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Attractors for two dimensional waves with

homogeneous Hamiltonians of degree 0

Yves Colin de Verdière ∗ &
Laure Saint-Raymond †

March 26, 2018

Abstract

The density stratification in an incompressible fluid is responsible for
the propagation of internal waves. In domains with topography, these
waves exhibit interesting features. In particular, numerical and lab ex-
periments show that, in two dimensions, for generic forcing frequencies,
these waves concentrate on attractors. The goal of this paper is to ana-
lyze mathematically this behavior, using tools from spectral theory and
microlocal analysis.

The same results apply also to inertial waves in rotating fluids.

1 Motivation

The mathematical problem which will be discussed in this paper is motivated by
the physical observation that, in presence of topography, forcing internal waves
leads to the formation of singular geometric patterns, which accumulate most
of the energy.

Our goal is to provide a mathematical explanation for this phenomenon,
beyond the ray approximation which fails at large wavelengths (in particular at
the forced wavelengths).

1.1 2D internal waves in a domain with topography

The physical system we would like to describe is an inviscid incompressible fluid,
which at equilibrium is stratified in density with stable profile ρ̄ = ρ̄(x3) and
submitted to a stationary forcing. Assuming that the forcing is weak so that
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the departure from equilibrium remains small, the equations for the mass and
momentum conservations can be linearized and the system states:

∂tη + u · ∇ρ̄ = 0,

ρ̄∂tu = −ηge3 −∇P + Fe−iω0t,

div(u) = 0.

denoting η the fluctuation of density, and u the velocity. The last term is a
periodic forcing term which could be, in experiments, localized close to the
boundary. Note that the pressure P is well-defined by the incompressibility
condition if we add a zero-flux condition on the boundary u · n|∂Ω = 0 .

In most physical systems, the variations of ρ̄ are very small compared to its
average ρ0, and count only for the buoyancy term. The system of equations can
be therefore reduced to get the Boussinesq approximation

∂tη + u3ρ̄
′(x3) = 0,

ρ0∂tu = −ηge3 −∇P + Fe−iω0t,

div(u) = 0.

The first important feature of this system is the fact that

(P0) the propagator has a principal symbol
which is homogeneous of degree 0 .

The principal symbol of the operator is computed by replacing formally the
derivative ∂xj by ipj in the previous system. We can diagonalize the matrix and
find the two eigenvalues iH± with

H±(x, p) = ±N(x3)
|p1|
|p|

where N = (−gρ̄′/ρ0)1/2 denotes the Brunt-Vaisala frequency.
Of course, if the propagation holds in a rectangular box (with horizontal and

vertical boundaries) and that N is constant, one has a Fourier basis for

{u ∈ L2(Ω) / div u = 0, n · u|∂Ω = 0}

and the propagator is just a Fourier multiplicator, with explicit eigenvalues.
This is however a non generic situation, which happens only when N is constant
and the domain has symmetries. In general, the zero-flux condition is incompat-
ible with any decomposition on special functions. In the lab experiment [3] for
instance, the symmetry breaking is obtained by introducing a sloping boundary.

In this 2D trapezoidal geometry, it has been observed (see [12, 9, 3]) that
the displacement of particles tracing the internal waves in the fluid is strongly
inhomogeneous, and that the energy concentrates on attractors, which are bro-
ken lines. Furthermore, some branches of these attractors are more energetic
than others, which seems to indicate that there is a focusing mechanism due
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Figure 1: Experimental observation of attractors.
From the PhD thesis of C. Brouzet [3], under the supervision of T. Dauxois
(ENS Lyon, 2016)

to the reflection on the slope. The geometry of these attractors, especially the
number of branches, depends on the forcing frequency and on the slope.

With numerical simulations, the long time behavior can be investigated sys-
tematically. Three scenarios appear depending on the slope and on the forcing
frequency, which are the convergence to a limit cycle, the concentration in a
corner, or some mixing. Note that, both at the experimental and numerical
levels, there is no difference between a complicated attractor and an ergodic
behavior.
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Figure 2: Greyscale : Lyapunov exponent of the trajectories.
White regions : attractors.
Black regions : no pattern emerges from the ray tracing.
From L. Maas, D. Benielli, J. Sommeria, F. Lam [12]

1.2 Consistency with semi-classical predictions

These observations are consistent with the predictions of the semiclassical ap-
proximation, i.e. with the dynamics governing the propagation of wave packets
when the wavelength is much smaller than the size of the domain (and the typ-
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ical length of inhomogeneities if any). For a linear stratification N ≡ 1, the
Hamiltonian equations state

dx1

dt
=

p2
3

|p|3
,

dp1

dt
= 0,

dx3

dt
= −p3p1

|p|3
,

dp3

dt
= 0 .

Note that the group velocity is orthogonal to the wavenumber p, and that its
modulus is conversely proportional to |p|, which are typical features from dy-
namics with homogeneous Hamiltonian of degree 0.

These dynamical equations have to be supplemented with reflection condi-
tions at the boundary. To determine the reflection laws, we look at the solutions
of the Boussinesq system in some half space delimited by a slope tilted of an
angle α with respect to the horizontal

x1 sinα+ x3 cosα = C .

We seek these solutions in the form of an incident wave propagating with an
angle φ with respect to the vertical (note that the direction of propagation is
orthogonal to the wavenumber) plus a reflected wave

W = λU(p) + µV (p)

W ′ = λ′U(p′) + µ′V (p′)

with

U(p) =

 1
0
0

 cos(ωt+ p · x)−

 0
−Np3/(ρ

′|p|)
Np1/(ρ

′|p|)

 sin(ωt+ p · x)

V (p) =

 1
0
0

 sin(ωt+ p · x) +

 0
−Np3/(ρ

′|p|)
Np1/(ρ

′|p|)

 cos(ωt+ p · x)

We then obtain necessary conditions on the wavenumber of the reflected
wave

(p′1)2

|(p′)2|
=

p2
1

|p|2
= cos2 φ coming from the conservation of energy

(p′1 − p1) cosα− (p′3 − p3) sinα = 0 for the phase to be constant on the slope

as well as polarization conditions to determine (λ′, µ′) from (λ, µ).
The combination of the two conditions on p′ gives a polynomial equation

(intersection of a degenerate hyperbola and a line), which has two roots : one
wave is incoming and the other is outgoing. Note that the energy does not fix the
modulus of the wavenumber. The propagation of internal waves is therefore very
different from the well-known dynamics of acoustic or electromagnetic waves.
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Forgetting the group velocity for the moment, we can use the following
reduction to represent the trajectories. Specular reflection on the horizontal
and vertical boundaries is equivalent to free propagation in a domain which is
extended by symmetry:

Iden%fica%on	of	the	2	
horizontal	boundaries	

Iden%fica%on	of	the	2	
lateral	boundaries	

Reflec%ons	

Figure 3: Rays have a constant direction in the extended domain.

When a trajectory exits the domain on the left (resp. on the right), it re-
enters on the right (resp. on the left) at the symmetric point. One can then
identify the points of the boundary, and get a (non smooth) dynamics on a
torus, along a fixed vector field. We have actually four copies of this dynamics,
corresponding to the four possible directions given by p2

1/|p|2 = cos2 φ.

Figure 4: Foliation corresponding to the energy surface cosφ

In other words, this construction shows that

(P1) each energy shell can be represented
as a foliation of an oriented torus.

The long time behaviour of the dynamics can be characterized by exhibiting
a Poincaré section, and looking at the Poincaré return map. If π/2− φ > α, a
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Poincaré section is x3 = 0 and it is easy to see that all trajectories will focus
on a corner, which is a sink point of the foliation. If π/2 − φ < α, a Poincaré
section is the lateral boundary x1 = x+

1 (x3). In the sequel, we will concentrate
on this second case.

For all values of α, φ > π/2−α, the Poincaré return map fα,φ is an orienta-
tion preserving homeomorphism of the circle S1. Such a map f admits a crucial
dynamical invariant ρ(f) ∈ R/Z, referred to as the rotation number, which has
been introduced by Poincaré. It can be defined for instance as follows : for any
c, c′ ∈ S1

ρ(f) = lim
n→∞

1

n
|{j ∈ [0, n− 1] / f j(c′) ∈ [c, f(c)[}.

(we refer to the first chapter of [5] for a brief presentation of the combinatorial
theory of Poincaré.) The main properties of the rotation number ρ(f) are:

• when the rotation number ρ(f) is rational, f has periodic points (having
all the same period) and any orbit is asymptotic to a periodic orbit.

• when the rotation number ρ(f) is irrational, f is semi-conjugated to a
rotation g of angle ρ(f), i.e. there exists a monotone map h such that
h ◦ f = g ◦ h. Note that, in general h is not a bijection: the inverse image
of some point may be an interval. In [6], Denjoy proved that the map h
is an homeomorpism as soon as f is smooth enough.

For generic families of C2 circle diffeomorphisms depending on one parame-
ter, it has been proved by Arnold and Hermann (see Chapter 4 of [5]) that the
rotation number is locally constant (as a function of this parameter), precisely
when it is rational: this phenomenon is known as frequency locking. The set of
parameters for which the rotation number is irrational is a Cantor set possibly
with non zero Lebesgue measure (devil’ s staircase). This provides bifurcation
diagrams with Arnold’s tongues very similar to Fig 2. Unfortunately this theory
does not apply here as the Poincaré return map is only piecewise affine. How-
ever it is clear that fixed points of the (iterated) return map are stable under
small perturbations of α or φ. We therefore preserve the band structure of the
bifurcation diagram for rational rotation numbers.

Remark 1.1. Note that, in the smooth case, the degeneracy at the ends of the
bands is due to the fact that the derivative of the Poincaré return map tends
to 1, while in the affine case, we expect fixed points either to disappear or to
bifurcate on three fixed points, because of a discontinuity of the derivative.

We will focus here on angles φ0 which lie in the interior of a band, i.e. such
that

(P2) there exists an open set I containing φ0

on which ρα,φ ∈ Q is constant and the periodic points are hyperbolic.

All trajectories of the semiclassical dynamics with energy ω0 = | cosφ0| then
converge to some attractor, corresponding to some fixed point of the Poincaré
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return map fα,φ0 . Note that this convergence is relatively slow. We indeed have
that the return time, i.e. the time tn needed to run through the approximate

cycle (from x
(n)
3 to x

(n+1)
3 ) is exponentially increasing with n

c

(
cos(φ− α)

cos(φ+ α)

)n
≤ |tn| ≤ C

(
cos(φ− α)

cos(φ+ α)

)n
.

The distance to the limit cycle is exponentially decreasing with n

|x(n)
3 − x̄3| ≤ C

(
cos(φ+ α)

cos(φ− α)

)n
.

In particular, the distance to the limit cycle is of the order of O(1/t).
Numerical computations show that the limit cycle obtained from the ray

tracing coincides with the attractor which is observed in the lab experiments
[3, 2]. However the semiclassical approximation does not seem a priori to apply
in this situation since there is no scale separation between the wavelengths of the
forcing and the size of the domain. What we expect is that this scale separation
is generated by the dynamics itself since |p(t)| → ∞ linearly as t→∞ along all
trajectories. The idea is then to quantify this escape, and to deduce scattering
and spectral properties for the wave operator.

Remark 1.2. In the specific case of a 2D fluid with linear stratification (N con-
stant), characteristics play also a role when solving the equation for generalized
eigenfunctions

(H − ω0)u = 0

so they are somehow related to the spectral structure of H (see [13]). But it is
still not clear how they are involved in the evolution problem

1

i
∂tu+Hu = fe−iω0t .

In particular, at this stage, there is no difference between stable and unstable
cycles.

Remark 1.3. Inertial waves, which propagate under the combined effects of
rotation (Coriolis force) and incompressibility, exhibit exactly the same behavior.
Their dispersion relation is indeed

ω = ±f p3

|p|
.

Only the polarization conditions for the reflected waves are a little bit more
complicated to obtain.

2 Main results

2.1 Mathematical setting

The mathematical model we consider in this paper reproduces the important
features of the previous physical system, but with more regularity in order that
techniques of pseudo-differential calculus can be used.
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More precisely, we consider a general scalar equation of the form

1

i
∂tu+Hu = fe−iω0t (2.1)

on a 2D torus X equipped with a smooth density dq, where fe−iω0t is a periodic
smooth forcing, and H is a bounded self-adjoint operator on L2(X, dq) satisfying
the following assumptions.

(M0) H is a pseudo-differential operator with a smooth
principal symbol h : T ∗X \ {0} → R homogeneous of degree 0
and a vanishing subprincipal symbol.

For a nice introduction to pseudo-differential operators and Fourier Integral
Operators, we refer to [7]. Let us recall for the sake of completeness that the
principal symbol h and sub-principal symbol h−1 of a pseudo-differential op-
erator H of order 0 are defined in terms of the action of H on fast oscillating
functions:

〈H(aeiτS)|aeiτS〉L2(X,dq) =

∫
X

|a(q)|2
(
h(q, S′(q)) + τ−1h−1(q, S′(q))

)
dq+O

(
τ−2

)
The function h (resp. h−1) is a smooth homogeneous function of degree 0
(resp. −1) on T ?X \ 0 which is well defined independently of the choice of local
coordinates. Note however that the subprincipal symbol h−1 depends on the
measure dq.

The assumption that h is homogeneous implies that any energy shell Σω =
h−1(ω) is conic. We further assume that the energy shell Σω0

is non degenerate,
i.e. that dh 6= 0 on Σω0 . This is a generic assumption on the frequency ω0

thanks to Sard Theorem.

We now introduce some additional geometrical and dynamical assumptions
in order to avoid singularities. Part of these will be removed in [4].

Denote by Z the oriented manifold of dimension 2 which is the quotient of
the conic energy shell Σω0 by the positive homotheties (q, p) 7→ (q, λp). We can
think of Z as the boundary at infinity of the energy shell. The behaviour of the
Hamiltonian dynamics as t→∞ is driven by some geometrical objects defined
on Z. We will assume for simplicity that:

(M1) The energy shell Σω0
is nondegenerate and

the canonical projection π : Z → X is a finite covering of degree n.

It means that, for each q ∈ X, #π−1(q) = n and the points in π−1(q) are
smoothly dependent on q. This is the natural extension of the condition (P1)
where n = 4.

Moreover Z is equipped with a 1D-foliation, denoted by F , defined as follows:
the Hamiltonian vector field Xh is tangent to Σω0

and homogeneous of degree

8



−1, this implies that the oriented direction of Xh induces a field of oriented
directions on Z.

We claim that this foliation is non singular. Assume that it is not the case.
The foliation is singular at the points where Xh is parallel to the cone direction.
Denoting q = (x, y) and p = (ξ, η), the projection of the foliation on X is
generated by the vectors (∂ξh, ∂ηh). Therefore the foliation F is singular if and
only if this vector vanishes. But then the tangent space to Σω0 , which is defined
by the non trivial equation ∂xhdx+ ∂yhdy = 0, does not project in a surjective
way on the tangent space of X. This contradicts our assumption.

We also retrieve the property that the wave number p is orthogonal (for the
duality) to the direction of the projection of Xh on X. This is due to the Euler
relation ξ∂ξh + η∂ηh = 0. Another way to interpret this last condition is to
say that the cones generated by the leaves of F are Lagrangian. Note that the
foliation is on Z. The projection on X is a multiple foliation, meaning that
at each point of X there is n distinct oriented directions. We could assume
for simplicity that the projections of each connected component of Z onto X
are diffeomorphisms. If it is not the case, it will be enough to consider a finite
covering of X.

The last assumption is on the dynamics of F :

(M2) The foliation F is Morse-Smale,

which is a generic condition, to be compared to (P2). Let us recall what it
means:
- there is a finite number of compact leaves (diffeomorphic to circles), also called
cycles in the sequel.
- These compact leaves are hyperbolic (the corresponding linear Poincaré maps
are expanding or contracting).
- And all other leaves are accumulating only along two of the previous closed
leaves at ±∞.

Note that conditions (M1) and (M2) are stable under small perturbations,
therefore are still verified for energy levels close to ω0.

Remark 2.1. The regularity assumption is encoded in (M0). In particular,
at this stage, even though we can capture the effect of the zero flux condition
for internal waves in a model without boundary (see Fig. 3), this model is not
smooth enough to enter in this class of operators.

If the boundary is a polygon, we have seen that the Poincaré section is only
piecewise affine. This difficulty could be removed by considering a smooth do-
main, which leads to a foliation with singular points (corresponding to critical
angles). But our results can actually be extended to singular foliations (see [4]).

A more serious difficulty comes from the fact that the wavelength jumps at
each return time, which means that there is no smooth normal form which conju-
gates the geometric object given by the foliation and the semiclassical dynamics.

To tackle the original problem, we would probably need to introduce another
covering to take into account this additional complexity.

9



In this abstract setting, we can now formulate our result describing the long
time behavior of the forced system.

Theorem 2.1. Consider the forced equation

1

i
∂tu+Hu = fe−iω0t, u|t=0 = 0

where the pseudo-differential operator H and the forcing frequency ω0 satisfy
(M0)(M1)(M2) and f is smooth.

If ω0 is not an eigenvalue of H, then the solution to previous equation can
be decomposed in a unique way as

u(t)eiω0t = u∞ + b(t) + ε(t)

where

• u∞ = (H − ω0 − i0)−1f belongs to the Sobolev spaces H−1/2−0 and is not
in L2 except if it vanishes;

• b(t) is a bounded function with values in L2 whose time Fourier transform
vanishes near 0;

• ε(t) tends to 0 in H−1/2−0.

The singular support of u∞ is contained in the union of the projections of the
stable closed leaves of F . More precisely the wavefront set WF (u∞) is contained
in the Lagrangian cones generated by the stable cycles of F .

Furthermore, the energy ‖u(t)‖2L2(X,dq) grows linearly except if u∞ vanishes.

We will give in Theorem 5.1 a much more precise description of u∞ as a
Lagrangian state (or Fourier integral distribution) associated to the previous
conic Lagrangian manifolds.

Roughly speaking, the wave front set WF (u∞) characterizes the singularities
of the generalized function u∞, not only in space, but also with respect to its
Fourier transform at each point. In more familiar terms, WF (u∞) tells not only
where the function u∞ is singular (which is already described by its singular
support), but also how or why it is singular, by being more exact about the
direction in which the singularity occurs.

More precisely, if u is a Schwartz distribution on Rd, (q0, p0) /∈ F (u) means
that there exists a test function a with a(q0) 6= 0 so that the Fourier transform
of au is fast decaying in p in some conic neighborhood of p0, or in other words
that there exists a pseudo-differential operator E elliptic at the point (q0, p0) so
that Eu is smooth. This definition is completely intrinsic, and can be extended
for a smooth manifold X.

Remark 2.2. Note that there is no assumption regarding a scale separation.
This result is about the spectral structure of H and the localisation of the wave-
front set. It is of course related to the semiclassical analysis presented in the
previous paragraph, but it is not a simple consequence of it.
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The analysis does not rely on explicit computations as the method of partial
pressures used in [13] to obtain rays as the characteristics of some transport
equations. What we use here is only the geometric structure of the foliation,
which is generic for a homogeneous Hamiltonian of degree 0 in dimension 2.

2.2 Strategy of the proof

What we expect to show is that the singularities of the solution to the forced
equation (2.1) are localized on the stable closed cycles of the classical dynamics.
What we need to understand here is therefore the relation between the evolution
exp(−itH) and the dynamics of the Hamiltonian h where h is the principal
symbol of H.

In semi-classical analysis, the fundamental remark is that the symbolic cal-
culus provides good approximations as one has the identity

[ε∂q, ϕ(q)] = O(ε) .

One can indeed consider that the derivation operators (quantified by Fourier
variables) and the multiplication operators (quantified by spatial variables) com-
mute up to smaller error terms, and thus use computations in the phase space
T ∗X to show that the energy associated to (2.1) propagates along the charac-
teristics of h (introducing for instance the Wigner transform).

The point of view of pseudo-differential calculus is a little bit different. The
heart of the theory relies on the fact that the principal symbol h of a pseudo-
differential operator H, even though it does not determine H completely, con-
tains almost all the information, up to smoother error terms. More precisely,
one defines classes of pseudo-differential operators according to the order m of
their symbol

Sm = {σ = σ(p, q) ∈ C∞(T ∗X \X × {0}) / |∂αq ∂βp σ| ≤ Cα,β(1 + |p|)m−|β|} .

Then, if H is a pseudodifferential operator of principal symbol h and order m,
we can define another operator OpW (h) using the Weyl quantization

OpW (h)u(q) :=
1

(2π)2

∫
ei(q−q

′)·ph

(
q + q′

2
, p

)
u(q′) dq′dp

and compare both operators : we find that H − OpW (h) is of order at most
m− 1.

Furthermore, one can prove that the symbol of the commutator i[H1, H2] is
the Lie bracket {h1, h2}, so that

order([H1, H2]) ≤ order(H1) + order(H2)− 1.

By iterating this kind of estimates, we then see that the symbolic calculus allows
to obtain expansions up to any regularizing order. Of course, in general, one
cannot hope to get an explicit description of the solution to (2.1) by these
microlocal techniques, but one expects at least to localize singularities.
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More precisely, in our problem, we will be able to import three types of
informations

(i) the dynamics associated to h has hyperbolic cycles by assumption (M2).
This “attraction” may be expressed with a Lyapunov functional, also
called escape function (which is typically ±ξ3 in the example of the pre-
vious paragraph, depending on the leaf which is considered).

By quantization of this escape function, we get a conjugation operator D
forH, which allows to extend the resolvent ofH on the real axis outside the
discrete spectrum. In particular, this provides interesting informations on
the spectrum of H. This theory, which goes back to Mourre and which is
also referred to as “limit absorption principle” or “commutator method”,
will be presented in Section 3.

(ii) Some attractors of the dynamics associated to h are stable, other are un-
stable. A refinement of the previous argument based on escape functions,
combined with a spectral representation of the solutions to (2.1), shows
that the energy cannot concentrate on unstable cycles (see Section 4).

(iii) In the neighborhood of (stable) hyperbolic cycles, the dynamics has a
universal behavior (obtained by choosing a suitable system of coordinates
linearising the Poincaré return map). By quantization of this change of
variables, we get a normal form operator. Then, we can prove that, mod-
ulo this transformation, generalized eigenfunctions of H (i.e. solutions to
Hv = ωv) solve locally a universal ordinary differential equation. This de-
termines in particular the singular behavior of the solution u(t) as t→ +∞
close to the attractors. This precise description of the limit distribution
including its wavefront set is given in Section 5.

3 Escape function and Mourre theory

The starting point of our analysis is to get the spectral structure of H close to a
non degenerate ω0 (in the sense of assumptions (M1)(M2)), using the conjugate
operator method.

3.1 A short review on Mourre theory

Let H be a self-adjoint operator on some Hilbert space, say L2. Here we further
assume that H is bounded, as it is the case in the application we have in mind.

Definition 3.1. Let D be a self-adjoint (unbounded) operator.

• We say that H is n−smooth with respect to D if the iterated brackets
B1 := i[H,D] and Bk := [Bk−1, D] are bounded up to k = n.

• We define also the Sobolev scale Hs (s ∈ R) associated to D by

Hs = {u ∈ L2 / (1 +D2)s/2u ∈ L2} .

12



The main result of the conjugate operator theory (see [14, 11]) is the following
theorem :

Theorem 3.1 (Mourre). Let us assume that H is n−smooth with respect to D,
and that we have the following commutator estimate : for χ, ψ ∈ C∞0 (R,R+)
with χψ = ψ,

χ(H)B1χ(H) ≥ αψ(H) +K for some compact operator K. (3.1)

Then, for any closed interval I ⊂ supp(ψ)

(i) H has a finite set σp(H) of eigenvalues in I;

(ii) the resolvent (H − z)−1 defined for =(z) 6= 0 admits boundary values at
the points ω ∈ I \ σp(H) in the space Os := L(Hs,H−s) for s > 1/2.

(iii) the boundary values (H−ω±i0)−1 are Hölder continuous C0,µ(I\σp(H), Os)
with s > 1/2 and µ = (2s− 1)/(4s− 1).

(iv) the boundary values (H−ω± i0)−1 admits continuous derivatives of order
n in the spaces Os with s > n− 1/2.

Proof. For the sake of completeness, we give here a sketch of proof of a slightly
simpler result, which turns out to be quite simple in our case since H and B1

are bounded operators in L2.

• The first step is to prove that the discrete spectrum in the interval I is finite. If
it is not, there exists a sequence of orthonormal eigenfunctions φn with Hφn =
ωnφn. By the commutator estimate (3.1), we then get

0 = 〈φn, B1φn〉 ≥ α‖φn‖2 + 〈φn,Kφn〉 .

Since the φn are orthogonal, φn ⇀ 0 weakly in L2, and since K is compact,

lim
n→∞

〈φn,Kφn〉 = 0 .

We obtain a contradiction.

• We then choose ω0 which is not an eigenvalue of H. Define Pδ to be the
spectral projector of H on [ω0− δ, ω0 + δ]. As δ → 0, Pδ converges weakly to 0,
and since K is compact; KPδ → 0. One can then find δ small enough so that
±PδKPδ ≤ α/2P 2

δ , from which we deduce that

PδB1Pδ ≥
α

2
P 2
δ . (3.2)

In the sequel we will remove the subscript δ and call P this spectral projection.
We then define BB∗ = PδB1Pδ and

Gz(ε) = (H − z − iεBB∗)−1, Fz(ε) = |D + i|−νGz(ε)|D + i|−ν ,
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for some ν > 1/2 and ε > 0. Since H is self-adjoint, these operators are defined
and bounded for any z with =z ≥ 0, and we obviously have

‖Gz(ε)‖ ≤
C

ε
, ‖Fz(ε)‖ ≤

C

ε
.

Using (3.2) and the fact that =z ≥ 0, we also have that

‖PGz(ε)|D + i|−ν‖2 = ‖|D + i|−νḠz(ε)P 2Gz(ε)|D + i|−ν‖

≤ 2

αε
‖|D + i|−νḠz(ε)(εBB∗ + =z)Gz(ε)|D + i|−ν‖

≤ 1

αε
‖|D + i|−ν(Ḡz(ε)−Gz(ε))|D + i|−ν‖

≤ 2

αε
‖|D + i|−νGz(ε)|D + i|−ν‖ ≤ 2

αε
‖Fz(ε)‖

Finally, using the spectral localization, we have that for any z such that <z ∈
[ω0 − δ/2, ω0 + δ/2]

‖(I − P )Gz(ε)|D + i|−ν‖ ≤ Cδ. (3.3)

In particular, one has

‖Gz(ε)|D + i|−ν‖ ≤ Cα,δ
(
‖Fz(ε)‖

ε

) 1
2

and by interpolation for 0 < η < ν

‖Gz(ε)|D + i|−η‖ ≤ ‖Gz(ε)|D + i|−ν‖η/ν ‖Gz(ε)‖1−η/ν

≤ Cα,δ
(

1

ε

)1− ην (‖Fz(ε)‖
ε

) η
2ν

.
(3.4)

• Let us now look at the derivative of Fz(ε) with respect to ε.

dFz(ε)

dε
= |D + i|−νGz(ε)P [D,H]PGz(ε)|D + i|−ν .

A straightforward computation shows that

P [D,H]P = [D,H− z− iεBB∗] + [D, iεBB∗] + (P − I)[D,H]P + [D,H](P − I)

from which we deduce that

dFz(ε)

dε
= |D + i|−ν (−DGz(ε) +Gz(ε)D) |D + i|−ν

+ ε|D + i|−νGz(ε)[D, iB∗B]Gz(ε)|D + i|−ν

+ |D + i|−νGz(ε)(P − I)[D,H]PGz(ε)|D + i|−ν

+ |D + i|−νGz(ε)[D,H](P − I)Gz(ε)|D + i|−ν

14



Using the fact that [D,Gε(z)], [D, iεBB∗] and [D,H] are bounded, we get∥∥∥∥dFz(ε)dε

∥∥∥∥ ≤ 2‖Gz(ε)|D + i|1−2ν‖+ ε‖Gz(ε)|D + i|−ν‖2

+ ‖Gz(ε)|D + i|−ν‖‖(I − P )Gz(ε)|D + i|−ν‖

From the a priori estimates (3.3)(3.4), we then deduce that∥∥∥∥dFz(ε)dε

∥∥∥∥ ≤ C (1

ε

) 1
2ν

‖Fz(ε)‖1−
1
2ν .

We then obtain that ‖Fz(ε)‖ has no singularity as ε → 0 since 2ν > 1. More
precisely we obtain that

‖Fz(ε)− Fz(0)‖ ≤ Cε1−1/(2ν) . (3.5)

This proves in particular that (H − z)−1 defined for =(z) > 0 admits boundary
values at the points ω ∈ [ω0 − δ/2, ω0 + δ/2] in the space Os := L(Hs,H−s).

• To obtain the Hölder continuity, we compute

dFz(ε)

dz
= |D + i|−νGz(ε)Gz(ε)|D + i|−ν .

Using the uniform bound on Fε(z), we obtain that∥∥∥∥dFz(ε)dz

∥∥∥∥ ≤ C

ε
.

Then,

‖Fz(ε)− Fz′(ε)‖ ≤
C

ε
|z − z′| .

Combining this estimate with (3.5) and choosing ε2−1/(2ν) = |z − z′|, we get

‖Fz(0)− Fz′(0)‖ ≤ C|z − z′|µ for µ = (2s− 1)/(4s− 1) .

The additional regularity is obtained by looking at higher order derivatives
of Fz(ε).

3.2 Escape function for the classical dynamics

As explained in paragraph 2.2, the existence of a conjugate operator for a
pseudo-differential operator H of principal symbol h is related to the fact that
the Hamiltonian dynamics of h admits an escape function. In what follows,
we will construct D as a pseudo-differential operator of degree 1 with principal
symbol d and the commutator identity (3.1) will follow from an estimate on the
principal symbol of B1 = i[H,D] which is b1 = {h, d}. The property (3.1) will
indeed be obtained from G̊arding’s inequality (see [8] pp 129–136)
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Theorem 3.2 (G̊arding). Let B be a self-adjoint pseudo-differential operator
of degree 0 on a compact manifold, with principal symbol b > 0. Then

B ≥ cId +R

for some c > 0 and some operator R of order −1.

The construction of the escape function d is therefore the heart of the proof.
We want to construct a function d : Σω0

→ R, called an escape function, homo-
geneous of degree 1, so that the Poisson bracket {h, d}, which is homogeneous
of degree 0, is strictly positive. The function d can then be extended smoothly
to energies close to ω0.

Proposition 3.2. Under the assumptions (M0), (M1) and (M2), there exists
a global escape function d for the Hamiltonian h :

{h, d} > 0 on T ∗X \ 0 .

We start by constructing a normal form of the foliation on each basin.

Lemma 3.3. Let γ be a hyperbolic closed leaf of the foliation F with Lyapunov
exponent e−2πλ 6= 1. Denote by Bγ the basin of attraction (or “repulsion”) of γ.
There exists a diffeomorphism of Bγ on (R/2πZ)x × Ry so that the foliation is
given by dy + λydx = 0 oriented by dx > 0.

Proof. Up to a change of orientation, we can assume that γ is a stable cycle.
• The first step is to construct the normal form close to the cycle. Let S be a
local Poincaré section transverse to γ. By definition, the Poincaré return map P
sends S on itself. By Sternberg’s linearization theorem for 1D maps [19], there
is a chart (I, 0) ⊂ (Ry, 0) of S so that

P (y) = µy with 0 < µ = e−2πλ < 1.

We then choose the normalisation of the vector field V tangent to the foliation F
so that the return time is 2π. And we denote by x the coordinate starting from
0 along S and so that V.x = 1. By definition, x ∈ R/2πZ. This construction
provides a foliation F0 given by dy + λydx = 0 and oriented by dx > 0.

We have now two periodic foliations F and F0: they agree at x = 0 and x =
2π. Thus, on each section x = constant, there exists a unique diffeomorphism
sending the first onto the second one. One checks that is is smooth. In other
words, the normal F0 is a re-parametrization of F , which encodes the geometry
of the trajectories.

• The second step is then to extend the normal form globally in the basin. We
will use here ideas from scattering theory introduced by Neslon [16].

We first choose the normalization of a generator of the foliation so that it
extends smoothly the vector field V defined near γ. We denote by U(t) the flow
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of V on B, and by U0(t) the flow of V0 = ∂x − λy∂y on B0 := (R/2πZ)x × Ry.
Both flows are complete.

Let us then consider the map W : B → B0 defined by

W (q) = lim
t→+∞

U0(−t)U(t)q.

The limit clearly exists because W is the identity near γ and for any q ∈ B,
U(t)q → γ as t→ +∞. Both flows are therefore conjugated by W .

Remark 3.4. Note that for any q ∈ X outside the closed leaves, q belongs both
to the basin of attraction of a stable cycle, and to the basin of repulsion of an
unstable cycle. The foliation F at q is therefore conjugated to two foliations F0

with different λ.

As a corollary of the previous Lemma, we obtain the local expression of the
Hamiltonian h :

Lemma 3.5. Let Bγ be the basin of attraction (or “repulsion”) of the hyper-
bolic closed leaf γ of the foliation F , and denote by (x, y, ξ, η) the coordinates
associated to the normal form introduced in Lemma 3.3.

Then there exists a conic neighborhood of the cone Γγ ⊂ Σω0 generated by
Bγ defined by

Uγ := {(x, y; ξ, η)| |ξ| < cη} ⊂ T ?X \ 0

such that the Hamiltonian h can be written locally on Uγ

h(x, y, ξ, η)− ω0 = Φ2(x, y, ξ, η)

(
ξ

η
− λy

)
for some non vanishing function Φ homogeneous of degree 0.

Proof. The orthogonal of the foliation F0 is given by ξ − λyη = 0. Hence η 6= 0
on the cone generated by Bγ . Without loss of generality, we choose η > 0 on
the cone Γγ generated by γ.

Any homogeneous function vanishing on Γγ is the product of

h0(x, y, ξ, η) =
ξ

η
− λy

by a non vanishing multiplier, which is homogeneous of degree 0 because of the
assumption (M0).

Moreover, in order to get the right stability or unstability according to the
sign of λ, this multiplier has to be non negative. Defining Φ as its square root
gives the expected formula.
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Proof of Proposition 3.2. Equipped with these preliminary results, we can con-
struct the escape function.
• The first step is to define local escape functions on the basin of attraction Bγ ,
by using the explicit formula of the Hamiltonian h in the coordinates associated
with the normal form. For any k > 0, we can define a smooth function φ ∈
C∞c (R, [0, 1]) such that φ ≡ 1 on [−k, k] and satisfying yφ′(y) ≤ 0 on R. We
then set

dγ := ληφ(y) .

A straightforward computation shows that

{Φ2h0, dγ} = Φ2{h0, dγ}+ h0{Φ2, dγ} = λ2Φ2 (φ− yφ′)

on the cone of Γγ ⊂ Σω0
generated by Bγ .

Hence the function dγ satisfies

{h, dγ} ≥ 0 on Σω0
,

{h, dγ} > 0 on Γγ,k

where Γγ,k ⊂ Σω0 is the cone generated by {(x, y) ∈ B0| |y| < k}.

• The global escape function is obtained as a sum of local escape functions.
From the assumption (M2), we know that Σω0 is a finite union of Bγ . Each
of these Bγ has a normal form, and the corresponding cone Γγ ⊂ Σω0 can be
covered by the unions of Γγ,k for all k ∈ N∗

Σω0
⊂

⋃
γ closed leaf

⋃
k∈N∗

Γγ,k .

Since the quotient Z of Σω0
by positive dilations is compact, we can extract a

finite covering

Σω0
⊂

⋃
γ closed leaf

Γγ,kγ .

By adding the corresponding local escape functions, we then get a function d
such that {h, d} > 0 on Σω0

.

Remark 3.6. For any z ∈ Σω0
which is not in the union of cones generated

by the unstable leaves, the Hamiltonian trajectory φt(z) converge as t→ +∞ to
the infinity of the cones generated by the stable leaves, which are invariant conic
Lagrangian submanifolds of T ?X \ 0.
The dynamics on these cones is spiraling: using the coordinates (x, η) in these
cones, we get

ẋ = Φ2 1

η
, ẏ = −Φ2λy

η
, η̇ = Φ2λ

which gives the spirals
y = y0e

−λx, η = η0e
λx.

18



4 Quasi-resonances and long time behaviour

Mourre theory provides informations on the spectral decomposition of H close
to a non degenerate ω0 (in the sense of assumptions (M1)(M2)). We will now
use this (local) spectral representation of H to describe the long time behaviour
of the solution u to the forced equation (2.1).

In the sequel, we further assume that ω0 is not an eigenvalue of H.

4.1 Functional representation of the solution to (2.1)

The asymptotic behaviour of u(t) is described in the following Proposition.

Proposition 4.1. Under the previous assumptions on H and ω0, the solution
to (2.1) can be decomposed as

u(t) = e−iω0t (H − ω0 − i0)
−1
f + b(t) + ε(t)

where b(t) is a bounded oscillating function of t with values in L2 whose inverse
Fourier transform is supported in σpp(H) ∪ σsing(H), and ε(t) tends to 0 in
H−1/2−0.

This decomposition is obtained from a general result on some oscillating
integrals :

Lemma 4.2. Let B,B0 ⊂ B be two Banach spaces. Let ν = νac + νsing be a
compactly supported Radon measure on R with values in B such that
- the absolutely continuous part νac = m(s)ds with m Hölder continuous C0,µ

(µ > 0) near 0
- the singular part νsing has values in B0 and is supported outside from 0.

Then the integral I(t) = 〈(1−e−its)s−1|dν(s)〉 can be decomposed in a unique
way as

I(t) = I∞ + b(t) + ε(t)

where I∞ = 〈(s− i0)−1|dν(s)〉 ∈ B, ε(t) → 0 in B as t → ∞, and b is bounded
with values in B0 and inverse Fourier transform supported on supp(νsing).

Proof. The proof is actually a simple calculation on distributions. Let a > 0 be
such that

[−a, a] ∩ supp(νsing) = ∅ .

Since ν is compactly supported, there is no issue of convergence at infinity. We
then split the integral in two parts :

I1(t) =

∫
|s|<a

1− e−its

s
dνac +

∫
|s|≥a

1

s
dνac

I2(t) = −
∫
|s|≥a

e−its

s
dνac +

∫
|s|≥a

1− e−its

s
dνsing .
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We check that the second term in I2(t) satisfies the properties required for
b(t), while the first term in I2(t) tends to 0 thanks to the Riemann-Lebesgue
Theorem.

We have then to study I1(t). As m is of class C0,µ near 0, we have that
m1(s) = (m(s)−m(0))/s belongs to L1, so that

I1(t) =

∫
|s|<a

1− cos ts

s
(m(0)+sm1(s))ds+i

∫
|s|<a

sin ts

s
(m(0)+sm1(s))ds+

∫
|s|≥a

1

s
dνac

The second integral converges to iπm(0). Using the parity of cos and the
Riemann-Lebesgue theorem, we obtain that the first integral tends to∫

|s|<a

m(s)−m(0)

s
ds = p.v.

(∫
|s|<a

m(s)

s
ds

)
.

Adding the third term, we can remove the truncation.
In the limit, we get finally

p.v.

(∫
m(s)

s
ds

)
+ iπm(0) = 〈(s− i0)−1|m〉

by the Sokhotski-Plemelj theorem.

Proof of Proposition 4.1. . The solution u of (2.1) is given by

u(t) =
e−itω0 − e−itH

H − ω0
f

Let us then introduce the spectral decomposition of f with respect to H−ω0 :

χ(H − ω0)f =

∫
R
χ(s)dν(s) .

We then have that

u(t) = e−itω0

∫
1− e−its

s
dν(s) .

Theorem 3.1 provides the existence of a closed interval I which contains 0
such that

(i) H − ω0 has no eigenvalue in I;

(ii) the resolvent (H−ω0− z)−1 defined for =(z) 6= 0 admits boundary values
at the points ω ∈ I, with continuous derivatives of order 1 in the spaces
O1/2+0.

Using the regularity of the resolvent on I, we get that ν ∈ C1(I,H−1/2−0) is
given by

ν(λ) =
1

2iπ
((H − ω0 − λ− i0)−1f − (H − ω0 − λ+ i0)−1f) .
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In other words, ν satisfies the assumptions of the Lemma 4.2 with B =
O−1/2−0 and B0 = L2. The decomposition of the oscillating integral obtained
in Lemma 4.2 gives therefore the expected behavior for u(t).

Let us insist on the fact that u(t) stays in L2 for any finite time. Its L2 norm
will in general converge to +∞ as t→∞. This asymptotics says that u(t)eiω0t

converges in H−1/2−0 as t → +∞, modulo a bounded function with values in
L2.

Remark 4.3. Note that the transfer of energy via quasi-resonances is a little bit
different from the classical resonance process. The point is that the generalized
eigenfunctions corresponding to the continuous part of the spectrum have infinite
energy, it is therefore impossible that they emerge in finite time even though the
forcing is concentrated on one frequency.

The quasi-resonant process is governed by the following scheme

(i) the system pumps energy exciting a small band of frequencies around the
forcing frequency;

(ii) this band shrinks gradually as time increases;

(iii) as t tends to infinity, the energy grows linearly in time and becomes infi-
nite: what we observe looks more and more like a generalized eigenfunc-
tion. If µ is the spectral measure of f defined by∫

R
χ(λ)dµ(λ) := 〈χ(H)f |f〉,

we get

‖u(t)‖2 = 4

∫
J

sin2(ω0 − λ)t/2

(ω0 − λ)2
dµ(λ)

and hence the behaviour of the energy is determined by the behaviour of
the spectral measure of f near ω0. In our case, we have dµ(λ) = |a(λ)|2dλ
so that

‖u(t)‖2 = 4π|a(ω0)|2t+ o(t) . (4.1)

4.2 Energy carried by the unstable cycles

A refinement of the conjugate operator method allows actually to prove that
there exists a direction of propagation for the evolution exp(−itH). We indeed
have the following theorem

Theorem 4.1 (Mourre). Let us assume that H is at least 2−smooth with respect
to D, and that the commutator estimate (3.1) holds. Denote by P−D the spectral
projectors of D on R−. Then,

sup
λ∈I
‖P−D (H − λ− i0)−1|D + i|−ν‖ ≤ C for ν > 1 .
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Sketch of proof. The arguments here are quite similar to those used in the proof
of Theorem 3.1. We define for =(z) > 0, ε > 0 and ν > 1

Gz(ε) = (H − z − iεBB∗)−1, Fz(ε) = P−D e
εDGz(ε)|D + i|−ν .

so that

‖Fz(ε)‖ ≤
C

ε
.

• Let us now look at the derivative of Fz(ε) with respect to ε.

dFz(ε)

dε
= P−D e

εD (DGz(ε)−Gz(ε)P [H,D]PGz(ε)) |D + i|−ν .

A straightforward computation shows that

dFz(ε)

dε
= P−D e

εDGz(ε)D|D + i|−ν

+ εP−D e
εDGz(ε)[D, iB

∗B]Gz(ε)|D + i|−ν

+ P−D e
εDGz(ε)(P − I)[D,H]PGz(ε)|D + i|−ν

+ P−D e
εDGz(ε)[D,H](P − I)Gz(ε)|D + i|−ν

Note that the exponential term introduces a shift, so that the derivative D acts
only on the left in the first term. From (3.3)(3.4), we then get estimates for the
three first terms.

• The difficulty here is to get a control on the last term, and more precisely to
prove that [D,H](P − I)Gz(ε)|D + i|−ν is a bounded operator from L2 to Hη
for some η > 0.
We start from the following identity

(P − I)Gz(ε)|D + i|−ν = (P − I)Gz(0)
(
1 + iεB∗BGz(ε)

)
|D + i|−ν

= (P − I)Gz(0)|D + i|−ν + o(ε1/2)

where the remainder is estimated by (3.4).
We then have to prove that |D|s[D,H](P − I)Gz(0)|D + i|−ν is a bounded
operator. The idea is to use the fact that, for any bounded operator C and for
any η ∈ [0, 1[

if [C,D] is bounded, then |D|ηC|D + i|−1 is bounded.

In our case, C = [D,H](P−I)Gz(0) is indeed a bounded operator, and the com-
mutator can be expressed in terms of [D,H] and [D, [D,H]] which are bounded
as well.

• We finally end up as previously with an inequality of the type∥∥∥∥dFz(ε)dε

∥∥∥∥ ≤ C (1

ε

)1− η
2ν

‖Fz(ε)‖
η
2ν .

We then obtain that ‖Fz(ε)‖ has no singularity as ε→ 0.
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A corollary of this theorem is that the energy cannot concentrate on the
unstable cycles.

Proposition 4.4. Denote by u the solution of the forced equation (2.1). Let γ be
an unstable cycle in Σω0

, Bγ its basin of repulsion. Denote by Q a localization
operator whose microlocal support lies in a conic neighborhood of the cone Γ
generated by Bγ . Then Qu∞ ∈ L2.

Proof. Going back to the construction of the escape function close to γ, we see
that in local coordinates

dγ(x, y, ξ, η) = ληφγ(y)

with λ < 0. In particular dγ is strictly negative near Γ.
In other words, this means that

Q = QP−D .

modulo smoothing operators.
We then conclude that for any ν > 1

Qu∞ = QP−D (H − λ− i0)−1f

= QP−D (H − λ− i0)−1|D + i|−ν (|D + i|νf) ∈ L2(X) ,

which concludes the proof.

Remark 4.5. By using a stronger version of Theorem 4.1 (see [15] Corollary
I.3, Equation (II)), one can get a description of the evolution, and not only of
the resolvent. In particular, one can prove that u(t) stays bounded in L2 near
the unstable cycles as t→ +∞.

5 Precise description of u∞

Thanks to the normal form defined in Lemma 3.3, one can actually obtain a
very precise description of u∞ near any closed leaf γ. In particular this gives
almost explicit formula for the wavefront.

Theorem 5.1. Under the assumptions (M0), (M1) and (M2), for any f ∈
C∞(X), the distribution u∞ = (H−ω0−i0)−1f is smooth outside the projections
on X of the stable closed leaves. If γ is such a stable closed leave generating
a cone Γ, then u∞ is, microlocally near Γ, a Fourier integral distribution of
order 0, whose conic Lagrangian manifold is Γ and whose principal symbol is a
non-homogeneous symbol of order 0 on Γ invariant by the dynamics of Xh.

In more explicit terms, denote by (x, y, ξ, η) the coordinates associated with
the normal form on the basin Bγ so that γ projects onto y = 0. Let χ ∈ C∞c (R)
be a test function which is identically equal to 1 near 0. Then the Fourier
transform with respect to y of χu∞ satisfies

û∞(x, η) ≡ 1η≥0

∞∑
j=0

uj(x, η)

23



where uj is a symbol of degree −j. Furthermore the half density u0

√
dxdη is

invariant by the restriction of the Hamiltonian dynamics Xh to Γ.

Once again the challenge here is to transfer informations we have on the
classical Hamiltonian dynamics, especially the local representation of h near
the closed leaves, to get informations on the solutions to (H − ω0)v ∈ C∞(X).
We will then need a counterpart of the normal form at the level of operators.

5.1 Pseudo-differential normal form

Let γ be a cycle on Σω0
, and Γ the cone associated to γ. In coordinates associ-

ated with the normal form defined in Lemma 3.3,

Γ := {(x, y, ξ, η) / ξ = λyη and η > 0} ⊂ T ? (R/2πZ× R) \ 0

By Lemma 3.5, there exists a conic neighborhood U of the cone generated by
the basin Bγ

U := {(x, y; ξ, η)| |ξ| < cη} ⊂ T ?X \ 0 (5.1)

such that the principal symbol of H can be written locally on U

h(x, y, ξ, η)− ω0 = Φ2(x, y, ξ, η)h0(x, y, ξ, η)

with h0(x, y, ξ, η) =
ξ

η
− λy for some λ 6= 0 .

We further know that the sub-principal symbol of H vanishes.
We would therefore like to define a reference operator H0 of principal symbol

h0 and zero subprincipal symbol. The difficulty is that h0 is not an admissible
symbol, being not smooth at η = 0. We therefore choose for H0 any pseudo-
differential operator of degree 0 whose full symbol is h0 in the cone U and which
is elliptic outside U . Note that the symbol of H0 cannot be real valued since
the sign of h0 changes on Γ.

We then have the following pseudo-differential normal form result.

Proposition 5.1. Let H be a self-adjoint pseudo-differential operator, with
principal symbol h = h0Φ2 in U and vanishing sub-principal symbol. There
exists an elliptic pseudo-differential operator A of principal symbol 1/Φ so that

A?HA−H0 = R

where R is a smoothing operator when acting on functions which are microlo-
calized on U , i.e. its full symbol is fast decaying in U .

Proof. We proceed by induction. It is enough to consider symbols in U . In
what follows ≡U means that the difference is smoothing in U .

Defining A0 = OpW (1/Φ), we get first

A?0HA0 ≡U H0 + P2
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for some pseudo-differential operator P2 of order -2. This uses the fact that the
sub-principal symbol of A?0HA0 vanishes; this follows from the identity which
extends the formula for the principal symbol of the commutator used in Section
3.2 :

sub(PQ) = sub(P )σp(P ) + σp(Q)sub(P ) +
1

2i
{σp(P ), σp(Q)}

and the fact that sub(A0) = 0 since we have used the Weyl quantization.
We then have to find, for any integer n ≥ 1, some self-adjoint pseudo-

differential operators An and Pn+2 of respective orders −n and −(n + 2) so
that

e−iAn(H0 + Pn+1)eiAn ≡U H0 + Pn+2

This gives the following co-homological equation in U for the principal symbol
an of An

{h0, an}+ pn+1 = 0 in U .

In order to solve this equation, we decompose an and pn+1 into Fourier series
with respect to x. As we expect an to be homogeneous of degree −n, we set

an = η−n
∑
k∈Z

αn,k

(
y,
ξ

η

)
eikx, pn+1 = η−(n+1)

∑
k∈Z

ρn,k

(
y,
ξ

η

)
eikx,

we get, using the variable s = ξ/η:

s (∂yαn,k + λ∂sαn,k) + (λn− ik)αn,k = ρn,k

This singular differential equation admits a unique smooth solution in R2
y,s given

by

αn,k(y, s) =
1

λ

∫ 1

0

τn−1− ikλ ρn,k

(
y +

(τ − 1)s

λ
, τs

)
dτ

Furthermore, since the partial derivatives of αn,k are controlled by those of
ρn,k uniformly in k, we obtain that the solution an has the same regularity as
pn+1.

5.2 Solutions of (H − ω0)u ∈ C∞ near the closed leaves

The general theory tells us that the wavefront set of any solution to (H−ω0)u ∈
C∞ is contained in the characteristic manifold Σω0

and is invariant by the
dynamics of Xh. The idea is then to use the reference operator H0 to get an
explicit formula for the singularity.

Proposition 5.2. Any distribution u so that (H − ω0)u is smooth, is given,
microlocally near each closed cycle γ in the normal form chart, by an expansion
of the form

u = A

(∑
k∈Z

vk(y + i0)−1+ik/λeikx

)
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where A is an elliptic pseudo-differential operator of degree 0, and the growth of
(vk) is controlled by (5.2).

In particular, such a solution is smooth microlocally near a closed cycle γ as
soon as it is microlocally L2 near that cycle.

In order to establish this result, the first step is to solve (microlocally) the
equation H0v ∈ C∞ for the reference operator H0.

Lemma 5.3. Any solution of H0v ∈ C∞, whose wavefront set is contained in
the set U defined by (5.1), admits the following expansion, up to smooth terms,

v(x, y) ≡
∑
k∈Z

vk(y + i0)−1+ik/λeikx .

Proof. We know already that the wave front set of v is included in the character-
ictic manifold ξ = λyη intersected with U . Composing on the left by D := ∂y,
we get that v satisfies (∂x − λ(y∂y + 1))v ∈ C∞.

Using a Fourier decomposition with respect to x, we are then reduced to
solve

(ik − λ(y∂y + 1)) vk = −λgk
for some smooth gk.

This is a simple linear ordinary differential equation the solution of which is
given, for y > 0, by

vk(y) =

∫ 1

0

s−ik/λgk(ys)ds+ l+k y
−1+ik/λ
+

A similar expression holds for y < 0. The first term is smooth if gk is.
Summing the Fourier expansions and using again the Sokhotski-Plemelj the-

orem, we get

v ≡
∑
k

v+
k (y + i0)−1+ik/λeikx +

∑
k

v−k (y − i0)−1+ik/λeikx

Now, since the Fourier transform of the second sum is supported by η < 0, it
should vanish because of the wavefront set assumption.

We then need to characterize the admissible sequences (vk).

Lemma 5.4. The sum T :=
∑
vk(y+ i0)−1+ik/λeikx defines a tempered distri-

bution if and only if

vke
π(k/λ)− is of polynomial growth. (5.2)

Furthermore, if T ∈ L2
loc near y = 0, the sequence (vk) is identically zero.
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Proof. We recall that the Fourier transform extends to tempered distributions
(see [10], section 2.3). In particular we have, for α ∈ R \ 0:

F
(
(y + i0)−1+iα

)
(η) = −2πie−απ/2

Γ(1− iα)
η−iα+ ≡ γαη−iα+

We know also that

|Γ(1− iα)| =
√

πα

sinhπα

so that

|γα| = 2πe−απ/2
√

sinhπα

πα
∼α→∞

√
2π

|α|
eπα− .

The condition for T to be a tempered distribution is that the series of its
Fourier coefficients grows at most polynomially, which is exactly condition (5.2).

Since none of the elementary functions (y+ i0)−1+iα is in L2
loc, the only way

that T ∈ L2
loc near y = 0 is that all Fourier coefficients vanish.

Equipped with this characterization of the solutions to H0v ∈ C∞, we can
now deduce the structure of singularities in u∞ using the normal form.

Proof of Proposition 5.2. Let u be a solution to (H − ω0)u ∈ C∞. We know
that WF (u) ⊂ Σω0

.

Using a microlocal partition of unity on Σω0
, we can decompose

u =
∑
γ

uγ

where uγ is a solution to (H − ω0)uγ ∈ C∞, microlocalised on the cone Γγ
generated by the cycle γ. We have then WF (uγ) ⊂ Γγ .

By Proposition 5.1, there exists an operator A elliptic on a conic neighborhood
of Γγ such that the equation Huγ ∈ C∞ rewrites

H0A
−1uγ ∈ C∞, WF (A−1uγ) ⊂ Γγ

We get then, from Lemma 5.3 and 5.4

A−1u ≡
∑
k

vk(y + i0)−1+ik/λeikx

.
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5.3 Proof of Theorem 5.1

Let u∞ = (H − ω0 − i0)−1f for some f ∈ C∞(X).
• By Proposition 4.4, we get that u∞ is L2 near the unstable cycles. Then, by
Proposition 5.2, we deduce that u∞ is smooth near the unstable cycles.

Remark 5.5. Note that the same argument shows that any L2 eigenfunction
of H is actually smooth.

• Since the wavefront set of u∞ is invariant by the dynamics, and that u∞ is
smooth near the unstable cycles, we further obtain that u∞ is smooth in the
unstable basins. In view of the general form of the solutions of (H−ω0)u ∈ C∞
on the cone generated by any basin Bγ , this regularity implies that (vk) is fast
decaying.
•Any distribution microlocalized on U of the form v(x, y) =

∑
k vk(y+i0)−1+ik/λeikx,

with fast decaying coefficients (vke
π(k/λ)−) is a Fourier integral distribution as-

sociated to Γ.
This follows easily by taking the y−Fourier transform v̂(x, η) =

∑
γk/λvkη

−ik/λ
+ eikx

which is a symbol of degree 0 in η.
Then applying the operator A keep that property.

Remark 5.6. Note that, once we know that the wavefront set is located on the
cones generated by stable orbits, this singular behavior could be also obtained by
semiclassical arguments, or by boundary layer techniques.

6 Conclusion

We have shown that the phenomenon of concentration of the energy on attrac-
tors is a very general feature of forced dynamics governed by a pseudo-differential
operator with principal symbol homogeneous of degree 0, associated to a non
singular foliation.

In the work [4] in preparation, we extend this work to more singular situa-
tions. We keep the assumptions that Σω0

is nondegenerate, and that it satisfies
a Morse-Smale property which is crucial to build escape functions and apply
Mourre theory. But we remove the assumption that the projection π is a finite
covering by using suitable canonical transformations and their quantizations as
in [20, 21]. We can then admit singular foliations with singular hyperbolic points
which are foci or nodes (but not saddle points for the moment). Actually, these
singular points and the corresponding generic normal forms are already studied
in the context of implicit differential equations (see [1]).

However, even extended to singular foliations, this general theory fails to
apply to the specific situation of internal waves observed in lab experiments :

• we would indeed need to understand how to catch the effects of boundaries
which create discontinuities in the frequency space;
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• furthermore it would be necessary to add viscous effects, which are no
more negligible when the wavelengths become large (see [18, 17]).

These questions are major challenges for the mathematical analysis.

Another interesting perspective comes from the following remark. Although
it is linear, the system we have studied here exhibit the main features of wave
turbulence. We have indeed proved that

• with a stationary forcing at wavelengths O(1), small scales will be excited;

• the energy cascade can be read on the frequency distribution of the sin-
gular part of the solution. We got that the y− Fourier transform of the
limit is not going to 0.

These properties come clearly from the quasi-resonant mechanism, or in other
words to the fact that the spectrum of the operator is continuous. This could be
an indication for the study of turbulence due to some weak coupling of waves.

Acknowledgements. We would like to thank E. Ghys for enlightening dis-
cussions on escape functions. We also thank J. Sjöstrand, S. Dyatlov and M.
Zworski for their very useful comments on the first version of this paper.
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