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Solving a time-indexed formulation for an unrelated
parallel machine scheduling problem
by preprocessing and cutting planes®

LOTTE BERGHMANT FriTs C.R. SPIEKSMA?
VINCENT T’KINDT?

Abstract: We consider a time-indexed formulation for the unrelated parallel machine scheduling problem.
We show that all polyhedral knowledge known from the single machine problem (in particular, valid inequal-
ities) is applicable to this formulation. We present new facet-inducing valid inequalities and a preprocessing
technique involving fixing variables based on reduced costs. We combine both techniques in a basic cutting-
plane algorithm and test the performance of the resulting algorithm by running it on randomly generated
instances.

Keywords: unrelated machine scheduling, time-indexed formulation, valid inequalities, cutting plane algo-
rithm, variable fixing.

1 Introduction

Time-indexed formulations for single machine scheduling problems are well studied in the
literature. Seminal works of Dyer and Wolsey (1990) and Sousa and Wolsey (1992), and
further works by Crama and Spieksma (1996), van den Akker et al. (1999) and Berghman
and Spieksma (2015) have resulted in a large body of polyhedral results for time-indexed
formulations. Generally speaking, the major advantage of a time-indexed formulation is the
tight LP-bound, while the greatest disadvantage are the large number of variables, especially
when processing times are large. One possible avenue to overcome, at least partially, this
difficulty is using column generation, as was done in van den Akker et al. (2000) and Bigras
et al. (2008). An arc-time indexed formulation is an extended formulation that yields strictly
better bounds than the time-indexed formulation at the cost of an even larger number of
variables, one for each pair of jobs and each possible completion time (see, e.g. Sourd 2009;
Tanaka et al. 2009).

As far as we are aware, all this polyhedral knowledge has not been applied to time-indexed
formulations of scheduling problems with multiple machines, in particular unrelated parallel
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machine scheduling problems. This is confirmed by Unlu and Mason (2010) who evaluate
integer programming formulations for parallel machine scheduling and recommend to use
a time-indexed formulation when job processing times are small. Moreover, they explicitly
suggest to develop valid inequalities.

This paper deals with the time-indexed formulation of the unrelated parallel machine
scheduling problem, where the processing cost of a job is an arbitrary function of its starting
time. Notice that this allows to model many objective functions such as (weighted) sum of
completion times or total lateness, tardiness or flow time and to incorporate features such
as release times and precedence relations. Our goal is (1) to point out that all polyhedral
knowledge existing for single-machine problems can be extended to multi-machine problems,
(2) to describe a new class of facet-inducing inequalities for the time-indexed formulation
for multiple machines, (3) to implement a preprocessing technique that uses variable fixing
based on reduced costs, and (4) to show the computational performance of an algorithm
that combines valid inequalities and variable fixing by testing this algorithm on randomly
generated instances.

The remainder is organized as follows. The problem statement and the proposed single
machine scheduling formulation are presented in Section 2. We show in Section 3 that
existing valid inequalities can be applied to our formulation. In Section 4, we present a new
class of facet-inducing valid inequalities and Section 5 describes the preprocessing technique
based on variable fixing. Section 6 presents our final algorithms and the outcome of running
them on randomly generated instances, while Section 7 contains the conclusions.

2 Integer programming formulations

Consider the problem of scheduling n jobs on a single machine within a given timespan. The
timespan [0, 7T is discretized into 7' time periods of length one. Period ¢ refers to the time
slot [t —1,¢]; t =1,...,T. The processing time of job j equals p;. The machine can handle
at most one job at a time and preemption is not allowed. When job j starts in time period
t, a known cost of c¢j; is incurred. The problem is to find a schedule that minimizes total
cost.

This problem can be modeled as follows: for each job j and for each time period ¢t =
1,...,T, we define

{1 if the processing of job j starts in time period ¢,
Tt =

0 otherwise.

The well-known time-indexed formulation for the single machine scheduling problem (as
presented in Sousa and Wolsey (1992) and van den Akker et al. (1999)) is the following:

n T
min Z Z CjtTjt (1)

j=1 t=1



subject to
T
d ay=1 Vi=1,...,n, (2)
t=1

n t
> > rjs <1 Vt=1,...,T, (3)

Jj=1 s=max{0;t—p;+1}

zj € {0,1} Vi=1,....nVt=1,...,T. (4)

The objective function (1) minimizes the total cost. Constraints (2) state that each job
has to be scheduled exactly once and constraints (3) express that during each time period ¢,
only one job can be executed; we refer to (3) as the capacity constraints. This formulation
is often called pseudo-polynomial because the number of variables and the number of con-
straints depend on the length of the time horizon. Thus, indeed if processing times are large,
the number of variables grows. However, notice that (1) the problem is already strongly
NP-hard if p; = 2 for all j (Crama and Spieksma 1996) and (2) there exist applications
where the cost of starting a job is ‘truly’ arbitrary, see e.g. the assignment of feeders to a
component placement machine (Crama et al. 1990) or the assignment of ships to berths in
container terminals (Hansen et al. 2008), leading to an input of O(nT") numbers.

When one wants to generalize this formulation to the identical parallel machine scheduling
problem, the right-hand side of constraints (3) can be set to m, the number of machines.
However, when the machines are not identical, i.e., when a job’s processing time depends on
the machines, such a trick is no longer possible.

We now consider the problem of scheduling n jobs on m unrelated parallel machines
within a given timespan. Again, each machine can handle at most one job at a time and
preemption is not allowed. The processing time of a job now depends on the machine: the
processing time of job ¢ on machine £ is denoted by p;r. The processing cost of a job depends
both on the machine and the time period in which the job is started: the processing cost of
job 7 when executed at machine k and started at time period t is denoted by c;;. Again, we
are interested in a feasible schedule minimizing total cost.

Unrelated parallel machine scheduling has received quite some attention in literature,
especially the special case where one wants to minimize total weighted completion time. We
will not review this literature, we simply mention Lenstra et al. (1990) and Gairing et al.
(2007) and the references contained in those papers.

We will model this unrelated parallel machine scheduling problem by reducing to a single
machine problem in the following way: by copying each job m times, to obtain nm tasks j.
We define J as the set containing all tasks. This set can be partitioned in two different ways.
First of all, we consider the subsets J; C J with ¢ = 1,...,n containing all tasks related
to job i. Secondly, we consider the subsets J* C J with & = 1,...,m containing all tasks
related to machine k. Every subset J; N .J* consists of a single task j. The processing time of
task j = J;NJ* equals pj = pik- We denote by c;; = ¢y the cost of starting task j = J; N Jk
in time period ¢. Notice that specifying the task (index j), implies specifying the job and
the machine, and vice versa.

For each task j and for each time period ¢t = 1,...,T7 — p; + 1, we define the decision



variables
1 if task j starts in time period t,
jt = .
0 otherwise.

An IP-model for this machine scheduling problem is the following:

nm T—pj+1

minz Z CjtTjt (5)
j=1 =1

subject to
T—pj-‘rl
D> ap=1 Vi=1,...,n, (6)
jeJ;  t=1
t
> > 255 < 1 Vk=1,...,m;¥Vt = minjes,p;,....T,  (7)
jeJk s=max{0;t—p;+1}
z; € {0,1} Vi=1,...,nm;Vt=1,....,T —p; + 1. (8)

The objective function (5) minimizes the total cost. Constraints (6) state that out of
the tasks related to job i, i.e. J;, exactly one task has to be scheduled. The capacity
constraints are formulated using constraints (7): for each time period ¢, only one task out
of the tasks related to machine k, i.e. J*, can be executed. We obtain the LP-relaxation
of this formulation by replacing constraints (8) by the following one: Vj = 1,... , nm;Vt =
1,...,T—=pj+1:0<z;; <1. In the case of a single machine, i.e. when m = 1, formulation
(5)-(8) becomes (1)-(4).

Notice that there is a polytope for each m, n, T' and p (where p represents a vector of
processing times). With some abuse of notation, we denote by P, the convex hull of feasible
solutions of (6)-(8).

3 Known valid inequalities

In this section, we review the known valid inequalities for P;. Notice that an inequality for P,
can be extended to an inequality for P, (m > 1) by setting all coefficients that correspond to
variables that involve tasks not related to some specific machine k& (1 < k < m) to 0. Then,
it is not difficult to observe that in this way, any inequality valid for P, can be extended to
an inequality valid for P,,. We record this observation formally.

Fact 1 Any inequality valid for P, is valid for P,,, for each r < m.

Proof: We argue by contradiction. Suppose there is an inequality valid for P, which - when
extended - is not valid for P,,. Hence, a feasible solution to the m-machine problem is cut off
by the valid inequality. However, a feasible solution to an instance of the m-machine problem,
when restricted to a subset of r machines, becomes a feasible solution to an instance of the
r-machine problem. Thus, we have identified a feasible solution to the r-machine problem
that is cut off by the extended inequality, and hence also by the original inequality. This
contradicts the initial assumption. 0



Fact 1 motivates us to formulate the known inequalities in terms of P,,. To do so, we
need the following notation. For each j = 1,... ,nm, we define T'(j) as the set of tasks
that are related to the same machine as task j. Notice that 7°(j) does not include task j.
Moreover, we define p; = maxjer(;) pi; thus p; is the largest processing time of the tasks in
T(j)-

Sousa and Wolsey (1992) give the following inequalities. For each time period t =
L,...,T, for each task j = 1,...,nm and for each A € {2,...,p}}:

t+A—1
Z 'Tjs + Z Z Lis S 1 (9)
s=t—p;+1 leT(j) s=max{0,t—p;+A}

In inequality (9), task j is sometimes called the ‘special’ task. These inequalities are
known to be facet-defining for P; (Sousa and Wolsey 1992), and in fact they constitute all
facet-defining inequalities for P; with integral coefficients and right-hand side 1, (see van den
Akker et al. 1999).

To give a pictorial description of this inequality, we will use a similar notation as van den
Akker et al. (1999). The index-set of variables with nonzero coefficients in an inequality is
denoted by V. The set of nonzero coefficients in an inequality associated with task j defines
a set of time periods V; = {t|(j,t) € V'}. Thus the union over all j of all V; equals V. We
define an interval [a,b] as the set of periods {a,a + 1,...,b}. If @ > b, then [a,b] = 0. We
shall represent inequalities by diagrams. A diagram contains a line for each task. The blocks
on the line associated with task j indicate the time periods ¢ for which z;; occurs in the
inequality.

Inequalities (9) of Sousa and Wolsey (1992) use the following time periods:

for task j: Vi=[t—p;+1,t+A—-1],
for each task [ € T'(j): V= [t —p + A, t],

where A € {2,...,p}}.
These inequalities can be represented by the following diagram.

t—p;j+1 t+A—1
j | |
t—p+ A t <1

1< 70) R

Using this diagram, it is relatively easy to see that inequalities (9) are valid. Indeed,
notice that if some task [ € T(j) starts at some time in V}, no other task from 7'(j) can
start in V; (since both tasks would be active at time ¢). Also task j cannot start in Vj}, since
starting task j directly after the completion of task [ is impossible: task [ is active until
t + A — 1; starting task j before the beginning of task [ is equally impossible, since even
starting task j at ¢ — p; + 1 means that task j is active at time ¢. This implies validity of
(9).

A lot more is known concerning the facial structure of P;. Sousa and Wolsey (1992)
already give other classes of facet-defining inequalities, Berghman and Spieksma (2015) gen-
eralize the inequalities (9) for the case with time-dependant processing times p;;, Crama and
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Spieksma (1996) find classes of facet-defining inequalities that apply to the case of equal
processing times, and van den Akker et al. (1999) present three classes of facet-defining in-
equalities that collectively constitute all facet-defining inequalities with integral coefficients
that have right-hand side 2. We will not give an explicit description of these inequalities,
however, let us emphasize here that any facet-defining inequalities for P; other than an in-
equality from Sousa and Wolsey (1992) has right-hand side 2 or more. Moreover observe
that all these inequalities deal with a single machine. In the next section, we exhibit a class
of valid inequalities that specifically focus on the presence of multiple machines. Indeed, this
is the first description of a class of valid inequalities that contains variables corresponding
to different machines.

4 A new class of valid inequalities

In this section, we introduce a new class of valid inequalities that contains variables corre-
sponding to different machines.

4.1 Example

We first specify an instance. Let n = 3, m = 2, T = 14, J' = {1,2,3}, J*> = {4,5,6},
J1 = {174}7 Jo = {275}7 Jz = {3a6}7 pr=4,p2=3,p3=5ps=1,ps =5 and ps = 2,
Further, the c¢j; coefficients are given in Table 1 where a row corresponds to a task, and a
column corresponds to a time period.

10 11 12 13

2
2
1
1
2
1
1

— =N == DN W
— = DN =
= = = = = DN O

6
2
1
1
2
1
1

D UL W N -
— O N~ = N~
— =N O N
— =N = O N o
— =N == N O
— =N = =N
— = N~ = N
— o= N = =N
— = N~ — N

Table 1: The coefficients cj; for the example instance.

When solving the LP-relaxation (5) - (8) of this instance, we find the fractional solution
T14 = Tag = Tg7 = Tas = T = L2 = % We claim that this solution is not cut off by any
known facet-defining inequality. Indeed, observe that the sum of the variables corresponding
to jobs on machine 1, i.e., the variables corresponding to jobs 1,2, 3, sum up to % Hence,
this partial solution cannot be eliminated by any facet-defining inequality other than an
inequality from (9), since all known facet-defining inequalities other than (9) have right-
hand side 2 or more. In addition, we leave it to the reader to verify that inequalities (9) also
do not cut away this particular solution. A similar argument holds for the jobs corresponding
to machine 2.



th—pj+1 th+ A —1
machine k1 J ’ ‘

t1—pg+1 th+ A -1
a | |
tl—p +A1 tl
LeTG)\ {a} _,
to —pa + 1 to+ Ag—1 -
machine ko a ’
to —py + Ao to
b
"€ T(a)\ {b} ]

Figure 1: The diagram representing the valid inequalities (10).

4.2 A new class of valid inequalities

For each pair of jobs {i1,i2} € {1,...,n}, and for each pair of machines {k1, k2} € {1,...,m},
let 7 =J;,;N Jk g = Ji, N JHa = Ji, N JF2 and b = Ji, N J*2 . Define Pjq = MaXier(;)nT(q) Pi-
For each quadruple of such four tasks, for all time periods t1,t, = 1,...,T, for all A; €
{2,...,pj,} and for all Ay € {1,...,p;}, we have the following inequalities:

t1+A1—1 t1+A1—1 t1
Z Ljs + Z Lygs + Z Z Ts
max{s=t1—p;+1} max{s=t1—pg+1} 1eT(j)\{q} max{s=t1—p;+A1}
to+Ag—1 to
+ > Tas + > Tpe < 2 (10)
max{s=to—pa+1} max{s=to—pp+Aaz}

These inequalities can be represented by the diagram presented in Figure 1.

Remark that if we have p7, = 1, we do not have any possible value for A; and we do not
have a new valid inequality. We would obtain the sum of a constraint of type (7) for k; and
t; and part of an inequality of type (9) for ko, to and As.

Theorem 2 Inequalities (10) are valid inequalities for P,,, for each m > 2.

Proof: Observe that the two jobs i1, i, and the two machines ky, ko, as well as tq, to, A,
A, are given. We use integer rounding as follows. Consider two inequalities from type (6),
one for job i1, and one for job 7, each with weight 1 — A%' Next, consider inequalities of type
(7) for machine ki, and for ¢t = ¢y,...,t; + Ay — 1, each with weight A%. Finally, we consider
an inequality of type (9) for machine ks, period t5, job i1 and Ay € {1,...,pi} with weight
A%' (Remark that this inequality becomes another one of type (7) if we choose Ay = 1.) If
we apply integer rounding on both sides of the resulting inequality, we obtain the inequality

(10). O

Notice that the Chvatal rank of these inequalities does not exceed 2; further, there are
O(n*m?T?p?,.) inequalities in the new class. The inequalities cannot be strengthened, as
witnessed by our next result.



Theorem 3 Inequalities (10) are facet-defining inequalities for P, for each m > 2.

We give a proof of this result in the Appendix.

4.3 Example continued

With j=1,¢g=2,a=4,b=5,1, =7, Ay =2, {5 = 1 and Ay = 5, inequality (10) boils
down to

14+ T15+T16+ 217+ 218+ Tos + Tog + To7 + Tag

+x34 + T35 + T36 + X377 + Tag + Tap + Taz + Taa+ Tas +T51 < 2.

It is displayed by the squared blocks in the figure below, and cuts off the fractional solution.

123 45 6 78 910
1
2

machine 1

SIS

ol
IA
[N}

=

1
2
3
machine 2 4 | %
5
6

5 Preprocessing the IP formulation

Preprocessing is a general process which aims to solve an IP-formulation more efficiently by
using structural properties of the problem. In this section, we show how a well-known pre-
processing technique, namely variable fixing, can be applied to our time indexed formulation
and how it could help the exact solution of the problem when it is included in a cutting-
plane algorithm. Variable fixing is a technique that is able to reduce the number of 0 — 1
variables in formulation (5)-(8), and it is expected that the reduced IP formulation will be
solved faster than the initial formulation. In addition, variable fixing allows to find stronger
LP-bounds. Variable fixing is a technique based on simple links between an IP formulation
and its linear relaxation, and goes back to Beale and Small (1965) and Driebeek (1966).
More recent applications of this technique can be found in Baptiste et al. (2010) and T’kindt
et al. (2007).

We write 22" for the optimal values of the x-variables of the LP-relaxation of (5)-(8),
and we write z!F for the optimal values of the xz-variables of the IP-formulation (5)-(8). Let
27 p (resp z7p) be the value of the corresponding optima and let B* be the associated basis.
When fixing our variables :z:jtp we distinguish between the basic variables and the non-basic
variables.

Let us first consider non-basic variables xﬁtp ¢ B*. It is well known that, applied to our
model, we have:

zip=7zrp+ Z Tjtzﬁj, (11)

a:ﬁtPQB*



1P

with 7j; the reduced cost associated to variable z7;.

Then, we can write:

Let UB be an upper bound to zjp.

Z rpcli <UB = zjp. (12)
v ¢B*

From inequality (12) we can deduce the following fixing rule: Vaf/" ¢ B*, if 1 > UB — 2} p
then in any optimal solution of the IP formulation, z}/ = 0. By reasoning on the slack
variables s;j; associated to the constraints z;; < 1, we can deduce when LEI P —1: if a non-
basic slack variable sj;; has to be fixed to 0, then the associated variable xIP is ﬁxed to 1.
Remark that this technique is implemented at some node of the search tree in mathematical

programming solvers like CPLEX, but not with the UB that we use.

For basic variables x] € B* all reduced costs are equal to 0, which makes the above
fixing procedure inefficient. Therefore, we use penalties [;; and u;; computed, by means
of Driebeek’s penalties (also called Beale and Small penalties, see Beale and Small (1965)
and Driebeek (1966) for more details). These pseudo-costs are computed for basic variables
starting from the reduced costs of the non-basic variables. The meaning of these penalties

is the following: l;; (resp. wj) is a unitary lower estimate on the increase of 2} p if x;’f is set
to 0 (resp. 1). We have:

L Vzll e B*, if (lj;x}”) > (UB — 2} p) then zff =1,
2. Vaif € B*, if (uj(1 — x}”)) > (UB — z} p) then 2 = 0.

gt

Remark that, to the best of our knowledge, this technique is not implemented in solvers as
CPLEX.

The efficiency of these two variable fixing techniques is strongly influenced by the gap
between UB and 2] p, and the value of the reduced costs. To strengthen these techniques
we can use valid inequalities like the ones presented in section 4. The choice of the included
valid inequalities and of the upper bound U B are reported in section 6.

The preprocessing algorithm works as described in Algorithm 1.

Remark that we can reduce the m-machine problem to a single machine problem by
concatenating the timespan of the m machines to obtain a large timespan spanning m7T
periods. The processing times now become dependent upon the particular period: for each
of the first T" periods, the processing time of job j equals p;;, then p;s for the next 1" periods,
and so on. All results of this paper are also valid for the single machine case with arbitrary
period-dependent processing times as the presented m-machine problem is a special case of
this single machine problem.

6 Computational evaluations

A series of computational evaluations have conducted in order to evaluate the impacts of
the valid inequalities and the preprocessing algorithm on: (1) the linear relaxation LP of the
IP formulation; (2) the solution of the IP formulation. We first provide details about the

9



Algorithm 1 Preprocessing algorithm;
inputs: a set of valid inequalities and an upper bound UB on zjp

Add the valid inequalities to the LP relaxation.
Solve the LP relaxation: let 2, be the optimal solution value.
Fix basic and non-basic variables with UB.
Solve the LP relaxation: let 2z}, be the optimal solution value.
while (29, < 2} ) do

Fix basic and non-basic variables with UB.

2p = Z1p
Solve the LP relaxation: let 2}, be the optimal solution value.
end while

return 2z}, and the associated variable values x}

generation of our instances (section 6.1), before discussing the obtained results on the LP
(section 6.3) and on the IP section (6.4). Notice that, as far as the solution of an IP or an
LP fomulation is involved, we use the CPLEX solver.

6.1 Generation of the instances

The IP formulation of instances that are generated according to Sousa and Wolsey (1992)
and van den Akker et al. (1999) are almost always easy to solve by CPLEX, especially as
the number of machines increase. For this reason, we introduce another generation scheme
which leads to harder instances for the parallel machine problem. The idea of such a scheme
is to increase the number of resource conflicts when trying to minimize the objective function.

The number of jobs n is taken in the set {100, 150,200} and the number of machines
m in the set {1,2,3,5,10}. The time horizon is defined as |T| = 1.25 x IW‘T"H x . with
Pmaz = 20, the maximal processing time value. The processing times on machines are
uniformly distributed in [1, ppax]. Remark that as a consequence, the number of variables is
13.125 x n? and the number of constraints is 14.125 x n. The hardness of the instances comes
from the generation of the processing costs ¢;;. The scheduling horizon [0; 7] is splitted into
V/n equal-size intervals [T}; T;41] and y/n jobs take their minimum c;t values in each interval.
The size of each interval, denoted by Sizelnt, is equal to [\/lﬁ] except the last one which
can be slightly smaller due to the rounding. Then, ¢;; are drawn at random in the interval
[0; 10T — G(pt, 0)] with G(u, o) referring to a normal distribution of mean 41, and variance
o. We experimentally set p;; = S 13:5% NS and o = 1.3 x Sizelnt. An illustration of
the distribution of the processing costs c;; is given in figure 2.
For each combination of n and m, 20 instances were created, yielding 300 instances in total.

6.1.1 Testing environment

All algorithms are encoded in C using the Microsoft Visual Studio programming environment,
and executed on a PC computer with an Intel Core i5 CPU 4 Core 2.6-GHz processor and
8 GB RAM, equipped with Windows 7. CPLEX version 12.2 is used to solve the IP and

10
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Figure 2: Example of the distribution of the processing costs with n =9 and T = 15
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LP models, and is configured to use only 1 thread. Besides, when solving the IP model, a
time limit of 3600 seconds is imposed: whenever that limit is reached before the end of the
solution, then the solver is assumed to have failed to solve the corresponding instance.

6.2 Separation

Notice that the LP-solution z** will be sparse; this fact is used in the separation. We
describe a vector x by a list of those x;; variables that have a positive value and call this
list the support of x. Thus, given some z, we view the support of x as a set of all pairs of
indices (j,t) such that zj; > 0. We describe in the next fact some necessary conditions with
respect to the support of a solution x that violates an inequality of type (10). This can be
used to accelarate the separation.

Fact 4 If x violates an inequality of type (10) and satisfies inequalities (7) and (9), then
there exists a wviolated inequality of type (10) defined by parameters {i1,is} € {1,...,n},
{k‘l,kg} S {1,,m} (’U)Zth] = Jil N Jkl, q = Jiz N Jkl, a = Ji1 N JkQ and b = Jiz N JkZ),
tita=1,....T, Ay €1{2,...,p},} and Ay € {1,...,p;} such that the support of x contains
((i and ii) or (it and iv)) and ((v and vi) or (vii and viii)), with

(i) x]tl —p;j+1 0T qu,fl —pg+1
(i) T3 -1 O TGt pa -1
(111) x{jg_pﬁAl for some l € T(j) \ {q}
(i) xp;, LP for some | € T(j) \ {q}
(v) xatg —pat1
(vi) xaL,{;Jrqu
(Vi) Th4ypya,
(viii) xéi

Proof: We argue by contradiction. Fach time, we suppose that x violates a specific inequal-
ity (10), determined by parameters iy, io, k1, ko, t1,t2, A1, Ay and that the support of = does
not contain the considered variables. First deal with (i). There are two cases: either A; = 2
or Ay > 2. In the first case, since —p41 T xhy _p,+1 = 0, it follows that each variable
related to machine £ in the violated 1nequa11ty is active at period t; + 1, and hence this vio-
lated inequality is implied by an inequality (7) with ¢ = ¢; + 1. In the second case, we claim
that the inequality of type (10) determined by parameters iy, o, k1, ko, t1 + 1,69, Ay — 1, Ay
(called the ‘new’ inequality) also corresponds to a violated inequality of type (10). This
follows from the observation that the only variables that appear in the former inequality and
not in the ‘new’ one are #7{'_ ., and x'_, ., who both equal 0.

Consider now (ii). There are two cases: either A; =2 or A; > 2. In the first case, since
ail a1+l a1 =0, it follows that each variable related to machine k; in the violated

inequality is active at period ¢;, and hence this violated inequality is implied by an inequality
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(7) with ¢ = ¢;. In the second case, we claim that the inequality of type (10) determined
by parameters i1, io, k1, ko, t1, t2, A1 — 1, Ay also corresponds to a violated inequality of type
(10).

Considering (iii), we claim that the inequality of type (10) determined by parameters
i1, 19, k1, k2, t1,t2, A1 + 1, Ay (called the ‘new’ inequality) also corresponds to a violated in-
equality of type (10). And considering (iv), we claim that the inequality of type (10) deter-
mined by parameters i1, is, k1, ko, t1 — 1,2, A1 +1, Ay also corresponds to a violated inequality
of type (10).

Consider now (v). There are two cases: either Ay = 1 or Ay > 1. In the first case, we
claim that the inequality of type (10) determined by parameters i, i1, k1, ko, t1,to, Ay, Ay = 2
also corresponds to a violated inequality of type (10). In the second case, we claim that
the inequality of type (10) determined by parameters iy, 4o, k1, ko, 11,2 + 1, A1, Ag — 1 also
corresponds to a violated inequality of type (10).

Consider now (vi). There are two cases: either Ay = 1 or Ay > 1. In the first case,
we claim that the inequality of type (10) determined by parameters iy, i1, k1, ko, t1,to —
1, Ay, Ay = 2 also corresponds to a violated inequality of type (10). In the second case, we
claim the same for parameters i1, is, k1, ko, t1,t2, A1, Ay — 1.

Considering (vii), we claim that the inequality of type (10) determined by parameters
i1,109, k1, ko, t1,t2, A1, Ay + 1 also corresponds to a violated inequality of type (10). And
finally, considering (viii), we claim that the inequality of type (10) determined by parameters
i1, 19, k1, k2, t1,te — 1, Ay, Ay + 1 also corresponds to a violated inequality of type (10). ©

6.3 Improving the LP relaxation

To see the effect of the valid inequalities, we have implemented a basic cutting-plane algo-
rithm. Its working is illustrated in Figure 3. As the separation of the inequalities of van den
Akker et al. (1999) takes too much computation time for the generation instances, we do
not consider these inequalities in the computational experiments.

| Solve LP
Is 2 yes
integral?
no
Add all violated yes ) Does 7
inequalities (9) violate (9)?
Does &
L__| Add all violated yes oes ©

no
— | Stop

inequalities (10) violate (10)?

Figure 3: The basic cutting-plane algorithm

Table 2 provide statistics on this algorithm. Remark that preprocessing is not yet in-
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cluded in the algorithm here. We present the average total computation time to execute
the cutting-plane algorithm as time, the average value of the LP solution as 2], and the
average value of the IP solution as zjp. Recall that each row corresponds to 20 instances.
Moreover, we provide statistics on the frequency with which optimal solutions are found.
More precisely, we report the number of instances for which the optimal solution of the LP-
relaxation is integral, nyp, the number of instances for which the solution is integral after
the addition of cuts (9), n(), and after addition of cuts (10), n(gy. For the instances whose
LP-relaxation is fractional, the percentage of the gap (z;p — 2z p) that is closed after adding
Z(:IL:_% where z(z1?)
is the value found after adding the corresponding inequalities. When, in an extreme case, the
LP solution and the IP solution have the same value, although the LP solution is fractional,
we say that the gap is closed with 0% if the solution stays fractional after adding cuts and
the gap is closed with 100% when the solution becomes integral. We also report the number
of valid inequalities that were added (V' /) and VIq) respectively). 2IP is found by giving
CPLEX one hour of computation time to find an IP solution.

We see that a small portion of the instances has an integral LP-solution, to be precise
5%. This percentage seems to grow mildly with the size of an instance (more concretely with
the number of machines m). Adding inequalities (9) helps in producing integral solutions:
another 4 out of the 300 instances become integral and inequalities (10) yield another 4
additional instances. We conclude that both classes have a contribution in closing (part
of) the gap. Inequalities (9) are quite powerful, bridging on average 5.32% of the gap.
Inequalities (10) are also quite effective, bridging an additional 5.28% of the gap although
this is mostly true for instances with large m.

Next, we implement the same cutting-plane algorithm, but we now use variable fixing in
each iteration. To obtain an upper bound on the optimal solution, we run CPLEX to find
a feasible solution with a GAP smaller than 3%. If no such feasible solution is found within
the time limit of one minute, we rerun CPLEX until one is found.

Table 3 provide statistics on the implementation. We see that adding preprocessing helps
further in producing integral solutions and in closing the gap. Adding inequalities (9) makes
that another 11 out of the 300 instances become integral and bridge on average 7.76% of the
gap. Inequalities (10) yield another 7 integral instances and bridge on average 5.15% of the

gap.

valid inequalities is displayed. The percentage is computed as 100 x

6.4 Exact solution of the problem

In this section we focus on the exact solution of the IP formulation. A first approach consists
in directly solving the IP formulation by CPLEX with a time limit of one hour (referred to as
InitI P). The second approach (referred to as Alg2) consists in applying the preprocessing
technique inside a cutting-plane algorithm, as described in Algorithm 2, before solving by
CPLEX the modified instance. The latter may have fixed variables x; and added valid
inequalities. We implemented two variants: In Alg2(0), we use the best objective value found
by CPLEX within one hour of computation time as an upper bound for the proprocessing.
In Alg2(1), this upper bound is obtained by the same heuristic procedure as described in
section 6.3. The processing time of the heuristic is here included in the total computation
time of the algorithm. For experimentation, we only consider instances with one, two or
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Table 2: Impact of the valid inequalities (9) and (10)

(m x n) time LP LP + (9) LP + (9),(10) IP
aip tup | GAPy) ) Vi) | GAPug) nao) Vg Zip

1 x 100 2.35 | T74598.42 0] 5.52% 0 6.00 not applicable 774884.65
1 x 150 8.67 | 1797688.70 0| 4.0™% 0 6.65 not applicable 1798358.50
1 x 200 19.61 | 3287610.99 0| 2.55% 0 6.25 not applicable 3288583.75
2 x 100 | 107.15 | 232060.62 0] 211% 0 1.20 2.60% 0 317.90 | 232110.20
2 x 150 | 329.87 | 575452.75 0| 251% 0 3.60 2.67% 0 346.50 | 575646.10
2 x 200 | 613.17 | 1039188.77 0| 1.22% 0 280 1.44% 0 392.05 | 1039433.30
3 x 100 62.30 77873.45 0| 3.28% 0 0.20 3.58% 0 189.25 77892.05
3 x 150 | 174.64 | 197899.01 1| 1.14% 1 037 1.85% 1 196.63 | 197972.50
3 x 200 | 396.12 | 388240.13 0| 3.74% 0 1.80 3.95% 0 234.35| 388400.85
5 x 100 14.54 6907.19 1| 0.00% 1 0.00] 18.82% 2 300.16 6909.00
5 x 150 72.29 21615.12 0 0.00% 0 0.00 2.94% 0 225.05 21620.50
5 x 200 | 200.40 47849.28 1] 0.00% 1 0.00 1.18% 1 729.89 47861.15
10 x 100 | 10.52 2804.70 7| 25.13% 9 031 48.03% 11 29.00 2805.25
10 x 150 | 74.69 10044.04 3| 23.91% 5 053] 31.45% 5 540.41 10045.20
10 x 200 | 8&83.21 22839.14 2 | 4.55% 2 011 12.45% 3 230.06 22839.90

Table 3: Impact of preprocessing with the objective value for the heuristic procedure as
an upper bound

. LP LP + pre + (9) LP +pre + (9),(10) IP

(m > n) time zp nrp | GAPg) nwy Vi | GAPaoy naoy Vi 2rp
1 x 100 68.98 | 774598.42 0] 5.65% 0 6.20 not applicable 774884.65
1 x 150 | 180.75 | 1797688.70 0| 4.0™% 0 6.65 not applicable 1798358.50
1 x 200 | 290.88 | 3287610.99 0| 2.55% 0 6.25 not applicable 3288583.75
2 x 100 | 105.09 | 232060.62 0] 211% 0 1.20 2.82% 0 250.90 | 232110.20
2 x 150 | 308.35 | 575452.75 0| 251% 0 3.55 2.67% 0 346.50 | 575646.10
2 x 200 | 487.69 | 1039188.77 0 1.22% 0 275 1.44% 0 392.05 | 1039433.30
3 x 100 53.65 77873.45 0| 3.34% 0 0.20 3.64% 0 162.05 77892.05
3 x 150 | 178.61 | 197899.01 1] 1.15% 1 0.37 1.85% 1 0.00 | 197972.50
3 x 200 | 415.38 | 388240.13 0| 3.74% 0 1.80 3.95% 0 234.20 | 388400.85
5 x 100 14.83 6907.19 1] 7.02% 2 0.00| 23.64% 5 216.32 6909.00
5 x 150 77.35 21615.12 0| 5.00% 1 0.00 7.94% 1 225.05 21620.50
5 x 200 | 347.54 47849.28 1] 0.01% 1 0.00 1.18% 1 255.79 47861.15
10 x 100 | 10.31 2804.70 7| 3846% 12 0.31| 58.79% 14 15.62 2805.25
10 x 150 | 191.09 10044.04 3| 23.91% 5 0.53 | 33.66% 6 146.06 10045.20
10 x 200 | 286.27 22839.14 2 | 15.66% 4 011 | 24.3™% 5 86.11 22839.90
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three machines since the generated instances start to be easily solvable (in a few seconds)
by CPLEX as the number of machines increases.

Algorithm 2 Exact solution with an initial preprocessing; input: an upper bound UB on
ZMm1p
Run Algorithm 1 with UB and no valid inequalities: x} , denotes the returned variable
values.
if (27 p is not integral) then
Iterate=true.
end if
while (Iterate=true) do
Starting with z7 5, let VI be the set of violated inequalities (9).
if (|[VI]# () then
Run Algorithm 1 with UB and VI: z} p denotes the returned variable values.
else
Iterate=false.
end if
end while
Convert the LP with added valid inequalities and fixed variables into an IP model.
Solve the resulting IP: 27, is the computed optimal solution value.
return zjp.

In Table 4, we mention the number of instances (out of 20) that were solved to optimally
in column # for all algorithms. We also mention the average objectif values. The average
computation time and the average number of nodes that CPLEX explores, are displayed in
columns time and #nodes for all algorithms. For Alg2(0) and Alg2(1) we also provide in
column fixed the average percentage of variables that are fixed by the preprocessing.

Looking at the results of Init/P, we notice that the instances seem to be easier for
CPLEX as the number of machines increase. Remark that the cutting-plane algorithm
with preprocessing may penalize the solution by CPLEX: effort is spent in generating valid
inequalities and fixing variables in Alg2(0) and Alg2(1) while InitI P is efficient. To illustrate
that, look at the instances with 3 machines and 100 jobs. On average, these instances are
solved by CPLEX in only 14.36 seconds, so we can not expect a large gain in solution time.
Indeed, generating valid inequalities and fixing variables lead to an increased overall CPU
time even if the number of explored nodes is reduced and more than 99% of the variables
are fixed by preprocessing.

In general, we can state that Init/ P performs rather well and that the cutting-plane
algorithm with preprocessing does not really outperform it. However, to solve hard instances,
it turns out that the the cutting-plane algorithm with preprocessing yields better results.
The efficiency of the cutting-plane algorithm with preprocessing decreases as the upper
bound becomes weaker. For that reason, table 4 highlights an interesting possible future
research: improving the quality of the heuristic algorithm to obtain better final solutions
for the problem. Notice that we have not been able to do preprocessing at each node of the
branch-and-cut algorithm of CPLEX due to a lack of interactions with the mathematical
solver. This would also drastically improve the results of Alg2(1).
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7 Conclusion

We modeled the unrelated parallel machine scheduling problem where the processing cost of
each job is an arbitrary function of its starting time as a single machine scheduling problem
using a time-indexed formulation. We have shown that valid inequalities from literature
for single-machine problems can be applied to multi-machine problems. A new set of facet-
inducing inequalities has been presented, and a cutting-plane algorithm has been proposed.
We have also implemented a preprocessing technique within that algorithm to try to reduce
the size of the instances to solve. Computational experiments have been conducted and they
show that the valid inequalities lead to strengthen the linear relaxation of the time-indexed
formulation. These experiments also show that the proposed cutting-plane algorithm with
preprocessing may help to solve the instances which are hard to solve for the mathematical
solver more efficiently.

As future research directions, it would be interesting to implement a faster separation
algorithm for the inequalities of van den Akker et al. (1999) to improve the exact solution of
the problem by the cutting-plane algorithm with preprocessing. It would also be interesting
to provide a very fast and good heuristic algorithm to get a good preprocessing. This
might considerably improve the computational results for both the LP relaxation and the
IP formulation. At last, the possibly most promising research line from an experimental
point of view is certainly to integrate the preprocessing at each node of the branch-and-cut
algorithm used to solve the time-indexed formulation.

8 Appendix

Theorem [Inequalities (10) are facet-defining inequalities for P,,, for each m > 2.

Proof: Consider formulation (5)-(8) that we restate here: For each job i and machine k,
and for each time period t =1,...,T — p;x + 1, we define the decision variables

1 if job ¢ starts on machine k at time ¢,
Likt = .
0 otherwise.

An IP-model for this machine scheduling problem is the following:

n m T—pjr+1

minzz Z Ci ket Ti ket (13)

i=1 k=1 t=1

subject to
m T—pip+1
Z Z Tige =1 Vi=1,...,n, (14)
k=1 t=1
n t
Z Z Tigs <1 Vk=1,...,m;Vt = mingps,..., T, (15)

1=1 s=t—p;r+1

rigr €40,1} Vi=1,....mVk=1,.... m;Vt=1,...,T —py +1. (16)
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Observe that this formulation is identical to formulation (5)-(8); we only use different
indices here (see the paragraph preceding (5)-(8)).
Let us first establish the dimension of the corresponding polytope P,,.

Lemma 5 dim(P,,) =n(mT +m—1)—=> " >  Dik.

Proof: How many variables exist in (5)-(8)7 Consider some job i, 1 < i < n. In case machine
k (1 <k < m), performs this job, there are T — p;;, + 1 possible moments to start this job,
giving rise to equally many binary variables. Hence the total number of variables in (5)-(8)
equals: > S (T —pi + 1) = n(mT +m) — >0 D7 | pik. Since we have n linearly
independent inequalities (14) it easily follows that dim(P,,) < n(mT+m—1)=>" | > 1", Dik.
We will now show that, in fact, equality holds.

Consider some equality that is valid for all feasible solutions x:

n m T—pir+l

Z Z Z Tk tLikt = T0- (17)

i=1 k=1 t=1

We now identify a particular feasible solution, denoted by solution S, as follows. Let some
job i (1 < i < n) start on machine k (1 < k < m) at time s (1 < s < T — py + 1);
all other jobs start on machine ¢, ¢ # k, in a way that no job on machine ¢ overlaps the
moments {s,s+1,...,s+p;, — 1} (notice that this is always possible, if T" is large enough,
sat T' > 2 X maxy > . Pik)-

Consider now a feasible solution that is identical to S except that job ¢ starts on machine
k at time t, t # s. Since equality (17) holds for all feasible solutions, it follows that

Tiks = Tikt Vi=1,....m;Vk=1,... m;Vs,t € {1,...,T —py. + 1}. (18)

Consider now another feasible solution that is identical to S except that job i starts also
on machine ¢ at time s. Again, since equality (17) holds for all feasible solutions, it follows
that

Tiks = Tils Vi=1,....m;Vk,0e{l,....mhVs=1,....,T —py + 1. (19)

Using (18) and (19), we conclude that there exist multipliers 7; such that
T = Tkt Vi=1,....mVk=1,... m;Vt=1,...,T —py + 1.

Thus, we can rewrite equality (17) as follows:

n m T—pir+1 m T—pir+1
E E E T ktLikt = E T E E Lkt =
=1 k=1 t=1 i=1

thereby showing that equality (17) is a linear combination of equalities (14). This proves
the lemma. o

We now proceed to prove that inequalities (10) are facet-defining. In order to facilitate
the description of the proof, we define the following intervals of time-units. Given jobs iy, is,
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machines ki, ko, time-units tq, t, and parameters A, Ay, we define:

A=ty —piyg +1,... .01+ A — 1],

B =1t = Diysy +1,..., 01 + Ay — 1],
Ci=[t1 — pig + A1, 00 #dr, 0 # d2),
D = [ty —piyr +1,... ta + Dy — 1],

E =[ts — piy ke, + Do, ..., La].

This allows us to rewrite inequality (10) as follows:

Z Tiq k1,s + Z Tigk1,s + Z Z Tiky,s + Z Tiy ka,s + Z Tiy ko,s S 2. (2())

s€A s€B dtiiy iia sEC; seD s€E

Let ' = {x € P,: x satisfies (20) with equality}, and consider some equality that is

valid for all z € F':
n  m T—pipt+l

Z Z Z Tkt Likt = TO-
i=1 k=1 t=1
We will show that there exist multipliers p; (1 < i < n), and « such that:

n m T—pir+l m T—pr+1

DD D TekeTike ;mz 2 Tkt

=1 k=1 t=1

o (E Tiy ky,s T+ E :xi27k115 + E , E :xi,kl,s + E :xilﬂk‘z,s + E :xi%kzys) = To-

sEA sEB 1:07£141,iF12 s€C; seD seFE

This shows that any equality valid for all feasible solutions, is a linear combination of the
equalities (14) and the equality corresponding to (20). In our proof we will use feasible
solutions in F', and sometimes use the phrase “all other jobs start in some feasible way on
some machine £”7. Our assumption that 7' is large enough guarantees that there is indeed
some way to place those jobs on that machine.

Consider now a solution called \S;, where job 7; starts on machine k; at time ¢; —p;, &, +1,
where job i starts on machine k; at time ¢; + 1, where some job i, (i # 11,7 # iy) starts on
some machine k (k # ki) at time s, with 1 < s < T — p; + 1, and where all other jobs start,
in some feasible way, on machine k;. We modify solution .S; by keeping everything the same
except that we start job 7 on machine k at time ¢, t # s. Clearly, both solution Sy, and the
modified solution are in F'. It follows that

Tiks =Tige ViE{l ....,n}\{ir,ie;VE=1,... .m;k #ki;Vs,t € {1,....,T —pi + 1}.
(21)
Also, we can modify S; by shifting job ¢ to machine ¢, ¢ # k, ¢ # k, at time s, to arrive
at:

Tiks =Ties ViE{L ... onp\{ir,ia;VE, L€ {1,... mI\{k1i};Vs=1,...,T—pi+1. (22)
Together, equalities (21) and (22) imply:
Tikt = Pi Vied{l,...,n}\{i,io;VE=1,... myk #k;;Vt=1,....,T —py + 1. (23)
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We will now proceed to argue that (23) is in fact also valid for machine k; when ¢ ¢ C;,
1 <i <n,i.e., we will show that:

Tkt = Pi Vi € {1,,%}\{21,22}7Vt¢ Cz (24)

We assume here, for reasons of convenience (and without loss of generality) that ¢; is such
that there is ample space both to the left of ¢;, as well as to the right of ¢;. More precisely,
we assume that p;r, <t < T — p; 1, for all ¢. Consider now solution Sy, where job i; starts
on machine k; at time ¢; — p;, », +1, where job iy starts on machine k; at time to — p;, 5, + A2,
where some job ¢ starts on machine k; at time s, s > ¢; + 1, and where all other jobs are
placed in some feasible way on machine ks leaving free the time units [s, ..., s+ pix, — 1]. We
modify solution S; by keeping everything the same except that we start job ¢ on machine &,
at time ¢t = 1. Clearly, both solution S5, and the modified solution are in F'. It follows that:

Tiki,s — Tiky,1 Vi € {1,...,n}\{i1,i2};Vs:t1—l—l,...,T—pi,kl+1. (25)

We can also modify Sy by keeping everything the same except that we start job ¢ on machine
some k (k # k1) at time s, implying (using (23)):

Tikys = Tiks =pi Vie{l,...,n}\{ir,io};VE=1,....om;k # ki;;Vs=1,...,T —pig, + 1.
(26)
Consider now solution S3, where job #; starts on machine k; at time t; + A; — 1, where
job iy starts on machine kg at time ¢y — pj, k, + Ao, where some job ¢ starts on machine k;
at time s, s <t; — ik, + A1 — 1, and where all other jobs are placed in some feasible way
on machine k. We modify solution S5 by keeping everything the same except that we start
job 7 on machine k; at time t = 1. Clearly, both solution S3, and the modified solution are
in F. It follows that:

T ki,s = Tiky,1 Vi e {1,...,n}\{i1,i2};Vs: 1,...,t1 — Dik +A1 — 1. (27)

Together, the conditions (25), (26) and (27) imply (24).

Consider now solution S; where job i; starts on machine ky at time ¢o — p;, x, + 1, where
job @, @ # 11,1 # iy starts on machine ky at time ¢ — p;x, + Ay, where job iy starts on some
machine k, k # ki, k # ko at some time s, and where all other jobs are placed in a feasible
way on machine k;. We modify solution S, by keeping everything the same except that we
place job i on machine k at time ¢ (t # s). Clearly, both solution Sy, and the modified
solution are in F'. We get:

Tigds = Tig ket VEe{1,....m}\{ki,ko};Vs,t € {1,....,T — pip . + 1}. (28)

We can also modify S; by keeping everything the same except that we shift job s to
some other machine ¢ (¢ # kq,¢ # ko) at time s, implying:

Tigk,s = Tig 0.5 Vi, 0e{l,....m} \{ki,ko};Vs=1,....,T —pi, 1 + L. (29)
Together, the conditions (28), and (29) imply:
7Ti2,k,t :pig Vk’ - {1,...,m}\{k1,k2};w: 17-'~7T_pi27k+1- (30)
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A similar construction can be used to infer:

Tir kit = Pir VEe{l,... mi\{ki,ko};Vvt=1,...,T —p;, s+ L. (31)

Consider solution S5 where job i; starts on machine k; at time s, s ¢ A, where job i
starts on machine ko at time t,, where job ¢ starts on k; at time ¢; — p;x, + A1, and where
all other jobs are placed in a feasible way on machine ky. We modify solution S5 by keeping
everything the same except that we place job i; on machine ky at time ¢ (¢t ¢ A). Clearly,
both solution S5, and the modified solution are in F'. Using constructions like these, we get:

Tirdes = Tiq kot Vs, t & A. (32)

We can also modify S5 by keeping everything the same except that we shift job #; to
some other machine k (k # k1) at time s, implying:

Tiydes = Ty ks VeE=1,....m;k#k;Vs=1,....,T —pi, s, + L. (33)
Together, the conditions (32), and (33) imply:
Ty k1t = Pix vt gé A. (34)

Similar constructions can be used to infer:

i1 kot = Piy vt ¢ D, (35>

Tig k1t = Pig vt ¢ B, (36)
and

Tig kot = Pia vt ¢ E. (37>

Consider solution Sg where job i; starts on machine k; at time s, s € A, where job i
starts on machine k, at time ¢y — p;, 1, + A9, and where all other jobs are placed in a feasible
way on machine ky. We modify solution Sg by keeping everything the same except that
we place job i; on machine ky at time t (f # s,t € A). Clearly, both solution Sg, and the
modified solution are in F'. We get:

Ty k1,5 = Ty, Kyt VS,t c A. (38)
In a similar fashion, we can derive:
Ty ks = Ty kot \V/S,t e D. (39)

Moreover, consider solution S;7 where job 7; starts on machine k; at time ¢; —p;, 5, +1, where
job i starts on machine k; at time t; + A; — 1, and where all other jobs are placed in a
feasible way on machine ks, leaving free the time units [to — piy g, + 1,. .., t2]. We modify
solution S; by keeping everything the same except that we place job i; on machine ky at
time to — p;, k, + 1. Clearly, both solution S7, and the modified solution are in F'. We get:
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iy et b —piy oy +1 = T ka,to—piy gy+1- (40)
Using conditions (38), (39) and (40), we find:
Tivkit = Tigpos =T YVt € A;Vs € D. (41)
In a similar fashion, we can derive:
Tisdit = Tighps = TVt € B;Vs € E, (42)

and:

Tigyt = T Vie {1,...,n}\ {i1,is};Vt € C;. (43)

Consider solution Sg where job 4; starts on machine ky at time ¢y — p;, x, + 1, where job i3
(i3 # 19) starts on machine k; at time ¢; (notice that t; € Cy,), where job iy (iy # ia,14 # i3)
starts on machine k; at time s with s > ¢; 4 pi, x, + Pisk,, and where all other jobs are
somewhere on machine ky. We modify solution Sg by keeping everything the same except
that we interchange jobs i3 and iy4, ie, by starting job i3 on machine k; at time s, and job
14 on machine k; at time ¢;. Clearly, both solution Sg, and the modified solution are in F'.
Then, we find that:

Tig kiyts T Tigkr,s = Tigky,s + Mgyt -
Using (24), this is equivalent to:
Tig kit — Pis = Tigkit1 — Pig = &,
or, by extending the construction for any time t € C;
Time—pi=a  YVie{l,....n}\{i,ia};Vt € C,. (44)

Consider a solution Sy where job i; starts on machine k; at time ¢;, where job i, starts on
machine ks at time ¢, (notice that 5 € E), where some job i (i # i1,1 # is) starts on machine
ky at time s with s > ¢; + p;, k, + Pik,, and where all other jobs are somewhere on machine
ko. We modify solution Sy by keeping everything the same except that we interchange jobs
11 and 1, i.e., by starting job ¢ on machine k; at time ¢, and job i; on machine k; at time s.
Clearly, both solution Sy, and the modified solution are in F'. Then, we find that:

Ty kyts T Tik,s = Tigkr,s T Tigka ity -
Using (24) and (34), this is equivalent to:
T kit — Piv = ik oty — Pi — @

or, in fact:
Tiy kit — Pir = Tiykos — Piy = Q Vt e A;Vs € D. (45)

A similar construction allows us to conclude:

Tigket — Pis = Tigkas — Pig = O Vt € B;Vs € E. (46)
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We are now finally able to derive the result:

n  m T—pj+1

E g E Tk tlikt =

i=1 k=1 t=1

T—pik+1
E E ( E TiktTikt) + E T ky ¢ i Jer,t E Tk tTi ket T
11701 ,iF£ 2 k#£k t=1 t¢C; teC;

T—pi; kt1 T—piy k+1

E ( E iy Jo,tLiy kit 1 E T et T )

k#k1 ,k#ko t=1

E Ty k1t Ly ket + E :7T21J€2,tx11,k2,t + E Ty k1t Ly ket + E Ty ko tLiy kot +

teA teD t¢A t¢D
E T ko1 tTig k1t + E Ty kot Tig kot + E :7Ti27k1,txi2,k17t + E Ty kot Tig ko t-
teB teE t¢B t¢E

By plugging in the values we found for the m;, coefficients derived in the conditions
respectively (23), (24), (44), (31), (30), (45), (34), (35), (46), (36) and (37), we find:

n m T— p1k+1 m T— pzk+1
§ E E Tk tLikt = § Pi § § xzkt—i_
=1 k=1 t=1 =1
Oé( E Tiy ks T E Lig ky,s T E : E : Tiky,s T E Tiy kays T E :wi27k2,8 = To, O
s€A seB 1:1#£11,1F£12 SEC, seD sekE

thereby proving our result.
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