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Multiphase model for transformation induced plasticity
Extended Leblond’s model

Daniel Weisz-Patrault
LMS, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France

Abstract

Transformation induced plasticity (TRIP) classically refers to plastic strains observed during
phase transitions that occur under mechanical loads (that can be lower than the yield stress). A
theoretical approach based on homogenization is proposed to deal with multiphase changes and
to extend the validity of the well known and widely used model proposed by Leblond, J.-B., De-
vaux, J., and Devaux, J. (1989). Mathematical modelling of transformation plasticity in steels i:
case of ideal-plastic phases. International journal of plasticity, 5(6):551–572. The approach is
similar, but several product phases are considered instead of one and several assumptions have
been released. Thus, besides the generalization for several phases, one can mention three main
improvements in the calculation of the local equivalent plastic strain: the deviatoric part of the
phase transformation is taken into account, both parent and product phases are elastic-plastic
with linear isotropic hardening and the applied stress is considered. Results show that classical
issues of singularities arising in the Leblond’s model (corrected by ad hoc numerical functions
or thresholding) are solved in this contribution excepted when the applied equivalent stress
reaches the yield stress. Indeed, in this situation the parent phase is entirely plastic as soon as
the phase transformation begins and the same singularity as in the Leblond’s model arises. A
physical explanation of the cutoff function is introduced in order to regularize the singularity.
Furthermore, experiments extracted from the literature dealing with multiphase transitions and
multiaxial loads are compared with the original Leblond’s model and the proposed extended
version. For the extended version, very good agreement is observed without any fitting pro-
cedures (i.e., material parameters are extracted from other dedicated experiments) and for the
original version results are more qualitative.

Keywords: Transformation plasticity, Super-plasticity, Homogenization

Table 1: Nomenclature

N Number of phase
σk Local stress tensor in the k-th phase
sk Local stress deviator in the k-th phase
εk Local strain tensor in the k-th phase
λk, µk Lamé’s coefficients in the k-th phase
Xk k-th phase proportion
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V Representative volume element (RVE)
Vk Volume occupied by the k-th phase in the RVE
Σ Macroscopic stress tensor
S Macroscopic stress deviator
E Macroscopic strain tensor
Etp Transformation induced plastic strain tensor
Ecp

T Classical plastic strain tensor due to temperature variation
Ecp
Σ

Classical plastic strain tensor due to stress variation
Σk Average stress tensor in the k-th phase
Sk Average stress deviator in the k-th phase

1. Introduction

When phase transformations occur under applied mechanical loads that can be much lower
than the yield stress, significant plastic strains are observed. This phenomenon called transfor-
mation induced plasticity or sometimes super-plasticity received particular attention since the
eighties because of numerous applications in mechanical engineering. For instance welding
or sheet metal manufacturing (especially the run out process that consists in cooling down a
sheet under tension) cannot be approached without considering transformation plasticity. Two
different mechanisms have been proposed to explain transformation plasticity by Greenwood
and Johnson (1965) and Magee and Paxton (1966). One of the most fruitful model has been
proposed by Leblond et al. (1986a) and relies on an homogenization procedure without adding
a priori contributions in the plastic strain tensor that would be proportional to phase propor-
tion rate. This classic contribution results directly from the homogenization procedure itself
and both Greenwood and Johnson and Magee mechanisms are thus identified in the obtained
contributions. In order to give a more specific and usable form to the homogenized model, a
morphological assumption which consists in an idealization of the microstructure has been pro-
posed and solved analytically by Leblond et al. (1986b, 1989) without considering hardening
effects and by Leblond (1989) if hardening is taken into account. These four papers form the
base of the Leblond’s transformation induced plasticity model. Because of its solid theoretical
basis and simple explicit formulas for the overall plastic strain increment, Leblond’s model has
been intensively used for various engineering applications and has been included (see Bergheau
and Leblond (1991)) in a commercial Finite Element software SYSWELD® (2012) dedicated
to welding applications. Among many contributions, one can mention for instance quite re-
cent applications of the Leblond’s model to welding proposed by Bate et al. (2009); Xu et al.
(2012) and sheet metal manufacturing by Lee et al. (2009). Moreover, Kim et al. (2005) devel-
oped a numerical implementation of Leblond’s model within the framework of multiplicative
elastic-plasticity considering welding applications.

It should be mentioned that several other theoretical strategies to model transformation
induced plasticity have also been proposed. For instance Diani et al. (1995) deal with the the-
oretical justification of the proportionality of the transformation plastic strain rate, the phase
proportion rate and the macroscopic stress deviator. The idea is to consider the complete trans-
formation from the reorganization of the crystal lattice. Indeed most authors consider only the
hydrostatic part of the phase transformation (considering only the density mismatch between
phases), however a very large deviatoric strain also occur during the phase transformation. Di-
ani et al. (1995) practically consider the Bain transformation. Fischer et al. (1998) pointed out
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the fact that the Leblond’s model neglects shear (i.e., the deviatoric part of the phase transforma-
tion) and proposed a formulation of transformation induced plasticity based on thermodynamic
considerations. A similar approach which deals with finite strain (multiplicative formalism)
has been proposed by Hallberg et al. (2007). These models account for the complete phase
transformation tensor but do not enable to derive a simple analytic form for the overall trans-
formation plastic strain rate. On the other hand, numerical investigations have been published,
for instance Mahnken et al. (2009) proposed a numerical homogenization based on Finite El-
ement simulations of random cubic unit cells. Barbe et al. (2007) proposed a Finite Element
modeling of a unit cell that undergoes a diffusive phase transformation, which is modeled by
changing material properties as the transformation goes on. Otsuka (2014) proposed a micro-
mechanical model of crystalline plasticity relying on Fast Fourier Transform and periodic cells.
Moreover multiphase situations already have been studied in the field of TRIP assisted steels.
For instance, Finite Element strategies were used by Van Rompaey et al. (2006) in order to
analyze the micromechanics of a transforming inclusion in TRIP assisted steels. Experimental
counter-parts have also been published by Lacroix et al. (2008) in order to analyze the effects of
transformation kinetics. A mean field homogenization approach was also developed by Delan-
nay et al. (2007, 2008) based on a uniform stress/strain approximation per phase. Recent efforts
were also published on the transformation in a multiphase steel by Srivastava et al. (2015).

Many authors proposed experimental investigations of transformation induced plasticity
and compared results to the Leblond’s model. For instance Taleb et al. (2001) developed an
experimental setup to measure transformation induced plasticity in steels. Coret et al. (2002,
2004) developed a tension-torsion testing machine that enables to study transformation induced
plasticity under multiaxial loads. Results show that Leblond’s model is qualitatively correct but
some quantitative discrepancies between theoretical predictions and measurements are notice-
able even though it is the model which describes the more accurately the phenomenon among
the tested models.

The original Leblond’s modeling leads to a singularity of the transformation plastic strain
increment when the phase proportion of the product phase vanishes. The difficulty is overcome
by introducing an ad hoc cutoff function when the product phase proportion tends to zero. Taleb
and Sidoroff (2003) proposed an analytic from of this cutoff function by coupling an elastic-
plastic parent phase and an elastic product phase (much harder). The singularity disappears
since a threshold naturally arises and corresponds to the possibility for the matrix to be entirely
elastic. The obtained threshold is very similar to the numerical ad hoc threshold 0.03 introduced
in the Leblond’s model. Experimental results are therefore similar. It should be noted that Taleb
and Sidoroff (2003) do not modify the global homogenization scheme developed by Leblond
et al. (1986a). Furthermore, Petit-Grostabussiat et al. (2004) proposed an experimental counter-
part of the Leblond’s model with respect to the possible recovery of strain hardening on the one
hand and the classical plasticity due to thermal variations on the other hand. However, other
tests performed by Taleb and Petit (2006) show that predictions of the Leblond’s model are
not qualitatively correct when pre-hardening (significantly higher than the yield stress of the
soft phase) is applied to the test piece before starting the phase transformation. For instance,
even for zero macroscopic applied stress, non negligible transformation induced plasticity is
observed. This deserves a comment since it is the only situation where the Leblond’s model
is not qualitatively correct. Despite the fact that authors present this result as an effect of
hardening, this may be rather explained by residual stress issues. Indeed, there is a significant
irreversible plastic strain in the parent phase when the phase transformation begins. However
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the produced phase is not subjected to this initial plastic strain due to the rearrangement of
the crystal lattice, therefore an elastic strain is needed in both parent and product phases to
accommodate this geometrical mismatch. This leads to residual stresses whose global average
is obviously zero. Since the transformation induced plastic strain rate proposed by Leblond
is proportional to the global average deviatoric stress, zero transformation induced plasticity
is predicted, in disagreement with experiments proposed by Taleb and Petit (2006). In this
contribution, average stresses per phase are used instead of a global average stress, so that
residual stress issues may be considered.

It should be noted that Delannay et al. (2007) used an approach relying on average stress
per phase and classical Eshelby inclusion problem with tangent stiffness so that plasticity is
accounted for. It is concluded that local stress gradients in the parent phase near the trans-
formation zone may introduce some discrepancy with a local Finite Element computation for
certain size of inclusion. However in this paper, despite the fact that stresses are averaged in
each phase, one accounts for stress gradients and therefore local plasticity in the parent phase
near the inclusions, by considering an idealized microstructure presented in Appendix A.

Even though the paper is presented with a very general point of view, it is mainly intended
for crystalline cubic structures such as steel. It is an attempt to contribute in improving not only
the transformation induced plasticity but also the interactions with classical plasticity. Further-
more the homogenization scheme is slightly improved by releasing some assumptions made by
Leblond et al. (1986a), even though the obtained transformation induced plastic strain is still
proportional to the applied stress as in the original Leblond’s model. However, a nonlinear ef-
fect has been evidenced in micromechanical Finite Element simulations performed for instance
by Leblond et al. (1989). The transformation induced plastic strain rate increases more quadrat-
ically than linearly with the stress, once the overall von Mises stress exceeds about half of the
yield stress of the parent phase. Therefore this paper is limited to rather low applied stresses.
Although relying on the same scheme, the present paper introduces the following details in
comparison with the Leblond’s model and Taleb and Sidoroff (2003), where the last three are
the most significant with respect to numerical results:
1) Several product phases are considered.
2) Elastic-plastic behavior is considered for both parent and product phases, which regularizes

the singularity obtained by Leblond et al. (1986b) for the classical plastic strain rate due to
a variation of equivalent stress. This singularity was due to the product phase proportion ap-
pearing at the denominator. Leblond et al. (1986b) proposed a numerical function obtained
by Finite Element simulations in order to smooth the singularity.

3) The average stress deviator in the parent phase is not equated to the macroscopic stress
deviator as it is done by Leblond et al. (1989). This enables to be consistent with the fact
that one phase may have a yield stress lower than the others and does not necessarily sustain
the macroscopic stress deviator. On the other hand this enables to take into account residual
stress issues as in the experiments proposed by Taleb and Petit (2006).

4) The applied macroscopic stress is taken into account as a pre-stress in the calculation of the
equivalent plastic strain, which is neglected by Leblond et al. (1989) and Taleb and Sidoroff
(2003).

5) The deviatoric part of the phase transformation has been taken into account through a sim-
plified analytic calculation.

Furthermore, it should be noted that Taleb and Sidoroff (2003) explains the singularity obtained
for the transformation plastic strain rate only by the fact that Leblond et al. (1989) did not
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consider elasticity in the parent phase. However, this is true only without applied stress. Indeed
if an equivalent stress equal to the yield stress is applied to the parent phase the latter would be
entirely plastic as soon as the phase transformation begins, which leads to the same singularity
obtained by Leblond et al. (1989) when the product phase proportion vanishes. Leblond et al.
(1989) applied a cutoff function to smooth the singularity. It should be mentioned that the
singularity problem arises only for the transformation induced plasticity and not for the classical
plasticity due to temperature changes although both problems are very similar. That is why, in
this paper this technical issue is solved by considering that nucleation of the product phase
is discontinuous, that is to say that a minimal finite volume of product phase is created when
a lower total energy state can be reached by rearranging the atomic lattice in this volume as
suggested by Bluthé et al. (2016) and in agreement with Delannay et al. (2008). Therefore when
there is no product phase (pure matrix of parent phase), one cannot consider an incremental
variation of the product phase proportion, one should directly consider a finite size for the
inclusion. This amounts to introduce a cutoff function as Leblond et al. (1989) did, where the
threshold is determined by the minimal size that can nucleate. However, the nucleation of an
inclusion of finite size is responsible for plastic strains that can be taken into account by setting
an initial value for the transformation induced plastic strain corresponding to the plastic strain
resulting from the nucleation of the inclusion.

2. Homogenization: general scheme

In the whole paper, phase proportions and temperature evolutions are considered as known
external quantities evaluated from a thermo-metallurgical model or measurements. The follow-
ing calculations are identical to those presented by Leblond et al. (1986a) excepted that sums
over several phases are required. At the local scale the total strain ε is written as follows:

ε = εe + εthm + εp (1)

where εe is the elastic strain, εp the plastic strain, εthm the thermo-metallurgical strain that
includes both the classic thermal expansion due to temperature changes and the phase transfor-
mation due to the rearrangement of the crystal lattice (classic orientation models such as Bain,
Nishiyama-Wasserman or Kurdjumov-Sachs can be used). As mentioned in the introduction,
εthm is decomposed into hydrostatic and deviatoric parts, that are dealt with separately.

εthm = εthm,h + εthm,d (2)

where εthm,d = εthm − tr
(
εthm

)
1/3 and εthm,h is the volume variation due to temperature changes

and phase transitions. The homogenization procedure consists in averaging total strain and
stress tensors over the volume of the RVE denoted by V .

E =
⟨
ε
⟩

V
and Σ =

⟨
σ
⟩

V
(3)

Leblond et al. (1986a) assumed that the homogenized compliance tensor could be equated to
the local compliance tensor in the calculation of

⟨
εe

⟩
V

which amounts to assume to neglect the
effect of the influence tensor, which leads to:

Ee =
⟨
εe

⟩
V

(4)
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Therefore the macroscopic thermo-metallurgical reads:

Ethm =
⟨
εthm

⟩
V

(5)

and the macroscopic plastic strain reads:

Ep =
⟨
εp

⟩
V

(6)

First, a simple formula is derived for the thermo-metallurgical strain rate Ėthm. The deviatoric
part of the phase transformation is written along the crystallographic directions. In this contri-
bution it is assumed that inclusions of product phases are isotropically orientated in the RVE.
If no average stress is applied one obtains:⟨

εthm,d
⟩

V
= 0 (7)

If a macroscopic stress is applied, one can consider texturation, that is to say that the applied
stress can have an impact on the orientation distribution of product phase inclusions. However
this effect is neglected in this contribution since relatively low applied stress is considered, and
(7) is assumed to hold even with macroscopic stress. On the other hand, the hydrostatic part
εthm,h is constant in each inclusion, hence the following mixture rule:

Ethm =

1 − N∑
k=2

Xk

 εthm,h
1 +

N∑
k=2

Xkε
thm,h
k (8)

The time derivative is thus:

Ėthm
=

N∑
k=2

(
εthm,h

k − εthm,h
1

)
Ẋk +

1 − N∑
k=2

Xk

 ε̇thm,h
1 +

N∑
k=2

Xkε̇
thm,h
k (9)

At the first order, the term εthm,h
k − εthm,h

1 may be identified as the volume variation due to the
phase transition only. Thus, if a mass Mk of phase 1 is transformed into phase k, the volume
variation is (1/3) (ρ1(T )/ρk(T ) − 1). Moreover, by definition of thermal expansion coefficients
ε̇thm,h

k = αkṪ , hence:

Ėthm
=

N∑
k=2

1
3

(
ρ1(T )
ρk(T )

− 1
)

Ẋk +

α1 +

N∑
k=2

Xk(αk − α1)

 Ṫ (10)

The main objective of the present paper is to derive a simple formulation for Ėp as a function
of the homogenized known quantities, that are the macroscopic applied stress, temperature and
phase proportions in addition to material parameters. A direct derivation of (6) gives:

Ėp
=

1
V

N∑
k=1

d
dt

[∫
Vk

εp
k dVk

]
(11)

where Vk denotes the volume of the k-th phase. ConsiderVk the speed of the front ∂Vk and nk

its normal vector. Consider ∂V1 the contour of V1 minus its external contour without contact
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with other phases. Since V =
∪N

k=1 Vk and ∂V1 =
∪N

k=2 ∂Vk and n1(x) = −nk(x) (for x ∈ ∂Vk)
one obtains:

Ėp
=

N∑
k=1

1
V

∫
Vk

ε̇p
k dVk +

N∑
k=2

1
V

∫
∂Vk

(
εp

k − ε
p
1

)
(Vk · nk) dS k (12)

Hence:

Ėp
=

N∑
k=1

Xk

⟨
ε̇p

k

⟩
Vk
+

N∑
k=2

⟨
εp

k − ε
p
1

⟩
Vk·nk

Ẋk (13)

where: ⟨
εp

k − ε
p
1

⟩
Vk·nk

=

∫
∂Vk

(
εp

k − ε
p
1

)
(Vk · nk) dS k∫

∂Vk
(Vk · nk) dS k

(14)

Leblond et al. (1986a) assumed a dependence between the plastic strain rate in each phase
and sort of macroscopic state variables such as temperature T , stress Σ and phase proportions
X2, · · · , XN (it should be noted that X1 is not independent of all the other phase proportions and
should be discarded):

ε̇p
k =
δεp

k

δΣ
: Σ̇ +

δεp
k

δT
Ṫ +

N∑
m=2

δεp
k

δXm
Ẋm (15)

Therefore:
Ėp
= Ėcp

Σ
+ Ėcp

T + Ėtp (16)

where: 

Ėcp
Σ
=

N∑
k=1

Xk

⟨
δεp

k

δΣ

⟩
Vk

: Σ̇

Ėcp
T =

N∑
k=1

Xk

⟨
δεp

k

δT

⟩
Vk

Ṫ

Ėtp
=

N∑
k=1

 N∑
m=2

Xk

⟨
δεp

k

δXm

⟩
Vk

Ẋm +
⟨
εp

k − ε
p
1

⟩
Vk·nk

Ẋk


(17)

As detailed by Leblond et al. (1986a), the first term of Ėtp corresponds to the Greenwood and
Johnson mechanism and the second term to the Magee mechanism.Indeed, the Greenwood and
Johnson’s mechanism is related to plasticity in the whole volume of the weaker phase and
should arise as a volume integral. While the Magee’s mechanism is related to the plastic strain
variation of a given point undergoing a phase transformation and should arise as a surface inte-
gral over the phase transition front. Following the idea of Leblond et al. (1989), it is assumed
that the Magee’s mechanism is negligible.

The stress tensor in the k-th phase is denoted by σk and its deviator is denoted by sk. The
von Mises equivalent stress is denoted by σeq

k =
√

(3/2)sk : sk and the equivalent plastic strain

rate (or cumulative plastic strain rate) is denoted by ε̇eq
k =

√
(2/3)ε̇p

k : ε̇p
k . The von Mises flow

rule reads:

ε̇p
k =

3ε̇eq
k

2σY
k

sk (18)

It is assumed that one can replace the local stress deviator sk by its volume average Sk =
⟨
sk

⟩
Vk

,
which corresponds for instance to the assumption of constant fields per phase. However it is
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not assumed that the average stress deviator in the k-th phase can be equated to the average
stress deviator in the RVE as proposed by Leblond et al. (1986b). Hence:

Ėcp
Σ
=

N∑
k=1

3Xk

2σY
k

Sk

⟨
δε

eq
k

δΣ

⟩
Vk

: Σ̇

Ėcp
T =

N∑
k=1

3Xk

2σY
k

Sk

⟨
δε

eq
k

δT

⟩
Vk

Ṫ

Ėtp
=

N∑
k=1

N∑
m=2

3XkSk

2σY
k

⟨
δε

eq
k

δXm

⟩
Vk

Ẋm

(19)

3. Classical plasticity due to stress variations

This section deals with the term Ėcp
Σ

in (19) when between t and t+δt the macroscopic stress
varies from Σ to Σ + δΣ. Leblond et al. (1986b) assumed that the parent phase is purely plastic
and the product phase purely elastic. This assumption is released in the present contribution
and elatic-plastic behavior with linear hardening is considered for all phases. The idealized
microstructure is similar to those proposed by Leblond et al. (1986b), that is to say parallel bars
with sections proportional to the phase proportions as shown in figure 1.

Figure 1: Idealization of applied stress

Following the idea proposed by Leblond et al. (1986b) it is assumed that Ėcp
Σ

is non-zero
only if there is a variation of the equivalent von Mises stress Σeq =

√
(3/2)Σ : Σ. Thus (19)

becomes:

Ėcp
Σ
=

N∑
k=1

3Xk

2σY
k

Sk

⟨
δε

eq
k

δΣeq

⟩
Vk

Σ̇eq (20)

From the simple idealization presented in figure 1 it is inferred:

δΣeq =

N∑
k=1

XkδΣ
eq
k (21)
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The following simple uni-dimensional elastic-plastic model is used.

δΣ
eq
k =


Ekδε if δΣeq < 0 or Σeq

k < σ
Y
k (εeq

k )

γkσ
Y0
k δε if Σeq

k = σ
Y
k (εeq

k ) and δΣeq ≥ 0
(22)

with the following linear hardening rule:

σY
k (εeq

k ) = σY0
k

(
1 + γkε

eq
k

)
(23)

where γk is a hardening parameter and σY0
k the initial yield stress (before any hardening). It

should be noted that it is considered that δΣeq and δΣeq
k have the same sign in (22). By combining

(22) and (21) and denoting E and P the sets of indexes verifying the first and the second
conditions in (22) respectively, one obtains:

δε =
δΣeq

Ẽ
and δΣ

eq
k =

ẼkδΣ
eq

Ẽ
(24)

where: 
Ẽ =

∑
l∈E

XlEl +
∑
m∈P

Xmγmσ
Y0
m

Ẽk =

{
Ek if k ∈ E
γkσ

Y0
k if k ∈ P

(25)

By analogy with (24) one assumes that:

Σ̇k =
ẼkΣ̇

Ẽ
(26)

Therefore the deviatoric stress Sk is evaluated from the initial value by adding at each time in-
crement the deviatoric part of (26). This approach enables to take into account residual stresses
whose global average is zero although average stresses in each phase may be significant.

The evaluation of conditions E and P is up-dated at each time increment using (24) and
(23). It is clear that the strain increment (24) is elastic when k ∈ E and plastic when k ∈ P.
Eventually, the classic plastic strain increment due to stress variations is obtained:

⟨
δε

eq
k

δΣeq

⟩
Vk

=


0 if k ∈ E
1

Ẽ
if k ∈ P and Ėcp

Σ
=


0 if Σ̇eq < 0∑
k∈P

3Xk

2σY
k

Sk

Ẽ
Σ̇eq if Σ̇eq ≥ 0 (27)

The classic plastic strain increment due to a variation of applied stress given in (27) is clearly
not singular when X1 → 0 or 1 because Ẽ at the denominator cannot vanish. This overcomes
the difficulty that arose in the work of Leblond et al. (1986b) when no hardening was taken
into account (an ad hoc function obtained from Finite Element simulations was introduced by
Leblond et al. (1986b) in order to smooth the singularity).

4. Transformation induced plasticity

This section deals with the term Ėtp in (19) when between t and t+ δt the phase proportions
vary from Xm to Xm + δXm.
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The calculation of the equivalent plastic strain variation is divided into two parts. The
inclusion is first subjected to the deviatoric part of the phase transformation, then the hydrostatic
part ε̃thm1. That is to say that the loading path is imposed. This approach is obviously not
rigorous since plasticity is considered. However, an approximate estimation can be obtained.
The proposed loading path may seem arbitrary, however it leads to a very simple analytic
solution. Therefore one can write:

δε
eq
k = δε

eq,d
k + δε

eq,h
k (28)

where superscripts d and h refer to the contributions due to deviatoric and hydrostatic parts
of the phase transformation respectively. For the hydrostatic part, fields in the inclusion are
hydrostatic and do not contribute to additional plastic strain in the inclusion, thus:

δε
eq,h
k = 0 if k , 1 (29)

Furthermore, the deviatoric part of the phase transformation being very intense, shear levels
in the inclusions cannot be sustained. Therefore plastic deformations take place in all inclu-
sions. The matrix may also undergo plastic deformation, however this contribution is neglected
because it is very localized near the inclusion, thus one has:

δε
eq,d
1 = 0 (30)

The latter assumption may seem incorrect since the matrix of parent phase may be much softer
than the inclusion of product phase. However, the inclusion is subjected to a very large purely
deviatoric eigenstrain, thus it is sufficient that the matrix does not allow for the inclusion to
move freely so that the inclusion is entirely plastic. A Finite Element simulation using Castem
(CEA (2011)) is proposed in figure 2. The imposed eigenstrain is obtained from the classical
Bain oritentation model (33) and the inclusion concentrates most of plastic strain even though
the inclusion yield stress is five times larger than the matrix yield stress.

Figure 2: Finite Element computation
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Furthermore, each product phase is assumed to have no influence on other product phases,
hence: ⟨

δε
eq,d
k

δXm

⟩
Vk

= 0 if k , m (31)

Eventually (19) reads:

Ėtp
=

N∑
k=2

3XkSk

2σY
k

⟨
δε

eq,d
k

δXk

⟩
Vk

Ẋk +
3X1S1

2σY
1

N∑
m=2

⟨
δε

eq,h
1

δXm

⟩
V1

Ẋm (32)

4.1. Deviatoric part
For steel, the deviatoric part of the phase transformation is very large in comparison with

the hydrostatic part, and very large local plastic deformations occur. However, unlike the hy-
drostatic part, the deviatoric part depends on the local lattice directions of each inclusion un-
dergoing an increment of phase transition. Since each phase in the RVE is made of several
inclusions isotropically orientated, both the deviatoric imposed eigenstrain and the associated
plastic strain tend to compensate from one inclusion to another. This is clear for isotropic poly-
crystalline configurations, but also for mono-crystals considering the cubic symmetry of the
phase transformation related to Bain orientation model for instance. Indeed, if eX, eY , eZ denote
the lattice directions of the mono-crystal the deviatoric part of the eigenstrain due to the phase
transition is:

εdev
B = εB(eX ⊗ eX + eY ⊗ eY − 2eZ ⊗ eZ) (33)

where B means Bain and where εB ≃ 11 %. It is clear that in the mono-crystal all inclusions
have the same lattice directions up to a permutation (i.e., one can have εdev

B = εB(eY ⊗ eY + eZ ⊗
eZ − 2eX ⊗ eX) or εdev

B = εB(eX ⊗ eX + eZ ⊗ eZ − 2eY ⊗ eY)). Thus the average is obviously zero if
directions are identically distributed. This compensation effect explains the fact that there is no
deviatoric strain at the macroscopic scale for a free dilatometric test, only the hydrostatic part
of the phase transformation has a non vanishing average (10).

However, since an average stress is applied to the RVE, the average plastic strain does not
completely vanish in spite of compensations due to the isotropic distribution. Indeed, the ap-
plied stress is involved in the von Mises yield criterion and globally modifies plastic strain
tensors. Moreover one can consider texturation, that is to say that the applied stress may also
modify inclusion orientations and favor some directions so that the overall orientation distribu-
tion of the eigenstrain due to the phase transformation is not isotropic anymore. This texturation
effect is neglected in this contribution since the applied stress level is relatively low.

Since the equivalent plastic strain rate involved in (32) does not compensate from one in-
clusion to another, (32) should not be applied directly to each inclusion. This difficulty may be
overcome by considering Nk inclusions indexed by j of the k-th phase with isotropic distribu-
tion and by directly adding all deviatoric eigenstrain tensors due to the phase transition denoted
by ε∗,dk, j and all plastic strain tensors denoted by εp

k, j. Thus the average is given by:
εp

k =
1
Nk

Nk∑
j=1

εp
k, j

1
Nk

Nk∑
j=1

ε∗,dk, j = 0

(34)

11



However the problem of each inclusion j with a general global applied stress and subjected to
a known local deviatoric eigenstrain ε∗,dj and an unknown local plastic strain εp

k, j is not easily
solved (where local refer to the crystallographic coordinate system). Thus, another simpler ap-
proach is proposed in this paper and consists in constructing an average inclusion that gathers
all inclusions of the product phase k and accounts for the isotropic orientation problem. The
non-vanishing part of the average plastic strain denoted by εp

k is determined by considering an
infinite matrix containing a spherical inclusion subjected only to εp

k (since the average devia-
toric part of the phase transformation has been neglected because texturation is not taken into
account), as shown in figure 3.

Figure 3: Schematic problem for the deviatoric part of phase trnasformation

Then the classic solution obtained by Eshelby (1957) is used:

sk = −µkξkε
p
k (35)

where:
ξk =

2µ1(9λ1 + 14µ1)
λ1(9µ1 + 6µk) + 2µ1(7µ1 + 8µk)

(36)

The unknown tensor εp
k is then determined by verifying the von Mises yield criterion in the

average inclusion. √
3
2

(sk + Sk) : (sk + Sk) = σ
Y
k (37)

Since the average plastic strain is due to the average stress, one can assume that Sk = βkε
p
k

hence:

|βk| =
2
3
Σ

eq
k

ε
eq,d
k

(38)

Thus (37) becomes:
3
2
|βk − µkξ| εeq,d

k = σY
k (39)
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Hence:

ε
eq,d
k =

2
3
σY

k − Σ
eq
k

µkξk
(40)

And:

δε
eq,d
k =


0 in Vk

2
3
σY

k − Σ
eq
k

µkξk
in δVk

(41)

Eventually one obtains: ⟨
δε

eq,d
k

δXk

⟩
Vk

=
1
Xk

2
3
σY

k − Σ
eq
k

µkξk
(42)

4.2. Hydrostatic part
For the hydrostatic part, the equivalent plastic strain increment is also evaluated by con-

sidering an idealization of the microstructure. In this section, the parent phase is considered
as a bounded hollow spherical matrix in which a spherical inclusion represents all the product
phases (index k = 2, · · · ,N) gathered into one, as described on the right of figure 4. This choice
may seem arbitrary but it is not more arbitrary than the usual choice on the left of figure 4 and
it enables to keep the same ideas as Leblond et al. (1989). This modeling choice also ensures a
total continuity with the classic bi-phase situation and can therefore be easily compared to other
models. The inclusion composed of all the product phases has a radius such as the volume of
the inclusion matches the total volume of the product phases, thus:

r̃ =

 N∑
k=2

r3
k


1
3

(43)

Figure 4: Phase transition

The stress Σ̃ applied in the inclusion is obtained by considering that each product phase has
a constant applied stress Σk. Thus, paying attention to the fact that the average is done only on

13



the volume occupied by the product phases V−V1 (that is why 1−X1 arises at the denominator)
one obtains:

Σ̃ =

N∑
k=2

Xk

1 − X1
Σk (44)

By analogy with section 3 one obtains the average material properties:

λ̃ =

N∑
k=2

Xk

1 − X1
λk and µ̃ =

N∑
k=2

Xk

1 − X1
µk and α̃ =

N∑
k=2

Xk

1 − X1
(αk − α1) (45)

For each time step, plastic increments depend on the whole local stress and strain history be-
cause of non-linearity. Obviously this information is too much detailed and a compromise
should be found. In this paper, for each time step, the local stress and strain history is ap-
proximated by applying first the stress tensors Σ̃ and Σ1 (considered as pre-stresses) and the
hydrostatic eigenstrain ε̃thm that represents the overall hydrostatic part of the phase transfor-
mation and thermal expansion averaged in the inclusion constituted of all the product phases.
Then, from this initial state, the plastic increment is calculated by applying temperature and
phase proportion variations. It should be noted that Leblond et al. (1989) do not take this as-
pect into account because neither the macroscopic stress nor the hydrostatic eigenstrain in the
product phase is considered in the calculation of the equivalent plastic strain increment, only the
eigenstrain due to the variation of temperature or phase proportion is taken into account. Taleb
and Sidoroff (2003) implicitly consider the local stress and strain history due to the eigenstrain
related to the phase transformation by first applying the eigenstrain in the inclusion and then
applying the phase proportion increment, however the applied stress is not taken into account.

When the temperature varies from the initial temperature Tini to the actual temperature T ,
thermal expansion can be seen as a homogenous thermal expansion with coefficient α1 in the
whole RVE and then a thermal expansion in the product phases with coefficients αk − α1. The
first homogenous thermal expansion does not generate plastic strain and can be discarded in the
eigenstrain to apply to the inclusion. Considering same ideas as in section 2 and by applying
the average on the product phases gathered into one, the hydrostatic eigenstrain ε̃thm1 is given
by:

ε̃thm =

N∑
k=2

Xk

1 − X1

(
1
3

(
ρ1(T )
ρk(T )

− 1
)
+
ρ1(T )
ρk(T )

(αk − α1)(T − Tini)
)

(46)

It should be noted that ε̃thm is not the real eigenstrain in the product phases which should be
determined incrementally as in (10). It is only meant for approximating the local stress and
strain history when calculating the increment of plastic strain in the modeling proposed in
figure 4. The real eigenstrain is not considered because it is not homogenous in the product
phases due to the dependence of material properties on temperature.

The equivalent plastic strain increment is calculated when phase proportions vary from Xm

to Xm + δXm. The volume of the RVE is V = 4π
3 r3

1 and each phase volume is Vk =
4π
3 r3

k hence:

Xk =
r3

k

r3
1

(47)

Thus, the inclusion radius varies from r̃ to r̃ + δ̃r such as:

δXm =
3̃r2δ̃r

r3
1

(48)
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Consider the following quantity which characterizes the difference of material parameters be-
tween the product phases and the matrix:

χ =
1

3λ̃ + 2µ̃
− 1

3λ1 + 2µ1
(49)

In the following for sake of simplicity it is assumed that χ can be neglected. This leads to
simple results which can be formally compared with other models. However, the complete
solution considering χ , 0 is derived for sake of completeness in Appendix A. The use of this
latter solution is exactly the same as the solution where χ is neglected, however the W Lambert
function arises and the interpretation of quantities is less usual. That is why the solution where
χ is neglected is detailed in this section but one can very easily inject the complete solution in
the following calculations. As a matter of fact the solution is simply particularized by choosing
the first line of more general relations (A.37) and (A.48). It is demonstrated in Appendix A
that if Σeq

1 < σ
Y
1 :

δε
eq,h
1 =



0 for r̃ ≤ r ≤ r1 if δ̃r ≤ 0 or
∣∣∣̃εthm

∣∣∣ < ∆σY

ζ
(elastic)

6

∣∣∣̃εthm
∣∣∣ r̃2

r3 δ̃r for r̃ ≤ r ≤ rpl if δ̃r > 0 and
∆σY

ζ
≤

∣∣∣̃εthm
∣∣∣ ≤ ∆σY

ζ

r3
1

r̃3 (elastic-plastic)

6

∣∣∣̃εthm
∣∣∣ r̃2

r3 δ̃r for r̃ ≤ r ≤ r1 if δ̃r and
∣∣∣̃εthm

∣∣∣ > ∆σY

ζ

r3
1

r̃3 (plastic)

(50)
where:

∆σY =

√(
σY

1

)2
−

(
Σ

eq
1

)2
and ζ =

(3λ1 + 2µ1)2µ1

λ1 + 2µ1
(51)

and where the elastic-plastic interface is defined by the plastic radius rpl:

r3
pl = r̃3

∣∣∣̃εthm
∣∣∣ ζ

∆σY (52)

And using (43), one can define:

X̃ = 1 − X1 =

N∑
k=2

Xk =
r̃3

r3
1

(53)

Thus, using (48):

⟨
δε

eq,h
1

δXm

⟩
V1

=



0 if δ̃r ≤ 0 or
∣∣∣̃εthm

∣∣∣ < ∆σY

ζ

−
2
∣∣∣̃εthm

∣∣∣
X1

ln

 ∆σY∣∣∣̃εthm
∣∣∣ ζ

 if δ̃r > 0 and X̃ ≤ ∆σ
Y

ζ
∣∣∣̃εthm

∣∣∣ ≤ 1

−
2
∣∣∣̃εthm

∣∣∣
X1

ln
(
X̃
)

if δ̃r > 0 and X̃ >
∆σY

ζ
∣∣∣̃εthm

∣∣∣
(54)
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Eventually the transformation induced plastic strain rate (32) reads:

Ėtp
=

N∑
k=2

Sk

σY
k

σY
k − Σ

eq
k

µkξk
Ẋk +



0 if
∣∣∣̃εthm

∣∣∣ < ∆σY

ζ

−
3
∣∣∣̃εthm

∣∣∣ S1

σY
1

ln

 ∆σY∣∣∣̃εthm
∣∣∣ ζ

 N∑
m=2
Ẋm>0

Ẋm if X̃ ≤ ∆σ
Y

ζ
∣∣∣̃εthm

∣∣∣ ≤ 1

−
3
∣∣∣̃εthm

∣∣∣ S1

σY
1

ln
(
X̃
) N∑

m=2
Ẋm>0

Ẋm if X̃ >
∆σY

ζ
∣∣∣̃εthm

∣∣∣
(55)

If Σeq
1 = σ

Y
1 all the matrix already reached the yield stress. As mentioned in the introduction

if the plastic strain rate is directly calculated as before a singularity when X̃ → 0 arises with
a diverging term in ln

(
X̃
)
. That is why it is considered that phase nucleation is discontinuous,

that is to say that a minimal finite volume of product phase is created when a lower total energy
state can be reached by rearranging the atomic lattice in this volume. Therefore when X̃ = 0,
one cannot consider an incremental variation δXm, one should directly consider a finite size for
the inclusion. Consider r̃min the minimal size that can have the inclusion or alternatively the
minimal phase proportion:

X̃min =
r̃3

min

r3
1

(56)

This threshold leads to the regularized transformation induced plastic strain rate if Σeq
1 = σ

Y
1 :

⟨
δε

eq
1

δXm

⟩
V1

=


0 if δ̃r ≤ 0 or X̃ < X̃min

−
2
∣∣∣̃εthm

∣∣∣
X1

ln
(
X̃
)

if δ̃r > 0 and X̃ ≥ X̃min
(57)

and:

Ėtp
=

N∑
k=2

Sk

σY
k

σY
k − Σ

eq
k

µkξk
Ẋk +


0 if X̃ < X̃min

−
3
∣∣∣̃εthm

∣∣∣ S1

σY
1

ln
(
X̃
) N∑

m=2
Ẋm>0

Ẋm if X̃ ≥ X̃min (58)

If Σeq
1 = σ

Y
1 when the phase transformation begins, one should take into account plastic strains

generated during the nucleation of the product phase. From the Appendix A one have:

Etp
ini =

⟨
εp

1

⟩
V1
=

⟨
−2ε̃thm r̃3

min

r3

⟩
V1

=
2ε̃thm

1 − X̃min

X̃min ln
(
X̃min

)
(59)

5. Classic plasticity due to thermal variations

This section deals with the term Ėcp
T in (19) when between t and t+δt the temperature varies

from T to T +δT . The idealized configuration presented in figure 5 is similar to those presented
in section 4.
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Figure 5: Temperature variation

When the temperature varies from T to T + δT the eigenstrain varies from ε̃thm to ε̃thm+ δε̃th

where:
δε̃th = α̃δT (60)

Moreover, it is clear that if ε̃th and δε̃th do not have the same sign then the strain increment in
the matrix is purely elastic. Otherwise, it is demonstrated in Appendix A that if Σeq

1 < σ
Y
1 then:

δε
eq
1 =



0 for r̃ ≤ r ≤ r1 if ε̃thmα̃δT ≤ 0 or
∣∣∣̃εthm

∣∣∣ < ∆σY

ζ
(elastic)

2
r̃3

r3 |α̃δT | for r̃ ≤ r ≤ rpl if ε̃thmα̃δT > 0 and
∆σY

ζ
≤

∣∣∣̃εthm
∣∣∣ ≤ ∆σY

ζ

r3
1

r̃3 (elastic-plastic)

2
r̃3

r3 |α̃δT | for r̃ ≤ r ≤ r1 if ε̃thmα̃δT > 0 and
∣∣∣̃εthm

∣∣∣ > ∆σY

ζ

r3
1

r̃3 (plastic)

(61)
Thus, by considering that ± = 1 when α̃δT ≥ 0 and ± = −1 when α̃δT ≤ 0:

⟨
δε

eq
1

δT

⟩
V1

=



0 if ε̃thmα̃δT ≤ 0 or
∣∣∣̃εthm

∣∣∣ < ∆σY

ζ

±−2α̃X̃
X1

ln

 ∆σY∣∣∣̃εthm
∣∣∣ ζ

 if ε̃thmα̃δT > 0 and X̃ ≤ ∆σ
Y

ζ
∣∣∣̃εthm

∣∣∣ ≤ 1

±−2α̃X̃
X1

ln
(
X̃
)

if ε̃thmα̃δT > 0 and X̃ >
∆σY

ζ
∣∣∣̃εthm

∣∣∣
(62)

Thus (19) reads (by considering that ± = 1 when α̃δT ≥ 0 and ± = −1 when α̃δT ≤ 0) and if
Σ

eq
1 < σ

Y
1 :

Ėcp
T =



0 if ε̃thmα̃Ṫ ≤ 0 or
∆σY

ζ
∣∣∣̃εthm

∣∣∣ > 1

±
−3α̃S1

σY
1

X̃ ln

 ∆σY∣∣∣̃εthm
∣∣∣ ζ

 Ṫ if ε̃thmα̃Ṫ > 0 and X̃ ≤ ∆σ
Y

ζ
∣∣∣̃εthm

∣∣∣ ≤ 1

±
−3α̃S1

σY
1

X̃ ln
(
X̃
)

Ṫ if ε̃thmα̃Ṫ > 0 and X̃ >
∆σY

ζ
∣∣∣̃εthm

∣∣∣
(63)
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Moreover as in section 4.2, if Σeq
1 = σ

Y
1 , (19) reads:

Ėcp
T =


0 if ε̃thmα̃Ṫ ≤ 0

±
−3α̃S1

σY
1

X̃ ln
(
X̃
)

Ṫ if ε̃thmα̃Ṫ > 0 (64)

It should be noted that despite the logarithm the expression (64) is not singular for X̃ → 0. This
problem is specific to the phase transformation as mentioned in the introduction.

6. Isotropic linear hardening

This contribution deals with hardening in a very similar way as proposed by Leblond (1989)
who introduced a concept of effective plastic strain. In this paper, the average equivalent plastic
strain in each phase k is directly used as the hardening variable since linear isotropic hardening
is considered (23). The overall yield stress is defined in this contribution as the average of the
local yield stress: ⟨

σY
k (εeq

k )
⟩

Vk
= σY0

k (1 + γkEeq
k ) = σY

k (Eeq
k ) (65)

where:
Eeq

k =
⟨
ε

eq
k

⟩
Vk

(66)

The evolution of Eeq
k is obtained the same way as (12) in section 2:

d
dt

[∫
Vk

ε
eq
k dVk

]
=

∫
Vk

ε̇
eq
k dVk +

∫
∂Vk

ε
eq
k (Vk · nk) dS k k , 1

d
dt

[∫
V1

ε
eq
1 dV1

]
=

∫
V1

ε̇
eq
1 dV1 −

N∑
k=2

∫
∂Vk

ε
eq
1 (Vk · nk) dS k

(67)

Hence:

Ėeq
1 =

d
dt

⟨
ε

eq
1

⟩
V1
=

d
dt

(
1
V1

∫
V1

ε
eq
1 dV1

)
=
−V̇1

V2
1

∫
V1

ε
eq
1 dV1 +

1
V1

∫
V1

ε̇
eq
1 dV1 −

N∑
k=2

∫
∂Vk

ε
eq
1 (Vk · nk) dS k

 (68)

On the other hand for k , 1:

Ėeq
k =

d
dt

⟨
ε

eq
k

⟩
V1
=

d
dt

(
1
Vk

∫
Vk

ε
eq
k dVk

)
=
−V̇k

V2
k

∫
Vk

ε
eq
k dVk +

1
Vk

(∫
Vk

ε̇
eq
k dVk +

∫
∂Vk

ε
eq
k (Vk · nk) dS k

) (69)

Therefore it is obtained:
Ėeq

1 =
⟨
ε̇

eq
1

⟩
V1
+

Ẋ1

X1

(⟨
ε

eq
1

⟩
(Vk·nk)

− Eeq
1

)
Ėeq

k =
⟨
ε̇

eq
k

⟩
Vk
+

Ẋk

Xk

(⟨
ε

eq
k

⟩
(Vk·nk)

− Eeq
k

)
if k , 1

(70)
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where: ⟨
εeq

m
⟩

(Vk·nk) =

∫
∂Vk
ε

eq
m (Vk · nk) dS k∫

∂Vk
(Vk · nk) dS k

(71)

From similar formulation Leblond (1989) explains that
⟨
ε

eq
1

⟩
(Vk·nk)

may be equated to Eeq
1 since

it is assumed that hardening has no effect on the front speed. Moreover, the transformation front
of the newly formed k-th phase may have a memory of the hardening parameter of the parent
phase. Thus, a memory coefficient θk is introduced (with 0 ≤ θk ≤ 1) so that

⟨
ε

eq
k

⟩
(Vk·nk)

= θkEeq
1 .

Therefore (70) reads:
Ėeq

1 =

⟨
δε

eq
1

δΣeq

⟩
V1

Σ̇eq +

⟨
δε

eq
1

δT

⟩
V1

Ṫ +
N∑

m=2

⟨
δε

eq
1

δXm

⟩
V1

Ẋm

Ėeq
k =

⟨
δε

eq
k

δΣeq

⟩
Vk

Σ̇eq +
Ẋk

Xk

(
θkEeq

1 − Eeq
k

)
if k , 1

(72)

Terms
⟨
δε

eq
k /δΣ

eq
⟩

Vk
are given by (27) ,

⟨
δε

eq
1 /δT

⟩
V1

is given by (62) if Σeq
1 < σ

Y
1 ,

⟨
δε

eq
1 /δXm

⟩
V1

is given by (54) if Σeq
1 < σ

Y
1 and by (57) if Σeq

1 = σ
Y
1 .

7. Comparison with experiments

In this section, some experiments performed by Coret et al. (2004) are used to compare the
original Leblond’s model and the present extended version. The tested material is a 16MND5
low carbon steel. From free dilatometric tests at different cooling rates, classic phase transition
temperatures and thermal expansion coefficients are identified and listed in table 2. The Young
modulus as a function of temperature is the same as those considered by Coret et al. (2004) and
proposed by Martinez (1999):

E(T ) = 2.08 × 105 − 1.90 × 102T + 1.19T 2 − 2.82 × 10−3T 3 + 1.66 × 10−6T 4 (73)

Multiphase transitions occur when the cooling rate is set to -3 ˚C.s−1. This is due to the fact
that at this cooling rate the austenite to bainite transition is not complete when the system
reaches the temperature MS from which martensite is produced instead of bainite. Phases are
indexed as follows : 1 refers to austenite, 2 refers to bainite and 3 refers to martensite. A free
dilatometric test is used to identify phase proportions (X1, X2, X3) as shown in figure 6. Phase
proportions are estimated by using the following mixture rule:

Emes
zz = (1 − X2 − X3)Eth

1,zz + X2Eth
2,zz + X3Eth

3,zz (74)

where Emes
zz is the measured axial strain and Eth

k,zz are represented by the dotted lines in figure 6.
For temperatures higher than MS, the phase proportion of martensite is X3 = 0, and for temper-
atures lower than MS, the phase proportion of bainite X2 remains constant. Phase proportions
are presented in figure 7 for the cooling part of the dilatometric test. It should be noted that these
phase proportions are used for all other tests with applied stress, which amounts to assume that
phase transition is not affected by the applied stress. This introduces experimental uncertainty
but results are still satisfying. Densities of austenite ρ1(T ), bainite ρ2(T ) and martensite ρ3(T )
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are identified from the free dilatometric test presented in figure 6. Indeed, assuming that the
thermal expansion coefficients do not depend on temperature one obtains:

ρk(T ) = ρk(T0) exp (−3αk(T − T0)) (75)

Therefore density ratios involved in (10) and (46) are determined by identifying ratios ρ1(T0)/ρk(T0)
(very close to 1) by fitting the macroscopic thermo-metallurgical strain Ethm computed by inte-
grating (10) and the free dilatometric test presented in figure 6.

Table 2: Characteristics

AE3 800 (˚C) End temperature of austenite transition
AE1 680 (˚C) Start temperature of austenite transition
BS 538 (˚C) Start temperature of austenite to bainite transition
MS 400 (˚C) Start temperature of austenite to martensite transition
α1 22.6 (˚C−1) Thermal expansion coefficient of austenite
α2 16.1 (˚C−1) Thermal expansion coefficient of bainite
α3 16.1 (˚C−1) Thermal expansion coefficient of martensite

Figure 6: Free dilatometric test
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Figure 7: Phase proportions

Several tests with multiaxial loads corresponding to a constant equivalent stress Σeq =

60 MPa have been done by Coret et al. (2004) using a traction/torsion machine. The applied
stress tensor is of the form:

Σ = Σzzez ⊗ ez + Σyz

(
ey ⊗ ez + ez ⊗ ey

)
(76)

Hence the applied deviator:

S = −1
3
Σzz

(
ex ⊗ ex + ey ⊗ ey

)
+

2
3
Σzzez ⊗ ez + Σyz

(
ey ⊗ ez + ez ⊗ ey

)
(77)

In order to simplify the comparison between the original Leblond’s model and the extended
version, elastic properties are assumed to be identical in all phases which leads to Sk = S.
However if different data are available for different phases one can use (24) to compute Sk in
each phase. Several tests with a constant applied equivalent stress (Σeq = 60 MPa), have been
performed and are summarized in table 3.

Table 3: Multiaxial loads

Test Σzz Σyz

1 0 0
2 Σeq 0
3 0 Σeq/

√
3

4 Σeq/
√

2 Σeq/
√

6
5 -Σeq 0
6 -Σeq/

√
2 Σeq/

√
6

Since it has been assumed that the Young modulus is the same in all phases and the classic
plasticity due to equivalent stress variations is not activated (because the applied stress is too
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low), differences between the original model and the present extended version are not maxi-
mized. Thus (55) should be compared with the original expression:

Ėtp
=


0 if X̃ ≤ 0.03

−
3∆ε1→2S
σY

1

˙̃X ln
(
X̃
)

if X̃ > 0.03 (78)

where ∆ε1→2 is the volume variation due to the phase transition thus:

∆ε1→2 =
1
3

(
ρ1(T )
ρ2(T )

− 1
)

(79)

It is clear that the only differences between the original model and the extended version are in
this example:

1) the introduction in the extended version of the deviatoric part of the phase transformation
2) the threshold of the cutoff function is fixed in the original model and depends on the applied

stress in the extended version.

The yield stresses as a function of temperature is needed for all phases. Grostabussiat-Petit
(2000) performed uniaxial tensile tests at different temperatures and identified the conventional
yield stress at 0.2 % of austenite and bainite between 400 ˚C - 620 ˚C and 490 ˚C - 540 ˚C
respectively. Furthermore a relatively constant value can be given for martensite. The following
expressions given in MPa have been proposed:

σY
1 (T ) = −0.166 × T + 200
σY

2 (T ) = −0.02 × T + 444.8
σY

3 = 800
(80)

where T is given in ˚C. These expressions have the advantage to be independent on the experi-
ments analyzed here. These expressions are in the range of values used by various authors such
as Waeckel (1994); Martinez (1999); Cavallo (1998); Leblond et al. (1989). Coret et al. (2004)
used an other strategy consisting in identifying the yield stress by fitting the Leblond’s model
and measurements. This approach has not been followed in this contribution because two dif-
ferent models are compared, thus the fitting procedure that leads to different yield stresses,
is not relevant. Moreover, the quality of a model cannot be established by adjusting material
parameters so that a good agreement is observed between the tested model and experimental
results. Material parameters should be identified by external procedures that do not involve the
tested model. Thus expressions (80) are used for the following comparison.

Furthermore, it should be noted that if the yield stress were adjusted so that the origi-
nal Leblond’s model presents a good agreement with measurements, the obtained yield stress
would have been less than 100 MPa at 500 ˚C, which seems too low compared with (80).

The experimental transformation plastic strain is inferred from the total strain by removing
the elastic strain Ee = [(1 + ν)/E]Σ − [ν/E] tr

(
Σ
)

1 and the thermo-metallurgical strain Ethm

(evaluated from the free dilatometric test). It has been assumed that Ecp
Σ
= Ecp

T = 0. A compar-
ison with the original and extended models is presented in figure 8 for the axial strain and in
figure 9 for the tangential strain. A very good agreement between measurements and computa-
tions is observed for the extended model (excepted between around 500 ˚C and 600 ˚C, which
could be explained by viscosity that has been neglected). Slightly larger discrepancies can be
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observed for the tangential strain of test 6, even though the comparison is still acceptable. It
should be noted that applied stresses in the tangential direction are identical for tests 4 and 6,
thus numerical computations give identical results with respect to this direction, although ex-
perimental measurements are not overlapped in figure 9. The original Leblond’s model presents
only a qualitative agreement as classically reported in the literature.

Figure 8: Axial transformation plasticity

Figure 9: Tangential strain comparison
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A complete investigation of the proposed model would require to test other experimental
conditions mixing classic and transformation induced plasticity with equivalent applied stress
spanning from very low values to values higher than the yield stress of one or several phases.
Thus, subsequent works are still needed to fully determine the applicability of the proposed
model.

8. Conclusion

This contribution develops an analytic homogenization dedicated to transformation induced
plasticity. It consists in an extension of the well known Leblond’s model dealing not only with
transformation induced plasticity but also classic plasticity due to temperature and/or equiva-
lent stress variations. Several assumptions in the original work have been released, in particular
the applied stress is taken into account as well as elastic-plastic behavior for all phases in the
calculation of the local equivalent plastic strain. Moreover, several phase transitions are con-
sidered and the deviatoric part of the phase transformation is taken into account. The obtained
expressions do not present any singularity as in the original model excepted when the applied
equivalent stress reaches the yield stress of the parent phase. Indeed, in the latter situation the
matrix is entirely plastic as soon as the phase transition begins and the same kind of singularity
as in the original work arises. This difficulty is overcome by considering that phase nucleation
is discontinuous that is to say that a minimal finite volume of product phase is created when a
lower total energy state can be reached by rearranging the atomic lattice in this volume. There-
fore, one cannot consider an incremental variation of the product phase proportion in a pure
matrix of parent phase, one should directly consider a finite size for the inclusion.

Some experiments have been extracted from the literature and used to compare the original
Leblond’s model and the extended version developed in this contribution. For the extended ver-
sion, very good agreement is observed for both axial and tangential strains without any fitting
procedure, only by extracting from other tests the needed material parameters. Computations
of the original Leblond’s model are more qualitative, although it is possible to obtain good
accuracy by fitting the yield stress of the parent phase to a value below the range of reported
values in the literature.

Subsequent experimental tests with larger range of applied stresses and emphasizing multi-
phase transitions should be performed and analyzed in order to give more general conclusions
on the applicability of the proposed model.

Appendix A. Elastic-plastic spherical composite subjected to hydrostatic eigenstrain

This section is dedicated to the computation of the equivalent plastic strain variation δεeq
1 .

Calculations rely on an idealized configuration consisting in a spherical inclusion that lies into
a bounded hollow sphere. Local fields such as σk (where k denotes the phase index) intro-
duced in section 2 are the “real” fields averaged over the “real” volume. However for sake of
simplicity the same notations are used here to denote all local fields obtained in the idealized
configuration.
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Appendix A.1. Inclusion
The inclusion is subjected to the eigenstrain ε̃thm

= ε̃thm1 and the pre-stress Σ̃whose deviator
is S̃. The elastic test is of the form (because of the spherical symmetry assumption):

σ̃ = σ̃1

ε̃ =

(
σ̃

3λ̃ + 2µ̃
+ ε̃thm

)
1

ũ =
(
σ̃

3λ̃ + 2µ̃
+ ε̃thm

)
rer

(A.1)

Since the additional stress is spherical (i.e., s̃ = 0 where s̃ = σ̃ − tr
(
σ̃
)
/3), the elastic test has

no effect on the von Mises yield criterion. This equation is verified automatically no matter the
values of σ̃ and ε̃thm. Therefore the inclusion does not present additional plastic strain due to
the eigenstrain. Thus for each m ∈ {2, · · · ,N}, the equivalent strain increment is δεeq

m = 0.

Appendix A.2. Matrix if Σeq
1 , σ

Y
1

Appendix A.2.1. Elastic test
If the matrix is not entirely plastic, it will be shown that the plastic region is located between

r̃ and rpl ≤ r1. Therefore the traction free condition for r = r1 is applied directly on the elastic
test. Thus, since the problem is spherically symmetric, the elastic test is of the form:

u1 =

[(
4µ1

3λ1 + 2µ1

)
Ar
r3

1

+
A
r2

]
er

σ1 =
4µ1A

r3
1

1 − 2µ1A
r3 J

s1 = −
2µ1A

r3 J

(A.2)

where
J = 2er ⊗ er − eθ ⊗ eθ − eφ ⊗ eφ (A.3)

It should be noted that the total deviatoric stress is S1 + s1 because of the applied pre-stress.
The equivalent von Mises stress is given by:

σ
eq
1 =

√
3
2

(
S1 : S1 + 2s1 : S1 + s1 : s1

)
(A.4)

Therefore at the elastic-plastic boundary defined by r = rpl, one has σeq
1 = σ

Y
1 :

(
σY

1

)2
=

3
2

6
2µA

r3
pl

2

− 2

2µA
r3

pl

 J : S1 + S1 : S1

 (A.5)

Consider: 
Y =

2µA
r3

pl
b = −2J : S1

c =
2
3

[(
σY

1

)2
−

(
Σ

eq
1

)2
]
≥ 0

(A.6)
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It should be noted that b actually depends on θ and φ because S1 is constant in the Cartesian
coordinates and J is constant in spherical coordinates. The following assumption is needed to
keep the spherical symmetry: the coefficient b can be replaced by its volume average:

b ≃ 1
V1

∫
V1

−2J : S1dV1 = −2tr
(
S1

)
= 0 (A.7)

Hence (A.5) reads:
6Y2 + bY − c = 0 (A.8)

Furthermore, consider:

∆ = b2 + 24c ≃ 16
[(
σY

1

)2
−

(
Σ

eq
1

)2
]
> 0 (A.9)

Thus (A.8) has two real roots:
Y+ =

−b +
√
∆

12
≃

√(
σY

1

)2
−

(
Σ

eq
1

)2

3
> 0

Y− =
−b −

√
∆

12
≃ −

√(
σY

1

)2
−

(
Σ

eq
1

)2

3
< 0

(A.10)

In the following Y± denotes the chosen root between Y+ or Y−. This choice will be done in the
end considering the sign of ε̃thm. Finally the radius that defines the elastic-plastic interface is:

rpl =


(
2µA
Y+

) 1
3

if A > 0(
2µA
Y−

) 1
3

if A < 0

(A.11)

Moreover there exists a plastic zone only if:

r̃ ≤ rpl ≤ r1 (A.12)

The plastic zone is
[̃
r, rpl

]
.

Appendix A.2.2. Plastic part
In the plastic zone one has:

σ1 = σ1,rrer ⊗ er + σ1,θθeθ ⊗ eθ + σ1,θθeφ ⊗ eφ
s1 =

σ1,rr − σ1,θθ

3
J

εp
1
=
ε

p
1,rr

2
J

(A.13)

The von Mises criterion (A.4) is saturated and reads:

6Z2 + bZ − c = 0 (A.14)
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where:
Z =
σ1,θθ − σ1,rr

3
(A.15)

One can easily show that choices Y = Y+ and Z− are incompatible as well as Y = Y− and Z+.
Hence:

Z = Y± (A.16)

The equilibrium reads:
dσ1,rr

dr
− 2
σ1,θθ − σ1,rr

r
= 0 (A.17)

Hence:
dσ1,rr

dr
= 6

Y±
r

(A.18)

Finally one obtains (considering normal stress continuity at the interface r = r̃):
σ1,rr = 2Y± ln

((r
r̃

)3
)
+ σ̃

σ1,θθ = 3Y± + 2Y± ln
((r

r̃

)3
)
+ σ̃

(A.19)

The constant A is determined by ensuring that the normal stress is continuous at the elastic-
plastic boundary:

2Y± ln
((rpl

r̃

)3
)
+ σ̃ =

4µ1A
r3

1

− 4µ1A
r3

pl

(A.20)

Thus by using (A.11):

ln
(
2µ1A
r̃3Y±

)
− 2µ1A

Y±r3
1

= −
(
1 +

σ̃

2Y±

)
(A.21)

Plastic strain is evaluated by considering the equilibrium on displacements. Using the isotropic
behavior one obtains: 

σ1,rr = (λ1 + 2µ1)
du1,r

dr
+ 2λ1

u1,r

r
− 2µ1ε

p
1,rr

σ1,θθ = λ1
du1,r

dr
+ 2(λ1 + µ1)

u1,r

r
+ µ1ε

p
1,rr

(A.22)

Therefore the equilibrium reads:

d
dr

[
du1,r

dr
+ 2

u1,r

r

]
=

(
2µ1

λ1 + 2µ1

) dεp
1,rr

dr
+ 3
ε

p
1,rr

r

 (A.23)

But one easily verifies that:

(3λ1 + 2µ1)
[
du1,r

dr
+ 2

u1,r

r

]
= σ1,rr + 2σ1,θθ (A.24)

Therefore:

ζ

dεp
1,rr

dr
+ 3
ε

p
1,rr

r

 = 3
dσ1,rr

dr
= 18

Y±
r

(A.25)
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where:
ζ =

(3λ1 + 2µ1)2µ1

λ1 + 2µ1
(A.26)

Finally using the fact εp
1,rr(rpl) = 0, one obtains the plastic strain:

ε
p
1,rr =

6Y±
ζ

(
1 −

(rpl

r

)3
)

(A.27)

The equivalent plastic strain (or the cumulative plastic strain) is defined by:

ε
eq
1 =

√
2
3
εp

1
: εp

1
=

∣∣∣εp
1,rr

∣∣∣ (A.28)

And:

ε
eq
1 =

∣∣∣∣∣∣6Y±
ζ

((rpl

r

)3
− 1

)∣∣∣∣∣∣ (A.29)

Using (A.24) one obtains:[
du1,r

dr
+ 2

u1,r

r

]
=

1
3λ1 + 2µ1

(
6Y±

[
1 + ln

((r
r̃

)3
)]
+ 3σ̃

)
(A.30)

Finally one obtains:

u1,r =
B
r2 +

σ̃

3λ1 + 2µ1
r +

2Y±
3λ1 + 2µ1

r ln
(
r3

r̃3

)
(A.31)

Appendix A.2.3. Equivalent plastic strain
By using the continuity of displacement at r̃ one obtains:

B = r̃3
(
σ̃χ + ε̃thm

)
(A.32)

where:
χ =

1

3λ̃ + 2µ̃
− 1

3λ1 + 2µ1
(A.33)

The radial stress σ̃ at r̃ is still unknown and is determined by ensuring displacement continuity
at rpl:

A
r3

pl

+
4µ1

3λ1 + 2µ1

A
r3

1

= (σ̃χ + ε̃thm)
r3

m

r3
pl

+
2Y±

3λ + 2µ
ln

r3
pl

r3
m

 + σ̃

3λ + 2µ
(A.34)

Therefore by using (A.21) and (A.11):

3Y±
ζ
= (σ̃χ + ε̃thm)

r̃3

r3
pl

(A.35)

Therefore Y± is of the same sign as σ̃χ + ε̃thm. If χ = 0 the sign of Y± is determined by the sign
of ε̃thm. Using (A.21) one obtains:

σ̃χ + ε̃thm =
3Y±
ζ
C (A.36)
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where:

C =



ε̃thmζ

3Y±
if χ = 0

exp
(
ε̃thm

2χY±
− 1

)
if χ , 0 and η = 0⇒ χ > 0

1
η

W
[
η exp

(
ε̃thm

2χY±
− 1

)]
if χ , 0 and η , 0


≥ 0 (A.37)

where W is the Lambert function which is the reciprocal function of f : x 7→ x exp(x) and :

η =
3

2χζ
− r̃3

r3
1

(A.38)

Thus:

A =
Y±̃r3

2µ1
C (A.39)

And:
r3

pl = r̃3C (A.40)

Moreover the condition of plastification (A.12) reads:

1 ≤ C ≤
r3

1

r̃3 (A.41)

The choice of the sign of Y± is done by calculating σ̃ from (A.20) and using (A.39) and (A.40):

σ̃ = 2Y±

(
C r̃3

r3
1

− 1 − ln (C)
)

︸                 ︷︷                 ︸
<0

(A.42)

By using (A.41) one obtains:
2χ(η + 1) ≤ ε̃thm

Y±
≤ 2χ

(
1 + η r3

1
r̃3 + ln

(
r3

1
r̃3

))
if χ > 0

2χ(η + 1) ≥ ε̃thm

Y±
≥ 2χ

(
1 + η r3

1
r̃3 + ln

(
r3

1
r̃3

))
if χ < 0

(A.43)

Which leads to:  0 < 3
ζ
+ 2χ

(
1 − r̃3

r3
1

)
≤ ε̃thm

Y±
if χ > 0

ε̃thm

Y±
≥ 3
ζ

r3
1

r̃3 > 0 if χ < 0
(A.44)

Therefore in all cases Y± is chosen of the same sign as ε̃thm. Eventually the equivalent plastic
strain is obtained:

ε
eq
1 = 6

|Y±|
ζ

(
C r̃3

r3 − 1
)

(A.45)
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Appendix A.2.4. Equivalent plastic strain increment
When time goes from t to t+δt if the phase proportion goes from Xm to Xm+δXm. Therefore

the inclusion subject to the eigenstrain ε̃thm has a radius r̃ + δ̃r. It is clear that if δ̃r < 0 then
increment is elastic. However, if δ̃r > 0 the increment of equivalent plastic strain reads from
(A.45):

δε
eq
1 = 18C|Y±|

ζ

r̃2δ̃r
r3 (A.46)

When time goes from t to t + δt if the temperature goes from T to T + δT . Therefore the
inclusion is subject to the eigenstrain ε̃thm + δε̃th. It is clear that if δε̃th is not of the same sign as
ε̃thm the increment is elastic. However if ε̃thmδε̃th > 0 the increment of equivalent plastic strain
reads from (A.45):

δε
eq
1 = 6

|Y±|
ζ

r̃3

r3Dδε̃
th (A.47)

where:

D =



ζ

3Y±
if χ = 0

exp
(
ε̃thm

2χY±
− 1

)
2χY±

if χ , 0 and η = 0⇒ χ > 0

1
2ηY±χ

 W
[
η exp

(
ε̃thm

2χY±
− 1

)]
1 +W

[
η exp

(
ε̃thm

2χY±
− 1

)] if χ , 0 and η , 0

(A.48)

It is obvious for the two first lines of (A.48) that D has the same sign as Y± that is to say the
same sign as ε̃th and therefore δε̃th so that δεeq

1 > 0. It is less obvious for the third line of (A.48).

Appendix A.2.5. Entirely plastic matrix
If the condition (A.41) is not verified and:

C >
r3

1

r̃3 ⇒
ε̃thm

2χY±
> 1 + ln

(
r3

1

r̃3

)
(A.49)

Then the matrix is entirely plastic. The traction free condition at r = r1 gives:

σ̃ = −2Y± ln
((r1

r̃

)3
)

(A.50)

Hence the stress field: 
σ1,rr = 2Y± ln

( r
r1

)3
σ1,θθ = 3Y± + 2Y± ln

( r
r1

)3 (A.51)

Displacements are then calculated from (A.24)

u1,r =
B
r2 +

2Y±
3λ1 + 2µ1

r ln
(
r3

r3
1

)
(A.52)
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With B evaluated with the continuity of displacement at r = r̃:

B
r̃3 = ε̃

thm − 2Y± ln
(
r3

1

r̃3

)
χ (A.53)

And the plastic strain is calculated from εe
1 = ∇u1−εp

1 = 0 and 2µ1ε
p
1 = σ1−λtr

(∇u1
)−2µ1∇u1:

ε
p
1,rr =

6Y±
ζ

(
1 − C2

r̃3

r3

)
(A.54)

where:

C2 =
ε̃thmζ

3Y±
− 2ζχ

3
ln

(
r3

1

r̃3

)
> 0 (A.55)

The sign of C2 is evaluated from (A.49). Hence:

ε
eq
1 =

∣∣∣∣∣∣6Y±
ζ

(
1 − C2

r̃3

r3

)∣∣∣∣∣∣ (A.56)

Appendix A.3. Matrix if Σeq
1 = σ

Y
1

The only root of (A.14) is zero, thus : σ1,rr = σ1,θθ Then the equilibrium gives σ1,rr = σ̃.
Eventually, the traction free condition at r = r1 gives:

σ1,rr = σ1,θθ = σ̃ = 0 (A.57)

Therefore displacements are:

u1,r =
ε̃thmr̃3

r2 (A.58)

Since σ1 = 0, the elastic strain εe
1 = ∇u1 − εp

1 = 0, hence:

ε
p
1,rr =

−2ε̃thmr̃3

r3 (A.59)

and:

ε
eq
1 =

2
∣∣∣̃εthm

∣∣∣ r̃3

r3 (A.60)

The equivalent plastic strain increment when the temperature goes from T to T+δT if ε̃thmδε̃th >
0

δε
eq
1 =

2
∣∣∣δε̃th

∣∣∣ r̃3

r3 (A.61)

If the RVE undergoes a phase transformation and r̃ > r̃min > 0 and δ̃r > 0 then the equivalent
plastic strain increment is:

δε
eq
1 =

6
∣∣∣̃εthm

∣∣∣ r̃2δ̃r

r3 (A.62)

Moreover, the nucleation problem when the inclusion appears with a finite radius r̃min generates
plastic strain that is obtained by setting r̃min instead of r̃ in (A.59).
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aciers par homogénéisation numérique fondée sur la TFR. PhD thesis, Paris 13.

33



Petit-Grostabussiat, S., Taleb, L., and Jullien, J.-F. (2004). Experimental results on classical
plasticity of steels subjected to structural transformations. International Journal of Plasticity,
20(8):1371–1386.

Srivastava, A., Ghassemi-Armaki, H., Sung, H., Chen, P., Kumar, S., and Bower, A. F. (2015).
Micromechanics of plastic deformation and phase transformation in a three-phase trip-
assisted advanced high strength steel: Experiments and modeling. Journal of the Mechanics
and Physics of Solids, 78:46–69.

SYSWELD®(2012). Esi group, france.

Taleb, L., Cavallo, N., and Waeckel, F. (2001). Experimental analysis of transformation plas-
ticity. International Journal of Plasticity, 17(1):1–20.

Taleb, L. and Petit, S. (2006). New investigations on transformation induced plasticity and its
interaction with classical plasticity. International journal of plasticity, 22(1):110–130.

Taleb, L. and Sidoroff, F. (2003). A micromechanical modeling of the greenwood–johnson
mechanism in transformation induced plasticity. International Journal of Plasticity,
19(10):1821–1842.

Van Rompaey, T., Lani, F., Blanpain, B., Wollants, P., Jacques, P. J., and Pardoen, T. (2006).
Three-dimensional computational-cell modeling of the micromechanics of the martensitic
transformation in transformation-induced-plasticity-assisted multiphase steels. Metallurgi-
cal and Materials Transactions A, 37(1):99–107.

Waeckel, F. (1994). Une loi de comportement thermo-métallurgique des aciers pour le calcul
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