligned finger structure.

that the simulated patterns undergo the transition from horizontal to vertical alignment at

a smaller values of η values, than the experiments. This is likely due to inaccuracies in

the specific set of parameters chosen for the simulation. A detailed analysis of how these

parameters affects the transition, is, however, outside the scope of this paper.

IV. APPLICATION: FLOW IN DYKES

We now discuss the relevance of the studied system to magmatic flow during dyke propa-

gation. A (magmatic) dyke is an approximately sheet-like body of magma, which has pene-
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FIG. 8. (Color online) Statistics of the samples in Fig. 7 plotted against log η. Dots correspond to

sample medians, bars correspond to the smallest intervals of θ which contain 30% of the sample

values, SI(0.3). The triplets of numbers along the log η axis indicate the values of (η, α, φ) for each

sample.

trated into a body of rock (host rock) at high-angle to the bedding planes (e.g. sedimentary

strata). Striking dyke examples are found in the Inmar formation in the desert in southern

Israel. There, the magmatic rock (i.e. the solidified magma) of the dyke has eroded away,

and both the erosion-resistant host, made of quartzitic sandstone, and outermost dykes’ mar-

gins are exposed. The margins display a rich network of finger structures [37, 38], similar

to those described above. The fingers are identified as elongated grooves in the sandstone,

separated by bulging ridges. The fingers are approximately 1-10 cm wide and 10-100 cm

long, and the margins shows intermittent patches of finger alignment [Figs. 9 (b) and 10 (a)].

The walls are separated ' 1 m apart, but mirror images of the finger structures on both

walls suggest that the structures were made during the initial stages of the dyke formation,

i.e. when the dyke was thin and close to its propagating tip.
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FIG. 9. (Color online) Feature comparison 1 between the experimental observations at φ = 0.4,

α = 4◦ (a) remaining structures on dyke walls found in the Inmar formation (b). Fingers (red

arrows) are being intercepted by a finger (green arrows) which grows perpendicular to the average

flow direction. The gravitational pull is indicated by g. The scale bar in (b) applies to both

experiment and dyke figure.

The finger formation in these dykes has previously been interpreted as viscous fingers due

to the potential flow of a low-viscosity invading dyke-related fluid into the higher-viscosity

fluidized host rock [38]. Viscous fingers in porous media are, however, known to display

fractal invasion patterns with no intrinsic length scale [8–10], whereas the fingers on the dyke

walls display a characteristic width. The similarity of these dyke wall fingers to the aligned

finger structures observed in our experimental setup, suggests that the fingers are generated

by inter granular friction between the quartz grains and accumulation of these grains onto

stagnant fronts. The relevance of our system to the structure in the Inmar formation is

further substantiated by the similarity in the features of the resulting pattern. In particular

we observe similar tip-splitting and termination properties [Fig. 10], and interception of

fingers by a finger which grows perpendicular to the average flow direction [Fig. 9].

To test this hypothesis, we compare the geological observations to our model conditions.

The ridges in the Inmar dykes are made of closely packed quartz grains (100-500 µm diam-

eter) cemented by iron oxides and kaolinite; this cement result from the wheatering of the

magmatic rock of the dyke. This observation shows that (1) the quartz grains have resulted
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FIG. 10. (Color online) Feature comparison 2 between the experimental observations at φ = 0.025,

α = 4◦ (b) and the remaining structures on dyke walls found in the Inmar formation (a). Aligned

finger structures with tip-splitting and termination, respectively marked by blue and red triangles.

The gravitational pull is indicated by g. The scale bar in (a) applies to both experiment and dyke

figure.

from local fluidization of the sandstone host rock, and (2) the quartz fragments have been

locally mixed with the molten magma [38]. Such a quartz grain suspension is likely an

equivalent to the bead-water-glycerol frictional fluid in our experiments. The similarity be-

tween the geological observations at the Inmar dykes and our system suggests that another

fluid pushed away the quartz grain-magma mixture between the dyke walls. The evidence of

sandstone fluidization suggests that such fluid might be high-pressure over-heated aqueous

fluids hosted in the porous Inmar sandstone in the close vicinity of the dykes. Another

type of magma could also behave as the invading fluid, as different magmas can behave as

immiscible fluids during time scales which are relevant for this flow [42].

Steps between dyke segments at the Inmar dykes suggest that the main propagation di-

rection of the dykes was horizontal [38]. The fingers direction in the Inmar formation varies

locally between vertical and horizontal, i.e. fingers directions can be both perpendicular
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[Fig. 9] and parallel [Fig. 10], respectively, to the main dyke propagation direction. Such

variability is consistent with the distinct patterns displayed in the phase diagram of Fig. 6,

which shows that the fingers can be either parallel or perpendicular to the main flow di-

rection, depending on parameters such as gravity and the filling fraction of the frictional

fluid. Such natural variability can be explained by heterogeneous content of quartz grains

mixed with the magma and varying opening of the dyke. In addition, the direction of the

gravitational effect on the fingers, depends on the density contrast of the invading fluid to

the quartz grain-magma mixture, which is unknown.

To summarize, the comparison between our physical results and the geological finger

structures in dykes sheds light on the complex mechanisms at work during dyke propagation

and emplacement, and especially the complex interactions between the intruding magma and

its host rock.

V. CONCLUSION

We have described a new type of pattern forming flow, where grains are accumulated

by a moving interface, which, when subject to a stabilizing potential, forms aligned finger

structures. We identify the finger width by a work minimization principle, and can estimate

the alignment direction by the competition between frictional force fluctuations and the

hydrostatic pressure. The dynamics is quasi-static; it depends on granular friction rather

than viscosity. The patterning process seems to be independent of whether the invading

fluid is a gas or a liquid, as long as the phases are immiscible. We can reproduce the

finger behavior numerically by accounting for the hydrostatic pressure, grain accumulation,

solid friction and interfacial forces. As our model only contains geologically ubiquitous

mechanisms, it may be relevant for a number of biphasic flow phenomena confined to planar

fractures, in particular multiphase flow during dyke formation that leave imprints of the

finger formation as solidified granular residue on the dyke walls.

ACKNOWLEDGMENTS

We thank the late Henning Knudsen, who made important contributions to the under-

standing of frictional fingers. We thank Gidon Baer, Einat Aharonov, and Benjy Marks for

23



discussions. J.A.E. acknowledges support from the Campus France Eiffel Grant and Unistra.

This work was partly supported by the Research Council of Norway through the Center of

Excellence funding scheme, Project No. 262644, and the NFR Project No. 200051/S60.

B.S. acknowledges support from the EPSRC Grant EP/L013177/1 and Sêr Cymru National
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