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Abstract

The energy gained at the atomic scale by modifying the crystal lattice during phase nu-

cleation is an important aspect to study solid-solid phase transitions. However at the scale

of continuum mechanics, the eigenstrain introduced by the geometrical transformation in the

newly formed phase is also a significant issue. Indeed, it is responsible for very large elastic

energy and dissipation that have to be added to the total energy in order to determine if a phase

transition can occur. The eigenstrain can cause sliding of the newly formed grain. In this paper,

an analytical solution coupled with numerical energetic optimization is derived to solve the

problem of a two-dimensional circular elastic sliding inclusion authorizing plastic dissipation

at the interface. Numerical calculations under plane stress assumption show that dissipation

enables an effective decrease in the energy needed for the phase transformation to occur. The

solution is validated with a comparison with a Finite Element simulation.
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1. Introduction

Phase transitions are crucial for many applications. A general strategy for modeling phase

transitions consists in constructing a cost function (or a global energy) by adding different

energetic contributions and dissipated energies arising at different scale during phase transition.

Then a minimization over possible states (i.e., a global energy balance) is considered in order

to determine if phase nucleation is the most favorable option with respect to the energetic cost

function as proposed for instance by Fischer and Reisner (1998).
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Among the energetic contributions that should be considered, one of the most studied is the

energy gain by the rearrangement of the crystal lattice Müller et al. (2007). This contribution

is associated to the free Gibbs energy variation between one phase and the other. However,

the geometrical transformation from the crystalline structure of the parent phase to the crys-

talline structure of the product phase, amounts to impose, at the scale of continuum mechanics,

an eigenstrain in the product phase. For instance within the framework of steel well known

orientation models proposed by Bain and Dunkirk (1924); Nishiyama (1934); Kurdjumow and

Sachs (1930) may be used to quantify this eigenstrain.

Thus, the free Gibbs energy variation between the parent phase and the product phase is

not sufficient to evaluate if phase transformation may occur. Indeed, at the scale of continuum

mechanics, the newly formed phase nucleates with a certain size. The geometrical transfor-

mation undergone in the inclusion is thus incompatible with the presence of the surrounding

matrix, and the inclusion and the matrix will therefore experience elastic strains. Phase nucle-

ation occurs if a lower total energy is reached. Therefore, this elastic energy tends to reduce

the possibility of phase changes because the energy gained at the atomic scale by the modifi-

cation of the crystal structure is compensated by the bulk energy at a larger scale. Thus, one

needs to evaluate the elastic energy associated with the eigenstrain in order to correctly predict

phase nucleation. For instance, within the framework of Zirconium phase transition, Hensl

et al. (2015) include elastic energy in the global free Gibbs energy. Usually the well-known in-

clusion method proposed by Eshelby (1957) is used to evaluate the stored elastic energy due to

the eigenstrain. For instance Lambert-Perlade et al. (2004) used the Eshelby inclusion method

to model self-accommodation within the framework of austenite to bainite phase transition in

steel alloys. Mura et al. (1976) proposed an extension of the Eshelby inclusion method for

anisotropic materials and consider applications to martensite formation. Previous works con-

sider purely elastic materials even though non-negligible plastic strain may occur. Thus, Delan-

nay et al. (2008) proposed to evaluate elastic-plastic accommodation by using a Finite Element

model of an embedded-cell model. One can also mention a different strategy proposed by Am-

mar et al. (2009) based on a phase-field model of phase transition in elastic-plastic materials

where the free energy density accounts for dissipation and elastic and chemical1 contributions.

1which represents the difference of structural state between phases
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All the previously mentioned works are based on a perfect adhesion between the inclusion

and the surrounding matrix of the parent phase. However, experimental evidences of sliding

inclusions have been published by Saotome and Iguchi (1987) for instance. Thus, this pa-

per aims at developing an alternative inclusion method adapted to sliding inclusions and that

takes into account plastic dissipation at the interface. The significance of sliding inclusions

on the elastic energy when considering phase transitions was already investigated by Tsuchida

et al. (1986) and Mura et al. (1985); Jasiuk et al. (1987) for perfectly sliding inclusions in two

and three dimensions respectively. More precisely, continuity of normal traction and normal

displacements at the inclusion/matrix interface is verified as well as a condition of vanishing

shear traction. Tangential displacements are discontinuous at the interface and are determined

through the latter shear free condition. On this basis, it was shown that allowing for sliding

reduces the energy needed for the transformation to occur. In this paper, imperfectly sliding

inclusions are considered and shear stresses are not set to zero at the interface.

Imperfectly sliding inclusions have already been solved by Huang et al. (1993) and Ru

(1998), by modeling the relative magnitude of sliding by introducing a parameter varying be-

tween zero (perfectly bounded interface) and one (perfectly sliding interface) and by Zhong

and Meguid (1997) by assuming that the normal stress is proportional to the corresponding tan-

gential displacement discontinuity which amounts to a Coulomb type friction law. Relying on

the same assumption, Mogilevskaya and Crouch (2002) solved the problem of multiple circular

sliding inclusions by using a Galerkin boundary integral method.

The approach developed in this paper differs from previous solutions to the extent that

there is no assumption on shear traction at the interface and no a priori relationship between

tangential displacement discontinuity and normal traction. The problem of an inclusion subject

to a known eigenstrain and prescribed sliding is solved with continuity of normal and shear

traction and continuity of normal displacement at the interface. The whole solution depends on

the prescribed slip and energetic arguments are eventually used in order to determine the actual

slip that the system will reach.

These energetic arguments come from experimental observations performed by Saotome

and Iguchi (1987) that enable to interpret sliding as localized plasticity at the interface. There-

fore, dissipated energy should be taken into account. This is not allowed by the previously

mentioned papers, where sliding is determined by an arbitrary proportionality relation between
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normal traction and tangential displacement discontinuity or by setting shear traction to zero.

The energetic approach, that ultimately enables to determine sliding, classically consists in

minimizing a global energy that takes into account bulk energy and plastic dissipation. Within

the framework introduced for instance by Fedelich and Ehrlacher (1997) and Mielke (2003),

dissipation can be seen as a cost (or a distance) that the system has to pay (or to cross) to get

a new state, therefore the state variables are those that optimize the bulk energy accounting

for the cost to reach this new state. It should be noted that plasticity is considered only at the

interface (shear band) and not in the inclusion or matrix bodies.

In the present work, these ideas are applied to the two-dimensional problem of a circular

inclusion subject to a given eigenstrain and surrounded by an infinite matrix. An approximate

solution to the problem of an inclusion subject to a given eigenstrain and an arbitrary sliding

prescribed at the interface is first derived in the context of complex analysis and the works of

Muskhelishvili (1953). A numerical minimization of the sum of elastic and dissipated energies

at the interface (given as a function of the prescribed sliding) is then performed, in order to

determine the actual sliding that the system will reach when loaded by the eigenstrain. A yield

strength for the boundary is introduced in order to compute the dissipated energy. This varia-

tional method ensures that the von Mises yield criterion is met for sliding to occur. Numerical

calculations show that for small eigenstrains, the yield criterion has a very simple interpreta-

tion: the absolute value of the tangential component of the interfacial tractions is equal to the

yield strength where sliding occurs, and it is strictly below it where sliding does not occur. The

numerical results thus obtained are then compared with results from a finite element method

calculation performed on Abaqus in the case of free slip. Note that the general case of a finite

yield strength would require the introduction of interface elements with a plastic behavior be-

tween the inclusion and its surroundings, which does not appear to be implemented in Abaqus

to the best of the authors’ knowledge. One contribution of this work is thus the ability of the

method to deal with a perfectly plastic interface. Finally, the behavior of the solution pro-

posed with finite yield strength is investigated. Three regimes are essentially found: when the

eigenstrain is sufficiently low no slip occurs at the interface, then for a certain amplitude slip

starts to occur locally and the tangential component of the interfacial tractions is found to be

consistent with the yield criterion, and finally for large enough amplitude slip occurs on the

whole interface so that the criterion is met at all of its points. The convergence of the results
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with the truncation of the expansions is also investigated, and a Gibbs phenomenon is naturally

observed when the tangential component becomes discontinuous.

The approximate solution developed here is eventually used to estimate the mechanical

energy that has to be provided by the surroundings to the system for a single circular region

of space to undergo a phase transition with a given eigenstrain. The plastic dissipation at the

interface is shown to be non neglectable with respect to the elastic energy stored during the

process. The total energy, that is the sum of the elastic energy and the plastic dissipation, is

thus interpreted as the energy that is needed for this phase transition to occur locally.

2. Semi-analytical solution to the problem of a circular sliding inclusion with non-zero

tangential component of the interfacial tractions

The semi-analytical solution to the problem of a sliding circular inclusion subject to a given

uniform eigenstrain expressed in its principal directions is derived in this section:

ε∗ =

ε∗xx 0

0 ε∗yy

 (1)

Both the inclusion and the matrix are linear elastic and plane theory of elasticity is con-

sidered. The Lamé coefficients of the inclusion and the matrix are denoted by (λI , µI) and

(λM, µM), where I and M stand for inclusion and matrix respectively. The following derivation

uses complex potentials and expansions into power series, Laurent series and Fourier series.

The solution that is derived here can be broken down into three parts. First, the solution to

the problem of a disk with prescribed surface tractions at the boundary, and the solution to the

problem of a matrix with a circular hole with prescribed surface tractions along the hole and

no displacement at infinity are addressed in sections 2.2 and 2.3 respectively. These solutions

are obtained by expanding the prescribed surface tractions into a Fourier series and is quite

analogous to the solutions given by Muskhelishvili (1953). Then, using these two preliminary

solutions, the problem of a circular inclusion subject to a given uniform eigenstrain and a pre-

scribed trial sliding along the interface is derived in section 2.4. The trial sliding is denoted

by g(θ) where r, θ are polar coordinates. Eventually the actual sliding that the system will

reach is denoted by gS (θ) where S stands for solution. To solve this sliding inclusion problem,
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the prescribed surface tractions are eliminated using continuity conditions on the displacement

(accounting for the trial sliding g(θ)) and the continuity of the normal and shear traction. As a

result, displacements and stresses in the whole domain as a function of the prescribed trial slid-

ing are obtained. At this point, it is necessary to point out that the interfacial tractions are not

known during the first step, so it is natural that they should be eliminated at some point. Also,

in the general case, it is not possible to derive the exact analytical solution to this problem, as

an infinite number of equations are obtained with an infinite number of unknowns to eliminate.

It is however possible to truncate the series and derive numerically efficient solutions obtained

by simply inverting a matrix. Finally, the third step consists in using the solution to the prob-

lem of the prescribed trial sliding g(θ) at the interface to numerically minimize the sum of the

elastic potential energy and the plastic dissipation at the boundary. Thus the determination of

the actual sliding that the system will reach reads:

gS (θ) = argmin
g(θ)

E
[
g(θ)
]

(2)

where the global energy E
[
g(θ)
]

is written:

E
[
g(θ)
]
= WE

[
g(θ)
]
+ D
[
g(θ)
]

(3)

Where WE is the stored elastic energy and D the plastic dissipation. The elastic energy can

be computed numerically by an integral on the interface and the plastic dissipation as well. It

should be noted that the actual sliding gS (θ) is thus a result of the calculation, and the loading

is obviously the eigenstrain in the inclusion. At each step of the minimization, a certain sliding

is postulated and the resulting global energy accounting for plastic dissipation is computed.

The algorithm searches for the sliding that minimizes the global energy, and to do that an

expansion of the sliding g(θ) into a Fourier series is used so as to minimize on a finite number

of parameters, namely the coefficients of the Fourier series.

As a result of the minimization process, E
[
gS (θ)

]
is obtained, which is the amount of en-

ergy that has to be provided by the surroundings to the system during the process. Thus, it is

interpreted as the energy needed for a phase transition to occur in a circular region of space,

assuming that this phase transition prescribes an eigenstrain to the inclusion, such as that pre-

scribed by the austenite-ferrite transition.
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2.1. Preliminary remarks

A well known approach introduced by Muskhelishvili (1953) for plane isotropic elasticity

under infinitesimal strain assumption is to use two holomorphic potentials ϕ(z) and ψ(z) that are

complex functions of z = x + iy = reiθ, where x and y are the Cartesian coordinates (matching

the principal directions of the given eigenstrain) and r and θ the polar coordinates. z is thus the

position of the point under consideration in the complex plane. These potentials are defined

so that one can derive from them the components of the stress tensor and of the displacement

vector at any given point of the elastic body considered, using the following equations in the

polar basis:



σrr + σθθ = 2(ϕ′(z) + ϕ′(z))

σθθ − σrr + 2iσrθ = 2e2iθ(zϕ′′(z) + ψ′(z))

2µ(ur + iuθ) = e−iθ(κϕ(z) − zϕ′(z) − ψ(z))

(4)

where µ is the shear modulus of the body and κ is defined by:

κ =
λ + 3µ
λ + µ

(5)

where λ is the Lamé’s first parameter of the body. One indeed uses λ if one deals with a

plane strain problem, but in the case of plane stress, one needs to replace λ by λ∗ defined by:

λ∗ =
2µλ
λ + 2µ

(6)

It should be noted that potentials ϕ and ψ are not unique. Using the fact that they are

holomorphic, Muskhelishvili (1953) shows that two pairs of potentials ϕ1, ψ1 and ϕ2, ψ2 yield

the same state of stress if and only if one has:


ϕ2(z) = ϕ1(z) +Ciz + γ

ψ2(z) = ψ1(z) + γ′
(7)
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where C is a real constant and γ and γ′ are two complex constants. He also shows that they

yield the same displacement if and only if one has:


C = 0

κγ − γ′ = 0
(8)

This is due to the fact that C determines the rigid body rotation and κγ − γ′ the rigid body

translation of the body. This should be considered to deal with rigid body motions of the

inclusion and the matrix in order to be able to fit the two solutions correctly.

2.2. An inclusion subject to prescribed surface tractions at the matrix interface

Consider an elastic circular inclusion of radius R subject to prescribed surface tractions.

Useful results for the present paper are exposed but calculations are not detailed since similar

problems are solved by Muskhelishvili (1953). The potentials ϕ and ψ are holomorphic in a

simply connected region, so they can be expanded into a power series:

ϕ(z) =
+∞∑
k=0
ϕkzk and ψ(z) =

+∞∑
k=0
ψkzk (9)

The surface traction is written as a simple complex function, namely σI
rr(R, θ)− iσI

rθ(R, θ) (with

a superscript I for inclusion), that is expanded into a Fourier series:

σI
rr(R, θ) − iσI

rθ(R, θ) =
N−1∑

k=−N+1

Dkeikθ (10)

where Dk are the Fourier coefficients of the tractions. At this stage, only the expansion of the

tractions is truncated, however identification of the coefficients shows that the holomorphic

potentials have a finite number of non-zero coefficients, that are given by:



D1 = 0

ϕ1 + ϕ1 = D0 ∈ R

ϕn =
R1−n

n D1−n , 2 ≤ n ≤ N

ψn = −R1−n

n (Dn+1 + nD−(n+1)) , 1 ≤ n ≤ N − 2

(11)
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It should be noted that D1 = 0 and D0 ∈ R are equivalent to the resultant force and mo-

ment acting on the inclusion vanishing, namely to the global equilibrium of the inclusion. At

this point, ϕ0, ψ0 and the imaginary part of ϕ1 are undetermined, which is consistent with the

remarks of 2.1 since the rigid body motion of the inclusion is unknown. Introducing the elastic

constants of the inclusion κI and µI, one can deduce the displacement uI at the boundary r = R

after straightforward calculations:

2µI(uI
x − iuI

y) = −
−3∑

k=−N

κI
k Dk+1Reikθ

+ κI
2 D−1Re−2iθ + ( κI−1

2 D0R − i(κI + 1)ℑ(ϕ1))e−iθ

+κIϕ0 − ψ0 − D−1R +
N−2∑
k=1

1
k Dk+1Reikθ

(12)

where ℑ(z) denotes the imaginary part of z.

2.3. A matrix subject to prescribed surface tractions at the inclusion interface

Consider an infinite elastic matrix with a circular hole of radius R subject to prescribed

surface tractions at the inclusion interface. Alike the previous problem only the useful results

for the present paper are exposed. One proceeds in the same fashion as in the case of the

inclusion, except that this time the domain is not simply connected, so that the potentials,

denoted here α(z) and β(z), have to be expanded into a Laurent series. It is assumed that there

are no displacements at infinity, so that the matrix does not have any rigid body motion. Thus

the expansions of α(z) and β(z) do not possess any term with a positive exponent. The angular

position of the point under consideration will be denoted φ instead of θ to avoid confusion later:

α(z) =
+∞∑
k=0

αk

zk and β(z) =
+∞∑
k=0

βk

zk (13)

The surface traction is written as a simple complex function that is expanded into a Fourier

series as was previously done, but the coefficients will be denoted Pk instead of Dk:

σM
rr (R, φ) − iσM

rθ(R, φ) =
N−1∑

k=−N+1

Pkeikφ (14)

As previously, one automatically gets P1 = 0, however one does not get P0 ∈ R. This is due

to the fact that a non-zero resultant moment on the boundary of the hole can be in equilibrium

with stresses at infinity. Basic calculations give:
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αn = −Rn+1

n Pn+1 , 1 ≤ n ≤ N − 2

β1 = R2P0

β2 =
R3

2 P−1

βn =
Rn+1

n (P1−n − nPn−1) , 3 ≤ n ≤ N

(15)

and it is obtained again that α0 and β0 are undetermined, but the condition of zero displace-

ment at infinity gives the following condition:

κMα0 − β0 = 0 (16)

where κM is one of the elastic constants of the matrix. Introducing the second elastic con-

stants of the matrix µM, one can deduce the displacement uM at the boundary r = R:

2µM(uM
x − iuM

y ) =
−3∑

k=−N

1
k

Pk+1Reikφ − 1
2

P−1Re−2iφ − P0Re−iφ −
N−2∑
k=1

κM

k
Pk+1Reikφ (17)

2.4. Problem of the inclusion with given eigenstrain and prescribed sliding

The results obtained previously are now used to solve the problem of an inclusion subject

to a given eigenstrain and prescribed sliding g(θ) with respect to the surrounding matrix. For

usual non sliding inclusion problems, the interfacial tractions are determined by displacement

and traction continuity. The problem being solved here considers a prescribed sliding, and the

identification of the interfacial tractions cannot rely on displacement continuity but on matching

positions after transformation. The sliding is defined as follows. At the interface, consider a

material point belonging to the inclusion located by the angular position θ, a material point

belonging to the matrix is then selected and located by the angular position φ(θ) so that after

transformation both material points coincide. The sliding is then defined by the quantity:

g(θ) = φ(θ) − θ (18)

It should be noted that the interfacial tractions implicitly depend on the prescribed sliding

g(θ). In order to make coinciding material points defined by Reiθ in the inclusion and material
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points defined by Reiφ(θ) in the matrix, consider first u∗ the displacement due to the eigenstrain

ε∗ alone as though the inclusion could expand freely, namely u∗ = ε∗.XI (where XI denotes the

position of a material point in the inclusion). Then, consider uI and uM the displacements of the

inclusion and the matrix respectively due to the interfacial tractions arising from the interaction

between the inclusion and the matrix, namely the solutions obtained in sections 2.2 and 2.3.

Thus the coinciding condition reads:

Reiθ + u∗x + iu∗y + uI
x + iuI

y = Reiφ(θ) + uM
x + iuM

y (19)

Only infinitesimal sliding will be considered in what follows, that is g(θ) << 1. Note that a

given uniform finite sliding g(θ) = g0 is compatible with zero strains in both the inclusion and

the matrix, however as will be noted later in the discussion the symmetry of the problem with

respect to the Ox axis rules out slidings that are not odd functions of θ.

The condition on the displacements is established, and a condition on the interfacial trac-

tions still has to be found. To do that, consider at the interface a material surface belonging to

the inclusion (proportional to Rdθ) and the coinciding material surface in the matrix (propor-

tional to Rdφ). Since dφ = φ′(θ)dθ, the continuity of the traction vector thus yields:

RdθσI(R, θ).er(θ) = Rφ′(θ)dθσM(R, φ(θ)).er(φ(θ)) (20)

After simplifications and projection on the x and y axes, one obtains:

σI
rr(R, θ) cos θ − σI

rθ(R, θ) sin θ

= φ′(θ)σM
rr (R, φ(θ)) cosφ(θ) − φ′(θ)σM

rθ(R, φ(θ)) sinφ(θ)

σI
rr(R, θ) sin θ + σI

rθ(R, θ) cos θ

= φ′(θ)σM
rr (R, φ(θ)) sinφ(θ) + φ′(θ)σM

rθ(R, φ(θ)) cosφ(θ)

(21)

Multiplying the second equation by i and adding the two, a complex equation is obtained, and

together with (19) they form the following system of equations:
2(Re−iθ + u∗x − iu∗y + uI

x − iuI
y) = 2(Re−iφ(θ) + uM

x − iuM
y )

(σI
rr(R, θ) − iσI

rθ(R, θ))e
−iθ = φ′(θ)(σM

rr (R, φ(θ)) − iσM
rθ(R, φ(θ)))e−iφ(θ)

(22)

These equations enable us to calculate coefficients ϕk, ψk, αk and βk using simple matrix

computation. However, this part being rather technical, details are presented in Appendix A.
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The complete solution of the circular inclusion, subjected to a given eigenstrain and prescribed

sliding, is obtained.

3. Numerical solution to the problem of the inclusion subject to a given eigenstrain

Previous sections deal with a prescribed sliding g(θ), that is ultimately determined in this

section by using an energetic approach, consisting in minimizing a global energy that takes

into account bulk energy and plastic dissipation. Within the framework introduced for instance

by Fedelich and Ehrlacher (1997) and Mielke (2003), dissipation can be seen as a cost that

the system has to pay to get a new state, therefore the sliding should optimize the sum of the

bulk energy WE
[
g(θ)
]

and the dissipation cost D
[
g(θ)
]

as defined by (3). It should be noted

that plasticity is considered only at the interface (shear band) and not in the inclusion or matrix

bodies.

The elastic potential energy WE
[
g(θ)
]

stored by the system as a result of the imposed eigen-

strain due to phase transition and the sliding g(θ) is defined by:

WE
[
g(θ)
]
=

1
2

∫
ΩI

σI : εIdS +
1
2

∫
ΩM

σM : εMdS (23)

Where εI and εM are gradients symmetric parts of uI and uM respectively. However WE
[
g(θ)
]

can be computed as an integral on the interface by using the principle of virtual work and ne-

glecting body forces. Paying attention to the outward normals being in opposite directions for

the inclusion and the matrix, the following result is obtained:

WE
[
g(θ)
]
=

1
2

∫
∂ΩI

(
(σI n) · uI − (σM n) · uM

)
dS (24)

where ∂ΩI is the boundary of the inclusion, namely the surface r = R. Denoting e the

thickness of the matrix it is obtained:

WE
[
g(θ)
]
=

eR
2

2π∫
0

(σI(R, θ)er(θ)) · uI(R, θ)dθ − eR
2

2π∫
0

(σM(R, φ)er(φ)) · uM(R, φ)dφ (25)

which may be written, after substituting the integration variable in the second integral and

using successively (20) and (19):
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WE
[
g(θ)
]
=

eR2

2

2π∫
0

(σI(R, θ)er(θ)) ·
[
er(φ(θ)) − er(θ) − e∗(θ)

]
dθ (26)

where e∗(θ) = 1
Ru∗(R, θ) has been introduced, which is a dimensionless vectorial function

of θ that does not depend on R, in order to exhibit the factor eR2. The interfacial tractions do

not depend on R either, so that it was eventually possible to show that the total elastic potential

energy is proportional to the volume of the inclusion. It is clear that WE
[
g(θ)
]

does not depend

explicitly on g(θ) but rather implicitly through σI(R, θ) and e∗(θ) that are identified by (22) for

each tested g(θ).

On the other hand the plastic dissipation D
[
g(θ)
]

is defined as follows:

D
[
g(θ)
]
= eR2S y

2π∫
0

|g(θ)|dθ (27)

S y being the yield strength at the interface. This formula simply comes from the integration

over the interface of the work done by the tangential component of the interfacial tractions,

of magnitude S y when slip occurs, in the displacement discontinuity, of magnitude R|g(θ)| by

definition of g(θ). The surface element of the boundary being eRdθ, one indeed gets (27). It is

expected from this minimization process that for small eigenstrains the tangential component

of the interfacial tractions be equal to ±S y where sliding occurs, and that it be strictly between

−S y and S y where sliding does not occur. This is thus equivalent to introducing a perfectly

plastic behavior at the interface. Furthermore the dissipation is also proportional to the volume

of the inclusion so that the results will not depend on the size of the inclusion, and there is

no characteristic size involved in the minimization process. This is due to the fact that perfect

plasticity has been considered at the interface. Adding a hardening behavior would have yielded

a certain optimum size for the appearing inclusion.

In practice, a Matlab (The MathWorks Inc.) function that computes the energy and the

dissipation at the interface when given a certain sliding function has been programmed. Then

a minimization algorithm is applied on a finite dimensional space. To do that, g(θ) is expanded

into a Fourier series and E
[
g(θ)
]

is minimized with respect to the Fourier coefficients. Three

things should be noted in order to make the calculations much faster. First, matrix G can
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be computed easily from matrix I (both introduced in Appendix A) by integrating by parts.

Computing integrals is indeed the most time consuming part of the algorithm. Secondly, the

small sliding approximation enables one to linearize matrix I, which may then be computed

explicitly from the Fourier coefficients of function g(θ), which makes calculations even faster.

Finally, to speed up even further the minimization process one can use the symmetries of the

problem: the symmetry with respect to the Ox axis makes the sliding an odd function, so that

there are no cosines in the expansion in Fourier series of the sliding, and the symmetry with

respect to the Oy axis eliminates the terms of the type sin ((2n + 1)θ). Only linear combinations

of sin (2nθ) may then be considered.

In order to minimize the total energy, the "fminunc" Matlab function was used. This func-

tion is able to solve nonlinear optimization problems such as those involved in this paper. The

quasi-newton method was chosen to solve this minimization problem. Starting from a ran-

domly chosen initial guess of the Fourier coefficients of the slip, minimization is performed

until the solver attempts to take a step smaller than a given value, called the step tolerance.

The Fourier coefficients of the slip have typical values of the order of 10−6, and the absolute

tolerance on the step of the algorithm was set to 10−12 in order to have a relative error on the

solution of order 10−6. The random initial guess was taken to be of relatively small amplitude,

since the framework proposed only deals with such slips, but it was still set rather higher than

the typical values of 10−6 so as to check that the minimization process is robust. The initial

Fourier coefficients thus range from −0.5 × 10−2 to 0.5 × 10−2. Running the program several

times allows to check that the same solution is obtained, independent of the initial guess.

4. Results

In what follows, all stresses are expressed in GPa and energies per unit of volume are

given in J/mm3. Indeed, it was shown earlier that the total energy is proportional to eR2, so

that the size of the inclusion does not impact the minimization in any way, it is thus simpler to

present energies per unit of volume without specifying the inclusion size. The numerical values

chosen to test our program were taken so as to match the properties of pure iron where a ferrite

inclusion appears in an austenite matrix. Elastic constants were obtained from the calculations

of the atomic model in Müller et al. (2007), and a typical value of the shear strength of steel

was taken as the yield strength at the interface. Values are listed in table 1. In addition, let us
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note that the numerical values resulting from calculations that are given below were obtained

without linearization of matrix I for accuracy purposes, although the linearized algorithm gives

energies that agree with the standard algorithm within 0.001% and is much faster.

Table 1: Numerical values of the parameters

S y (GPa) 0.5

κI 2.33

µI (GPa) 126

κM 2.21

µM (GPa) 101

The method described previously was tested on a first loading case that purposely does not

present the symmetries of the particular problem investigated here, so as to show the proper

functioning of the Matlab program that was written. No eigenstrain was applied at this stage,

and the loading case that was chosen was g : θ 7→ 0.1 sin+(θ), where sin+(θ) is the positive

part of sin(θ). This means that for θ between 0 and π the sliding is equal to 0.1 sin(θ), and

for θ between π and 2π it is equal to zero. It is readily seen that this loading case does not

possess the symmetry with respect to either the Ox or the Oy axis. Furthermore, it is interesting

because of the discontinuity of the derivative for θ = π and θ = 2π when considering g as a

function of period 2π. This problem was solved with 30 Fourier coefficients in the expansion

of the sliding. The displacements at the interface obtained with the solution presented in this

contribution were then set on the nodes of a 2D Abaqus model using quadrangles of 0.1mm

edges, and the elastic energies in the inclusion and in the matrix were computed. The total

energy computed in Abaqus agrees with our results within 4%, as can be seen from table 2,

and the Abaqus energies are slightly lower than the energies obtained with the present solution,

which was to be expected for the matrix since it is of finite extent in the Abaqus model, but can

only be attributed to both our approximation (a finite number of Fourier coefficients) and that

of Abaqus (inherent to the finite elements method) for the inclusion.

The second loading case used to test the program was a case of eigenstrain with a zero

yield strength at the interface. The components of the eigenstrain were also taken so as to

be proportional to the eigenstrain experienced by austenite when changing into ferrite through

15



Table 2: Energies computed by our semi-analytical method and Abaqus

Semi-analytical method Abaqus

Elastic energy in the inclusion (J/mm3) 0.2412 0.2340

Elastic energy in the matrix (J/mm3) 0.1456 0.1376

Total elastic energy (J/mm3) 0.3871 0.3716

the Bain path (see Müller et al. (2007)), and were calculated from Müller et al. (2007). The

proportionality factor is denoted by EB and is taken between 0 and 1, and the eigenstrain is thus

given by:

ε∗ = EB

0.12 0

0 −0.21

 (28)

This problem was solved for EB = 1 and taking advantage of the symmetries as mentioned

in section 3, and using 10 functions of the type sin(2nθ) in the expansion of g(θ). Then the

same eigenstrain was applied in a 2D Abaqus model similar to the one described before, with

no friction between the inclusion and the matrix, and the sliding occurring in that simulation

has been calculated for comparison. This calculation was made by linearly interpolating the

initial positions of the points of the matrix coinciding with the nodes of the inclusion in the cur-

rent configuration of the simulation. Given the size of the elements used, the fact that a linear

interpolation was used, and the fact that in the Abaqus model the matrix is of finite extent, the

results shown in figure 1 coincide nicely. Note that in the Abaqus model stress free boundary

conditions were applied to the edge of the matrix instead of the zero displacement condition

applied at infinity in the semi-analytical solution. These boundary conditions combined with

the finiteness of the matrix makes it structurally more compliant, and a sliding of greater ampli-

tude is thus expected, which is indeed the case. Zero displacement boundary conditions in the

Abaqus model could have been used instead, but they would have made the matrix structurally

stiffer, so that neither case is perfectly fitting. Since the Abaqus model is inherently imperfect

due to discretization of the circles that slide against each other, the authors did not study any

further the influence of the boundary conditions or the size of the domain considered.
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Figure 1: Sliding calculated with our semi-analytical method and sliding calculated with Abaqus

The program was then used to solve different problems with a non-zero yield strength in or-

der to confirm the intuition on how it should perform depending on the eigenstrain applied and

the yield strength at the interface. To do so, a yield strength of 0.5GPa is chosen, correspond-

ing to the shear strength of a material like steel with a tensile strength of 1GPa and obeying a

Von Mises yield criterion, and EB varies between 0 and 1. For each case, the sliding obtained

from the minimization is plotted along with the tangential component of the interfacial traction

denoted by Tθ for comparison. Three main types of curves were obtained: for low enough

eigenstrains (EB < 0.05), no sliding occurs (what is plotted is due to the finite precision of the

calculation and is random noise) and |Tθ| is strictly below S y (see figure 2); around EB = 0.05

sliding starts to occur locally, and where is does the criterion is saturated (i.e., |Tθ| = S y) as

shown in figure 3; finally for EB > 0.15 sliding occurs along the whole edge and the criterion

is saturated everywhere on the edge as shown in figure 4. In addition, note that on figure 3 are

shown the results for 10 and 25 functions in the expansion of g(θ), and it is clear that for 10

functions the presented method has already converged.

On figures 2 and 4, the solid line shows the sliding obtained directly from the Fourier

coefficients obtained at the end of the minimization procedure, while the stars show the sliding

deduced from the displacements of the inclusion and the matrix at the interface known from

(12) and (17), where Pk and Dk are calculated from the Fourier coefficients of the sliding via

(A.30) and (A.21) respectively. The sliding may indeed be deduced from the displacements

by calculating the position x in the current configuration of a point XI(R, θ) = Rer(θ) of the

inclusion via (12), and then by determining φ such that the point XM(R, φ) = Rer(φ) of the
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matrix coincides with x in the current configuration via (17). Since this requires to calculate

φ as a function of XM + uM, for which we do not have an analytical formula, this calculation

was performed numerically by minimizing the function ||x− XM(R, φ)−uM(R, φ)|| with respect

to φ for several values of θ. The perfect agreement between the curve and the stars shows

the consistency of the program when calculating the displacements from a prescribed sliding,

since said sliding can be recovered from the displacements. Even though the program converges

quickly with the number of functions in the expansion of g(θ), 20 functions were used to be as

precise as possible and reduce fluctuations while keeping the running time relatively low. With

20 functions, the appearance of a Gibbs phenomenon due to the discontinuity of Tθ is clear

on figure 4. Analysis of the Von Mises equivalent stress shows that for EB > 0.03, plasticity

should occur in the medium, which means that the method presented here should only apply

for relatively small eigenstrains, since it does not take plasticity into account. The maximum

Von Mises equivalent stress indeed reaches 1GPa in the matrix for EB = 0.03.

Figure 2: Sliding and tangential component of the interfacial tractions obtained with S y = 0.5GPa, EB = 0.03 and

20 functions in the expansion of g(θ)
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Figure 3: Sliding and tangential component of the interfacial tractions obtained with S y = 0.5GPa, EB = 0.05 and

respectively 10 and 25 functions in the expansion of g(θ)

Figure 4: Sliding and tangential component of the interfacial tractions obtained with S y = 0.5GPa, EB = 0.15 and

20 functions in the expansion of g(θ)

Finally, the confidence gained through these tests allowed us to study the evolution of the

energy needed for the transformation to occur, see the introduction to section 2, as a function

of S y. For EB = 0.05, several values have been considered for S y and the total energy needed

for the transformation to occur is presented in figure 5. For S y = 0, the inclusion can slide
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perfectly against the matrix and Tθ = 0 at the interface. For S y → +∞ we return to the case of

perfect adherence, and imperfect adherence indeed reduces the total energy needed up to 12%.

Figure 5: Total energy calculated for EB = 0.05 and S y from 0 to 0.7GPa using 20 functions in the expansion of

g(θ)

5. Conclusion

In the present work, a semi-analytical solution to the problem of a sliding circular inclusion

subjected to an eigenstrain and surrounded by an infinite matrix has been derived and applied

to numerically evaluate the energy needed for a phase transition to occur. The sliding, due to

localized plasticity (associated to a dissipation potential) has been evaluated within the frame-

work of an energetic approach. The argument could be made that the elastic constants of steel at

room temperature were used, when the austenite-ferrite phase transition occurs around 912◦C,

at which point the elastic constants are greatly reduced. However, since the yield strength of the

material also drops in a similar fashion, the conclusions remain valid. The relevance of taking

into account the plastic dissipation at the interface was eventually showed: for an eigenstrain

of only 5% the amplitude of that experienced during the phase change of austenite into ferrite,

the energy difference between a free slip and a no slip interface condition amounts to 12% of

the total mechanical energy needed for the transformation to occur without slip. For eigen-

strains closer to the actual value, plastic dissipation at the interface and inside the inclusion and

its surroundings can be assumed to have an even greater importance, however the framework

developed here is unable to deal with strains as high as 20%.
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This contribution is part of a more general framework that consists in modeling phase nu-

cleation considering both the energy gain at the atomic scale when the crystal lattice is modified

and elastic and dissipated energies at the scale of continuum mechanics. Thus a global energy

can be minimized in order to determine phase nucleation allowing for discontinuities (i.e., that

the product phase can appear with a certain size). Most attempts in this direction rely on Es-

helby’s theory or perfectly sliding inclusions. Taking into account the plastic dissipation at the

boundary of the inclusion, this contribution extends in 2D these previous inclusion methods

while confirming the result that sliding does decrease the total energy needed for phase tran-

sition to occur. However, the presented results show that for realistic eigenstrains involved in

phase transition, plasticity should be be taken into account in the matrix and possibly in the

inclusion. Furthermore an extension in 3D is also needed.

Appendix A. Coefficient determination

Substituting (10) and (14) in the second line of (22) one gets:

N−1∑
k=−N+1

Dkei(k−1)θ = φ′(θ)
N−1∑

k=−N+1

Pkei(k−1)φ(θ) (A.1)

Multiplying by 1
2πe−i(n−1)θ for n from 1 − N to N − 1 and integrating from 0 to 2π yields:

Dn =

N−1∑
k=−N+1

Pk
1

2π

2π∫
0

φ′(θ)ei
(

(k−1)φ(θ)−(n−1)θ
)
dθ , −N + 1 ≤ n ≤ N − 1 (A.2)

Equation (A.2) can be written as an equation between matrices by introducing D and P the

column matrices whose elements are Dn and Pk, and G the square matrix whose elements are

Gn,k =
1

2π

2π∫
0
φ′(θ)ei

(
(k−1)φ(θ)−(n−1)θ

)
dθ. The equation is then:

D = GP (A.3)

The displacement due to the eigenstrain is:

2(u∗x − iu∗y) = (ε∗xx − ε∗yy)Reiθ + (ε∗xx + ε
∗
yy)Re−iθ (A.4)
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so that the left side of (22), denoted s(θ), may be written:

s(θ) = (2 + ε∗xx + ε
∗
yy − i κI+1

µI
ℑ(ϕ1))Re−iθ + 1

µI
(κIϕ0 − ψ0 − D−1R)

+(ε∗xx − ε∗yy)Reiθ + R
N−1∑

k=−N+1
(ΛD)kei(k−1)θ

(A.5)

where the column matrix D has been used again and where has been introduced the diagonal

matrix Λ whose diagonal elements are:

Λn,n =



− κI
µI (n−1) , −N + 1 ≤ n ≤ −2

κI
2µI

, n = −1
(κI−1)

2µI
, n = 0

1
µI (n−1) , 2 ≤ n ≤ N − 1

(A.6)

Λ1,1 may be arbitrarily set since D1 = 0, so it will be set to zero. Multiplying by 1
2πe−i(n−1)θ

for n from −N+1 to N−1 and integrating from 0 to 2π yields 2N−1 equations that can be written

as a matrix equation by introducing S the column matrix whose elements are 1
2π

2π∫
0

s(θ)e−i(n−1)θdθ:

S = −R A + R ΛD (A.7)

where A is a column matrix whose elements are:

An =



0 , −N + 1 ≤ n ≤ −1

−(2 + ε∗xx + ε
∗
yy) + i κI+1

µI
ℑ(ϕ1) , n = 0

− 1
RµI

(κIϕ0 − ψ0 − D−1R) , n = 1

ε∗yy − ε∗xx , n = 2

0 , 3 ≤ n ≤ N − 1

(A.8)

The right side, denoted t(φ(θ)), can be written:

t(φ(θ)) = 2Re−iφ(θ) + R
N−1∑

k=−N+1

(ΓP)kei(k−1)φ(θ) (A.9)
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where Γ is the diagonal matrix whose diagonal elements are:

Γn,n =



1
µM(n−1) , −N + 1 ≤ n ≤ −2

− 1
2µM

, n = −1

− 1
µM

, n = 0

− κM
µM(n−1) , 2 ≤ n ≤ N − 1

(A.10)

Γ1,1 may also be set arbitrarily since P1 = 0, so it will be set to zero. Multiplying by
1

2πe−i(n−1)θ for n from −N + 1 to N − 1 and integrating from 0 to 2π yields once again 2N − 1

equations that can be written as a matrix equation by introducing T the column matrix whose

elements are 1
2π

2π∫
0

t(φ(θ))e−i(n−1)θdθ:

Tn = RBn + R

 N−1∑
k=−N+1

(ΓP)k
1

2π

2π∫
0

ei((k−1)ϕ(θ)−(n−1)θ)dθ

 (A.11)

where B, whose elements are Bn =
1

2π

2π∫
0

2e−i(φ(θ)+(n−1)θ)dθ has been introduced. Introducing

the square matrix I whose elements are In,k =
1

2π

2π∫
0

ei((k−1)φ(θ)−(n−1)θ)dθ one can write:

T = R B + R I ΓP (A.12)

The first line of (22) may then be written, after simplifying by R:

ΛD = A + B + IΓP (A.13)

Before going any further, let us recall briefly the dependencies of each term:

• Λ depends on the elastic constants of the inclusion

• Γ depends on the elastic constants of the matrix

• A depends on the eigenstrain and the rigid body motion of the inclusion

• B, G and I depend on the sliding
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The problem that has to be solved is thus the following:


D = GP

ΛD = A + B + I ΓP
(A.14)

without forgetting that D1 = 0, P1 = 0 and D0 ∈ R. System (A.14) is a linear system of

complex equations, but it cannot be inverted directly because of the fact that D0 ∈ R. Instead,

we need to separate between the real and imaginary parts of these equations to solve the system.

To do so, let us write column matrices D and P as follows:


D = d + id′

P = p+ ip′
(A.15)

where d, d′, p and p′ are real column matrices. We will write in an analogous fashion

A = a+ ia′, B = b+ ib′, G = g+ ig′, Λ = l (Λ is already a real matrix) and I Γ = M = m+ im′.

Let us now write the first line of equation (A.14) for n = 0:

d0 =

N−1∑
k=−N+1

(g0,k + ig′0,k)(pk + ip′k) (A.16)

and taking the imaginary part of this equation yields:

0 =
N−1∑

k=−N+1

(g0,k p′k + g′0,k pk) (A.17)

A value of k for which g0,k , 0 has to be selected, and it is assumed that this holds for k = 0

because in practice the sliding is going to be very small so that g0,0 = ℜ(G0,0) ≈ 1. Then, one

can write:

p′0 = −
1

g0,0

∑
k,0

(g0,k p′k + g′0,k pk) + g′0,0 p0

 (A.18)

so that p′0 has been determined as a function of the pk and the other p′k. The first line of

equation (A.14) can now be written, after separating the real part and the imaginary part:
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dk =

N−1∑
n=−N+1

(gk,n pn − g′k,n p′n) , −N + 1 ≤ k ≤ 0 and 2 ≤ k ≤ N − 1

d′k =
N−1∑

n=−N+1
(g′k,n pn + gk,n p′n) , −N + 1 ≤ k ≤ −1 and 2 ≤ k ≤ N − 1

(A.19)

Substituting (A.18) in this equation yields:


dk =

N−1∑
n=−N+1

(gk,n +
g′k,0
g0,0

g′0,n)pn +
∑
n,0

(
g′k,0
g0,0

g0,n − g′k,n)p′n

d′k =
N−1∑

n=−N+1
(g′k,n −

gk,0

g0,0
g′0,n)pn +

∑
n,0

(gk,n − gk,0

g0,0
g0,n)p′n

(A.20)

Thus the column matrix obtained by concatenating dk for k , 1 and d′k for k , 0, 1 is

expressed as a certain matrix multiplied by the analogous concatenation for pk and p′k. It is not

necessary to take into account the equations obtained for k = 0 because they yield 0=0. The

concatenations just mentioned will be denoted d̃ and p̃, and the matrix linking the two g̃ so that

one has:

d̃ = g̃ p̃ (A.21)

Writing in the same fashion the second line of equation (A.14) yields:


lk,kdk = ak + bk +

N−1∑
n=−N+1

[
mk,n pn − m′k,n p′n

]
lk,kd′k = a′k + b′k +

N−1∑
n=−N+1

[
m′k,n pn + mk,n p′n

] (A.22)

For k = 1 one has:


0 = a1 + b1 +

N−1∑
n=−N+1

[
m1,n pn − m′1,n p′n

]
0 = a′1 + b′1 +

N−1∑
n=−N+1

[
m′1,n pn + m1,n p′n

] (A.23)

but from (A.8) one has a1 = − 1
RµI
ℜ(κIϕ0 − ψ0) + 1

µI
d−1 and a′1 = − 1

RµI
ℑ(κIϕ0 − ψ0) − 1

µI
d−1

so:
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1

RµI
ℜ(κIϕ0 − ψ0) = 1

µI
d−1 + b1 +

N−1∑
n=−N+1

[
m1,n pn − m′1,n p′n

]
1

RµI
ℑ(κIϕ0 − ψ0) = − 1

µI
d−1 + b′1 +

N−1∑
n=−N+1

[
m′1,n pn + m1,n p′n

] (A.24)

so thatℜ(κIϕ0 − ψ0) and ℑ(κIϕ0 − ψ0) can be calculated as functions of pk for k , 1 and p′k

for k , 0, 1 since d−1 and p′0 are known as functions of them.

For k = 0 and considering only the imaginary part one has:

0 = a′0 + b′0 +
N−1∑

n=−N+1

[
m′0,n pn + m0,n p′n

]
(A.25)

but from (A.8) one has a′0 =
κI+1
µI
ℑ(ϕ1) so:

κI + 1
µI
ℑ(ϕ1) = −b′0 −

N−1∑
n=−N+1

[
m′0,n pn + m0,n p′n

]
(A.26)

so that ℑ(ϕ1) can be calculated as a function of pk for k , 1 and p′k for k , 0, 1 for the same

reason as previously.

Finally, let us substitute (A.18) in (A.22):


lk,kdk = ak + bk +

N−1∑
n=−N+1

(mk,n +
m′k,0
g0,0

g′0,n)pn +
∑
n,0

(
m′k,0
g0,0

g0,n − m′k,n)p′n

lk,kd′k = a′k + b′k +
N−1∑

n=−N+1
(m′k,n −

mk,0

g0,0
g′0,n)pn +

∑
n,0

(mk,n − mk,0

g0,0
g0,n)p′n

(A.27)

Taking the first line for k , 1 and the second line for k , 0, 1, one can write these equations

as was previously done introducing the analogous concatenations d̃, ã, b̃ and p̃ and the matrices

l̃ and m̃:

l̃ d̃ = ã + b̃ + m̃ p̃ (A.28)

The quantities κIϕ0 − ψ0 and ℑ(ϕ1) are not part of the system any more, and substituting

(A.21) yields:

( l̃ g̃ − m̃) p̃ = ã + b̃ (A.29)
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and inverting the matrix yields:

p̃ = ( l̃ g̃ − m̃)−1 (ã + b̃) (A.30)

The problem is now completely solved: all the pk for k , 0 and the p′k for k , 0, 1 are

determined, but p′0 is known from (A.18). One can then deduce the dk for k , 0 and the d′k

for k , 0, 1 from (A.20), and then κIϕ0 − ψ0 and ℑ(ϕ1) from (A.24). From this we get P and

D, so that one can compute the coefficients ϕk and ψk from (11), and the coefficients αk and βk

from (15). The holomorphic potentials are then obtained everywhere in the inclusion and in the

matrix, and finally the displacement field and the stress field are obtained in the inclusion and

in the matrix.
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