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Attractors for two dimensional waves with

homogeneous Hamiltonians of degree 0

Yves Colin de Verdière ∗ &
Laure Saint-Raymond †

September 24, 2018

Abstract

In domains with topography, inertial and internal waves exhibit inter-
esting features. In particular, numerical and lab experiments show that,
in two dimensions, for generic forcing frequencies, these waves concentrate
on attractors. The goal of this paper is to analyze mathematically this
behavior, using tools from spectral theory and microlocal analysis.

1 Physical background

The mathematical problem which will be discussed in this paper is motivated
by the physical observation that, in presence of topography, forcing inertial
or internal waves leads to the formation of singular geometric patterns, which
accumulate most of the energy.

1.1 Inertial and internal waves

Inertial and internal waves are of upmost importance in oceanic flows. They
describe small departures from equilibrium in an incompressible fluid submitted
respectively to the Coriolis force (due to the Earth rotation), or to the combi-
nation of density stratification and gravity. These waves are very well described
when the effect of boundaries is neglected, assuming for instance that the fluid
is contained in a parallelelipedic box with zero flux condition at the boundary
(or equivalently in a periodic box). For the sake of completeness, we recall
here the equations governing these waves, and their usual decomposition as a
superposition of plane waves using the Fourier transform.
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• Let us first consider the case of inertial waves, assuming that the density of
the fluid is homogeneous ρ(t, x) = ρ0. The incompressibility constraint states
div u = 0, where u is the bulk velocity of the fluid.

The (linearized) conservation of momentum provides

ρ0(∂tu+ u ∧ Ω) +∇p = 0

denoting by p the pressure, and by Ω the rotation vector. Note that there
is no convection term u · ∇u here as it is expected to be negligible for small
fluctuations. Assuming for the sake of simplicity that ρ0 = 1 and taking the
divergence of this equation, we get

div(u ∧ Ω) + ∆p = 0

from which we deduce that the pressure is given by

p = (−∆)−1 div(u ∧ Ω) .

We therefore end up with the dynamical equation

∂tu+ (I +∇(−∆)−1 div)(u ∧ Ω) = 0 . (1.1)

If the rotation is constant (say in the vertical direction Ω = e3), we rewrite
the incompressibility constraint in Fourier variables

ph · ûp,h + p3ûp,3 = 0,

using the subscript h to denote the horizontal component, and take the Fourier
transform of (1.1) to get

∂tûp,h +

(
p1p2
|p|2 1− p21

|p|2

−1 +
p22
|p|2 −p1p2|p|2

)
ûp,h = 0 .

The matrix has eigenvalues ±i|p3|/|p|. In other words, the solution to the wave
equation can be obtained as a superposition of plane waves exp(i(p · x − ωt))
with dispersion relation

ω = ±|p3|
|p|

.

• The model leading to internal waves is a little bit more complicated. It
describes an incompressible fluid which at equilibrium is stratified in density
with stable profile ρ̄(x) = ρ̄(x3) with ρ̄′(x3) < 0. Small perturbations will
create both a velocity field u and a fluctuation of the density ρ = ρ̄+ η.

The incompressibility constraint states as previously div u = 0. If the fluc-
tuation around equilibrium is small, the conservation of mass

∂tρ+ div(ρu) = 0
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gives at leading order
∂tη + u · ∇ρ̄ = 0 .

The (linearized) conservation of momentum states

ρ̄∂tu+ ηge3 +∇p = 0

denoting by g the gravity constant, and by p the pressure. As previously, the
pressure is computed thanks to the incompressibility condition

−div

(
1

ρ̄
∇p
)

= g∂3
η

ρ̄
.

In most physical systems, the variations of ρ̄ are very small compared to its
average ρ0, and count only for the buoyancy term. The pressure is then given
by

p = (−∆)−1(g∂3η) .

The system of equations can be therefore reduced to get the Boussinesq approx-
imation 

∂tη + u3ρ̄
′(x3) = 0,

∂tuh +
g

ρ0
∇h(−∆)−1∂3η = 0,

∂tu3 +
g

ρ0
(I + ∂33(−∆)−1)η = 0 .

Assuming in addition that the stratification is affine so that ρ̄′ is a constant,
and taking the Fourier transform of this system, we obtain that

∂t

(
η̂p
ûp,3

)
+

(
0 ρ̄′

g
ρ0

(
1− p23

|p|2

)
0

)(
η̂p
û3,h

)
= 0 .

The solution can be expressed as a sum of plane waves with dispersion relation

ω = ±N |ph|
|p|

,

where N = (−gρ̄′/ρ0)1/2 denotes the Brunt-Väisälä frequency.

Remark 1.1. In both cases, the pressure is obtained by solving the Laplace
equation. In a non periodic domain, we expect the solution to depend on the
boundary conditions. The Leray projection onto divergence free vector fields
defined by

P = (I +∇(−∆)−1 div)

is a non local (pseudo-differential) operator.
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1.2 The effect of topography

When the domain is not periodic (or when the rotation or the Brunt-Väisälä
frequency are not constant), the previous analysis fails because we cannot use the
Fourier transform, and it becomes complicated to handle the Leray projection.
In general, the zero-flux condition on the boundary is incompatible with any
decomposition on special functions. Actually we will see that the waves exhibit
a very different behaviour.

The lab experiments conducted by physicists, especially in the groups of
Maas and Dauxois [16, 12, 5], consist in analyzing the response of a stratified
fluid to some monochromatic forcing in different geometries. In [5] for instance,
the domain is a 2D trapezium and the symmetry breaking is obtained by intro-
ducing a sloping boundary.

Internal wave attractors in experiments and 3D numerical simulations 113
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FIGURE 1. (Colour online) (a) Experimental set-up. A sloping wall is inserted inside a
tank of size L ⇥ W ⇥ H = 800 ⇥ 170 ⇥ 425 mm3. The working bottom length L of the
section, the depth H, and the sloping angle ↵ can be clearly identified in this picture.
A wave maker located on the left of the tank generates a mode 1 forcing at a tunable
frequency !0. The flow is mostly 2D as demonstrated within the text and, therefore,
essentially independent of the transversal variable y except for narrow boundary layers
at lateral walls and weak nearly horizontal secondary currents in the wave beams. The
schematic attractor is depicted with the dotted quadrilateral in the working domain. The
longitudinal (respectively transversal) variable ⇠ (respectively ⌘) of the most energetic
branch of the attractor are also defined on the picture. (b) Example of a stratification
measured with the conductivity probe before one experiment. The density difference with
fresh water, 1⇢, is plotted as a function of the depth z.

in figure 1(a). A Cartesian coordinate system is introduced, with the horizontal x
and vertical z axes located in the vertical midplane of the test tank. The y axis
is perpendicular to the (x, z) plane and directed from the observer/camera towards
the tank. The rectangular test tank of size 800 ⇥ 170 ⇥ 425 mm3 is filled with
a salt-stratified fluid using the conventional double-bucket technique. The density
distribution as a function of the vertical coordinate z is measured prior and after
experiments by a conductivity probe driven by a vertical traverse mechanism. The
value of the buoyancy frequency N =[(�g/⇢̄)(d⇢/dz)]1/2 is inferred from the linear fit
to the measured density profile. An example of such a profile is shown on figure 1(b).
A sliding sloping wall, inclined at the angle ↵, is carefully inserted into the fluid once
the filling procedure is over. The sloping wall delimits a trapezoidal fluid domain of
length L (measured along the bottom) and depth H.

The input forcing is introduced into the system by an internal wave generator
(Gostiaux et al. 2007; Mercier et al. 2010; Joubaud et al. 2012; Scolan et al. 2013)
with the time-dependent vertical profile given by

⇣ (z, t) = a sin(!0t) cos(pz/H), (2.1)

where a and !0 are the amplitude and frequency of oscillations, respectively. The
profile is reproduced in discrete form by the motion of a stack of 47 horizontal plates
driven by the rotation of a vertical shaft. The stack of moving plates is confined
between lateral walls of a vertical box-like support frame. Each lateral wall of the
frame is 15 mm thick. Therefore, the inner size of the frame, W 0, which coincides

Figure 1: Experimental setup in [5].

• In the absence of topography (i.e. in a rectangular box which can be seen as
a torus T2), the system is completely integrable and the response to the forcing
can be predicted using Fourier analysis as previously.
• If the forcing is non resonant, i.e. if the forcing frequency ω0 is differ-

ent from ±|ph||/|p| for all p which are excited, then the system will oscillate
according to the following equation

∂tv̂p,± = f̂p,± exp(i(±ωp − ω0)t)

where v̂p,± is the amplitude of the wave exp(i(p · x∓ ωpt)). We then obtain

v̂p,± = f̂p,±

(
exp(i(±ωp − ω0)t)− 1

i(±ωp − ω0)

)
.

Generically, if the forcing is regularly distributed over the domain (i.e. f ∈
C∞(T2)), the solution will be regular: it is typically the case under the dio-
phantine condition

∀ωp 6= ω0, |ωp − ω0| ≥ C|p|−α

which is satisfied for almost all tori.
• If the forcing is resonant, i.e. if the forcing frequency ω0 = ±|ph||/|p| for

some p which is excited, the fluid pumps some energy and the amplitude of the
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resonant mode has a linear growth in time

v̂p,± = f̂p,±t .

But, under the same generic condition, the solution is still regular in x since the
resonant mode has a nice oscillating structure exp(i(p · x)).

For the sake of completeness, we give in appendix the detailed computations
leading to these regularity results.

• What is observed in the presence of topography is completely different. By
PIV methods (following the displacements of small markers in the fluid), one
can get a measurement of the velocity field. It happens that this velocity field
is very singular with respect to the spatial variable x, which is unexpected
from the simple model in the periodic box. The energy concentrates on some
geometric patterns, which are broken lines in the 2D trapezoidal geometry with
affine stratification.

Furthermore, some branches of these attractors are more energetic than oth-
ers, which seems to indicate that there is a focusing mechanism due to the re-
flection on the slope. The geometry of these attractors, especially the number
of branches, depends on the forcing frequency and on the slope.
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Figure 2: Experimental observation of attractors.
From the PhD thesis of C. Brouzet [5], under the supervision of T. Dauxois
(ENS Lyon, 2016)

Remark 1.2. In lab experiments, the effect of viscous dissipation is not negli-
gible, which is important to explain that the energy varies also along each single
branch. But we will not consider this effect here.

1.3 Classification of attractors

• The geometric pattern observed in the lab experiments coincide with the limit
cycles obtained from the following geometric ray tracing

• start from any point x0 in the domain,
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• draw the ray of direction φ such that sinφ = ω0/N ,

• when the ray hits the boundary, make a reflection preserving | sinφ|,

• continue this construction to obtain the limit cycle (or limit point).

This procedure is the counterpart of the geometric optics for electromagnetic or
acoustic waves, the crucial difference here being that the frequency ω0 prescribes
the direction of the propagation instead of the modulus of the wavelength.

Without entering into the details of this geometric approximation, let us just
explain the intuition behind it. The idea is to look at the propagation of a wave
packet, i.e. to seek for a solution in the form

exp

(
i
p(t) · x
ε

− 1

2
(x− x(t))2

)
which is localized both in space (around x(t)) and in frequency (around p(t)).
Unlike the plane waves obtained in the first paragraph, the time frequency in
this Ansatz is not quantified, and the amplitude now depends both on t and x.

Remark 1.3. Of course, it is impossible to prescribe both the localization in
x and the localization in p (which is the well-known uncertainty principle in
quantum physics). The main assumption behind the geometric approximation
is that there is a scale separation (measured here by the factor ε), and p is the
Fourier variable corresponding to x/ε.

Plugging this Ansatz in the dynamical equations, we find that the propaga-
tion of the wave packet is given at leading order by the Hamiltonian equations

dxi
dt

=
∂h

∂pi
,

dpi
dt

= − ∂h
∂xi

,

where the Hamiltonian is defined by the dispersion relation h(x, p) = ω(x, p).
For internal waves in 2D with an affine stratification (say N = 1), we find

that 
dx1
dt

=
p23
|p|3

,
dp1
dt

= 0,

dx3
dt

= −p3p1
|p|3

,
dp3
dt

= 0 .

Note that the group velocity is orthogonal to the wavenumber p, and that its
modulus is conversely proportional to |p|, which are typical features from dy-
namics with Hamiltonian homogeneous of degree 0 (i.e. invariant by the homo-
theties p 7→ λp). This means that, on the energy level ω = ω0, we have that the
wavenumber p satisfies

|p1|
|p|

= ω0

and the direction of propagation, which is orthogonal to p, makes an angle
φ = ± arcsinω0 with respect to the horizontal.
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• Using this ray tracing method, it is possible to construct numerically the
trajectories, and investigate systematically their long time behavior.

Three scenarios appear depending on the slope α and on the forcing fre-
quency ω0 = sinφ, which are

• convergence to a limit cycle

• concentration in a corner,

• no emergence of a pattern

Note that, both at the experimental and numerical levels, one cannot observe
very long patterns because they will be generically rather dense in the domain
and the accuracy of the measurements is finite.
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Figure 3: Greyscale: Lyapunov exponent of the trajectories.
White regions: attractors.
Black regions: no pattern emerges from the ray tracing.
From L. Maas, D. Benielli, J. Sommeria, F. Lam [16]

At the theoretical level, the long time behavior of the Hamiltonian dynam-
ics can be characterized by exhibiting a Poincaré section, and looking at the
Poincaré return map. If φ > α, a Poincaré section is x3 = 0 and it is easy to see
that all trajectories will focus on a corner. If φ < α, a Poincaré section is the
lateral boundary x1 = x+1 (x3). The Poincaré return map πα,φ is a continuous
map on the circle S1 (an homeomorphism) preserving the orientation. Such a
map π admits a crucial dynamical invariant ρ(π) ∈ T, referred to as the rotation
number, which has been introduced by Poincaré. It can be defined for instance
as follows: for any c, c′ ∈ S1

ρ(π) = lim
n→∞

1

n
|{j ∈ [0, n− 1] / πj(c′) ∈ [c, π(c)[}.

(we refer to the first chapter of [7] for a brief presentation of the combinatorial
theory of Poincaré). Let us state the main properties of the rotation number
ρ(π).

• When the rotation number ρ(π) is rational, π has periodic points (having
all the same period) and any orbit is asymptotic to a periodic orbit.
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• When the rotation number ρ = ρ(π) is irrational, π is semi-conjugated to
the rotation Rρ : θ 7→ θ+ ρ, i.e. there exists a monotone map h such that
h◦π = Rρ ◦h. Note that, in general h is not a bijection: the inverse image
of some point may be an interval.

In [8], Denjoy proved that, as soon as π is smooth enough, the map h is a
nice continuous change of variables and π = h−1 ◦Rρ ◦ h.

For generic families of C2 circle diffeomorphisms depending on one parame-
ter, it has been proved by Arnold and Hermann (see Chapter 4 of [7]) that the
rotation number is locally constant (as a function of this parameter), precisely
when it is rational: this phenomenon is known as frequency locking. The set of
parameters for which the rotation number is irrational is a Cantor set possibly
with non zero Lebesgue measure (devil’s staircase). This provides bifurcation
diagrams with Arnold’s tongues very similar to Fig 3. Unfortunately this theory
does not apply here as the Poincaré return map is only piecewise affine. How-
ever it is clear that fixed points of the (iterated) return map are stable under
small perturbations of α or φ. We therefore preserve the band structure of the
bifurcation diagram for rational rotation numbers.

2 The mathematical scenario for the formation
of geometric patterns

The goal of the present paper is to provide a mathematical description of the
mechanisms leading to the formation of these geometric patterns, beyond the
ray approximation which is not valid here since there is no scale separation.

2.1 Quasi-resonant forcing

The first important remark is that the response to the forcing does not corre-
spond to the usual picture when the wave operator has discrete eigenmodes. A
natural question is therefore to understand the response to the forcing when the
wave operator has some continuous spectrum.

A very simple example which can illustrate this mechanism is the 1D Schrödinger
equation in the whole space with a monochromatic forcing (although it is not
really relevant from the physical point of view):

∂tψ − i∆ψ = f exp(−iω0t) .

The interest in looking at this model is that we know explicitly the spectrum R
and the generalized eigenfunctions eξ : x 7→ exp(ix · ξ) of the Laplacian, as well
as the spectral decomposition: for any φ ∈ L2(R),

φ(x) =
1

2π

∫
R
φ̂(ξ) exp(ix · ξ)dξ
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where the Fourier coefficients are defined by

φ̂(ξ) =

∫
R
φ(x) exp(−ix · ξ)dx .

In Fourier variables, the Schrödinger equation can be rewritten

∂tψ̂ + i|ξ|2ψ̂ = f̂ exp(−iω0t) ,

from which we deduce that

ψ̂(t, ξ) exp(it|ξ|2) = −if̂(ξ)
exp(it(|ξ|2 − ω0))− 1

|ξ|2 − ω0
.

• A first way of looking at this system is to consider averages: for any φ ∈ L2(R),
we define

< ψ, φ > (t) =

∫
ψ(t, x)φ∗(x)dx =

1

2π

∫
ψ̂(t, ξ)φ̄∗(ξ)dξ .

Using Parseval’s identity, we get

exp(iω0t) < ψ, φ > (t) =
−i
2π

∫
φ̂∗(ξ)f̂(ξ)

1− exp(−it(|ξ|2 − ω0))

|ξ|2 − ω0
dξ .

Recall that, if a < ω < b∫
1− exp(−i(λ− ω)t)

−ω + λ
1[a,b]dλ =

∫
1− exp(−iµ)

µ
1[(a−ω)t,(b−ω)t]dµ

= iπ + log
b− ω
ω − a

+O(
1

t
) ,

We then expect that the average < ψ, φ > (t) will converge to a finite value
as t → ∞, at least if the forcing frequency is not 0, which corresponds to a
singularity of the resonant manifold.

More precisely, we have by the simple changes of variables |ξ|2 = λ = ω0+ 1
tµ

2π < ψ, φ > = −i exp(−iω0t)

∫ +∞

0

1− exp(−i(λ− ω0)t)

−ω0 + λ
f̂(
√
λ)φ̄∗(

√
λ)

dλ

2
√
λ

− i exp(−iω0t)

∫ +∞

0

1− exp(−i(λ− ω0)t)

−ω0 + λ
f̂(−
√
λ)φ̄∗(−

√
λ)

dλ

2
√
λ

= −i exp(−iω0t)

∫ +∞

−ω0t

1− exp(−iµ)

µ
F (ω0 +

1

t
µ)dµ .

with

F (z) =
1

2
√
z

(f̂(
√
z)φ̄∗(

√
z) + f̂(−

√
z)φ̄∗(−

√
z)) .
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If we assume that both the forcing f and the weight φ are smooth functions
decaying at infinity,

2π

exp
(iωt) < ψ, φ >→ −i〈vp

(
1

λ− ω0

)
, F 〉+ πF (ω0) , (2.1)

which is finite. Note that, at this stage, we do not observe any growth in time.

Remark 2.1. Note that, in the integrable case, the amplitudes of the oscillating
modes are special averages

ψ =
∑
n

ψ̂nen with ψ̂n =< ψ, en >

In the resonant case, i.e. when ω0 = λn for some n, the corresponding average
< ψ, en > grows linearly in time.

• Physically it can be more relevant to look at the energy, or at any observable
expressed as a quadratic quantity in ψ. The kinetic energy for instance can be
expressed in Fourier as∫

|ξ|2|ψ̂(t, ξ)|2dξ =

∫ ∣∣∣∣1− exp(−i(|ξ|2 − ω0)t)

−ω0 + |ξ|2

∣∣∣∣2 |f̂(ξ)|2|ξ|2dξ .

With the same changes of variables as previously, we get∫
|ξ|2|ψ̂(t, ξ)|2dξ =

1

2

∫ +∞

0

∣∣∣∣1− exp(−i(λ− ω0)t)

−ω + λ

∣∣∣∣2 (|f̂(
√
λ)|2 − |f̂(−

√
λ)|2)

√
λdλ

=
t

2

∫ +∞

−ωt

∣∣∣∣1− exp(−iµ)

µ

∣∣∣∣2G(ω0 +
1

t
µ)dµ

= t

∫ +∞

−ω0t

1− cosµ

µ2
G(ω0 +

1

t
µ)dµ

with
G(z) = (|f̂(

√
z)|2 + |f̂(−

√
z)|2)

√
z .

We then conclude that generically the energy grows linearly∫
|ξ|2|ψ̂(t, ξ)|2dξ ∼ π

2
G(ω0)t , (2.2)

provided that the support of f̂ contains ±√ω0.

Remark 2.2. Note that, in the integrable case, the energy is of the form∑
n

cn|ψ̂n|2 with ψ̂n =< ψ, en >

In the resonant case, i.e. when ω0 = λn for some n, it grows quadratically in
time.
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The previous computations show that

• the amplitudes of linear quantities converge to some finite values (by (2.1))

• quadratic quantities grow linearly (see (2.2))

• there is essentially no energy outside bands of width O(1/t) around the
forcing frequency ω0 (which corresponds to the scaling occuring in the
change of variables)

This means that the transfer of energy via quasi-resonances is quite different
from the classical resonance process. The point is that the generalized eigen-
functions corresponding to the continuous part of the spectrum have infinite
energy, it is therefore impossible that they emerge in finite time even though
the forcing is concentrated on one frequency.

We will rephrase these properties in a more abstract setting (adapted to our
study) in Section 4.

2.2 Characterization of the continuous spectrum

We therefore expect this quasi-resonant forcing to be the right mechanism to
explain the formation of the geometric patterns provided that

• one can prove that the wave operator has a continuous spectrum,

• the generalized eigenfunctions exhibit some singularities on the geometric
patterns.

Note that similar spectral problems had been investigated a long time ago
by F. John in [15] for the 2D wave equation with Dirichlet conditions, and by
J. Ralston in [23] for inertial waves in some specific 2D geometries. We will
develop here a more systematic method: the key idea will be to use microlocal
analysis, i.e. the connection between spectral theory and classical dynamics.

Let us first recall that a differential operator of order m can be written
locally

D =
∑
|j|≤m

aj(x)∂jx

where j is a multi-index of length at most m. Its symbol is the polynomial
obtained by freezing the coefficients aj and taking the Fourier transform

d(x, p) =
∑
|j|≤m

aj(x)(ip)j .

This definition can be extended to pseudo-differential operators (involving typ-
ically inverse derivatives) by considering symbols which are more general func-
tions than polynomials. The principal symbol h of a pseudo-differential operator
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H of order m is defined in terms of the action of H on fast oscillating functions
aeiτS , where a is smooth and S′ 6= 0 on the support of a, by

H(aeiτS)(x) = τmh(x, S′(x))a(x)eiτS(x) +O
(
τm−1

)
The function h is a smooth homogeneous function of degree m on T ?X \ 0,
which is well defined independently of the choice of local coordinates.

The key property is that the principal symbol h ≡ h(x, p) of a pseudo-
differential operator H, even though it does not determine H completely, con-
tains almost all the information, up to smoother error terms. More precisely,
one defines classes of pseudo-differential operators according to the order m of
their symbol

Sm = {σ = σ(x, p) ∈ C∞(T ∗X \X × {0}) / |∂αx ∂βp σ| ≤ Cα,β(1 + |p|)m−|β|} .

Then, if H is a pseudodifferential operator of principal symbol h and order m,
we can define another operator Op(h) using the Weyl quantization

Op(h)u(x) :=
1

(2π)dim(X)

∫
ei(x−x

′)·ph

(
x+ x′

2
, p

)
u(x′) dx′dp

and compare both operators: we find that H−Op(h) is of order at most m− 1.
Furthermore, one can prove that the symbol of the commutator i[H1, H2] is

the Lie bracket {h1, h2}, so that

order([H1, H2]) ≤ order(H1) + order(H2)− 1.

By iterating this kind of estimates, we then see that the symbolic calculus allows
to obtain expansions up to any regularizing order. For a nice introduction to
this subject, we refer to [1, 9, 25].

• Typical operators with continuous spectrum are multiplications by
smooth functions ν = ν(x) (the spectrum is then the range of ν). In this
case, the classical dynamics is defined by the Hamiltonian h(x, p) = ν(x)

dx

dt
=
∂h

∂p
= 0,

dp

dt
= −∂h

∂x
= −ν′(x) = −ν′(x0) ,

so that ±p is a Lyapunov function, going to infinity as t→∞.
In contrast, operators with discrete spectrum (called “elliptic operators”)

have eigenfunctions of finite energy, meaning that the classical dynamics has
compact invariant sets. Therefore, in this case, we cannot have any escape
function as no quantity will go to infinity.

This is of course not a proof but at least a strong indication that the fact
that a pseudo-differential operator H has continuous spectrum is related to the
existence of an escape function d for the Hamiltonian dynamics associated to
its principal symbol h

d

dt
d(x(t), p(t)) ≥ γ > 0

12



denoting by (x(t), p(t)) the trajectories of the classical dynamics:

dx

dt
=
∂h

∂p
,

dp

dt
= −∂h

∂x
.

•A nice mathematical tool to study the continuous spectrum of a skew-symmetric
operator iH (such as our wave operator) is the conjugate operator method
that we will present in Section 5. The crucial point in this theory is the existence
of a self-adjoint operator D satisfying the commutator estimate

[H,D] ≥ γI +K with γ > 0, and K a compact operator , (2.3)

Note that the existence of a conjugate operator D for the wave operator H can
be translated in terms of the classical dynamics associated to H: it is roughly
equivalent to the existence of an escape function ψ since the condition (2.3) can
be expressed in terms of the Lie bracket

{h, d} ≥ γ > 0 . (2.4)

Under this condition, the conjugate operator method shows how to extend
the resolvent (H − λ± iε)−1 which is defined for ε > 0 and ε < 0, up to ε = 0

(H − λ± i0)−1 = lim
ε→0+

(H − λ± iε)−1 .

As a consequence, on can prove that the spectral decomposition of a smooth
function f , i.e. the measure ν defined by

f =

∫
dν(λ), χ(H)f =

∫
χ(λ)dν(λ)

is a regular function of λ given by

ν(λ) =
1

2iπ

(
(H − λ− i0)−1f − (H − λ+ i0)−1f

)
.

The proofs of this result are not very complicated, but it is not completely
obvious to get a good intuition of this property.

2.3 Classical dynamics for Hamiltonians of degree 0

The last important ingredient we will use is the fact that the existence of an
escape function is a generic property of Hamiltonians of degree 0 in dimension
2.

Definition 2.3. A smooth homogeneous function of degree 1, d : Σω0 → R, is
called an escape function if the Poisson bracket {h, d}, which is homogeneous of
degree 0, is strictly positive on the energy surface Σω0

= h−1(ω0).

13



• Let us first have a look at the classical dynamics of internal waves in the
trapezoidal geometry. The dynamical equations

dx1
dt

=
p23
|p|3

,
dp1
dt

= 0,

dx3
dt

= −p3p1
|p|3

,
dp3
dt

= 0 .

have to be supplemented with boundary conditions. To determine the reflection
laws, we look at the solutions of the Boussinesq system in some half space
delimited by a slope tilted of an angle α with respect to the horizontal

x1 sinα+ x3 cosα = C .

We seek these solutions in the form of an incident wave propagating with an
angle φ with respect to the horizontal (recall that the direction of propagation
is orthogonal to the wavenumber) plus a reflected wave

W = λU(p) + µV (p)

W ′ = λ′U(p′) + µ′V (p′)

with

U(p) =

 1
0
0

 cos(ωt+ p · x)−

 0
−Np3/(ρ′|p|)
Np1/(ρ

′|p|)

 sin(ωt+ p · x)

V (p) =

 1
0
0

 sin(ωt+ p · x) +

 0
−Np3/(ρ′|p|)
Np1/(ρ

′|p|)

 cos(ωt+ p · x)

We then obtain necessary conditions on the wavenumber of the reflected wave
(p′1)2

|(p′)2|
=

p21
|p|2

= sin2 φ coming from the conservation of energy

(p′1 − p1) cosα− (p′3 − p3) sinα = 0 for the phase to be constant on the slope

as well as some polarization conditions to determine (λ′, µ′) from (λ, µ).

We will use the following reduction to represent the trajectories. Specular
reflection on the horizontal and vertical boundaries is equivalent to free propa-
gation in a domain which is extended by symmetry. Combining two successive
reflections with respect to horizontal boundaries, we get a simple vertical trans-
lation, which means that we obtain a periodic structure with respect to the
vertical variable. We then identify the points of the horizontal boundary in the
extended domain.

When a trajectory exits the domain on the left (resp. on the right), it re-
enters on the right (resp. on the left) at the symmetric point. One can then

14
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Reflec%ons	

Figure 4: The image method leads to a singular dynamics in a periodic domain.

identify the points of the lateral boundary, and get a (non smooth) dynamics on
a torus, along a fixed vector field. We have actually four copies of this dynamics,
corresponding to the four possible directions given by p21/|p|2 = sin2 φ.

Assume that the angle φ lies in the interior of a band of the bifurcation
diagram, i.e. that there exists an open set I containing φ on which ρα,φ ∈ Q is
constant and the periodic points are hyperbolic.

All trajectories of the semiclassical dynamics with energy ω0 = | sinφ| then
converge to some attractor, corresponding to some fixed point of the (iterated)
Poincaré return map πα,φ0 . The wavenumber is exponentially increasing since it
is multiplied by the same constant (depending only on α and φ) at each iteration

p
(n)
3 ∼ C

(
sin(φ+ α)

sin(α− φ)

)n
,

while the distance to the limit cycle is exponentially decreasing with n

|x(n)3 − x̄3| ≤ C
(

sin(α− φ)

sin(φ+ α)

)n
,

Since the group velocity is proportional to |p(n)3 |−1, the return time, i.e. the

time tn needed to run through the approximate cycle (from x
(n)
3 to x

(n+1)
3 ) is

exponentially increasing with n

c

(
sin(φ+ α)

sin(α− φ)

)n
≤ |tn| ≤ C

(
sin(φ+ α)

sin(α− φ)

)n
.

In particular, the wavenumber is of the order of O(t) and is therefore an escape
function.

Remark 2.4. In this example, we have exhibited an escape function, in the
sense that it converges to infinity as t → ∞ (with an average growth which is
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linear), but this function is piecewise constant with jumps. This weak notion of
escape function and the lack of regularity will be major obstacles to apply the
general theory.

• In the general case, under a suitable regularity assumption on the Hamiltonian
h, we will actually prove that there exists a change of variables (also called
normal form) such that h−ω0 can be locally represented by the following simple
toy model on Tx × Ry :

h0(x, y, ξ, η) =
ξ

η
− λy .

The classical dynamics admits two first integrals h0 and ξ = ξ0. It is given by

dx

dt
=

1

η
,

dy

dt
= − ξ

η2
dη

dt
= λ .

We then have, for t ≥ 0,

x = x0 +
1

λ
log

(
1 +

λt

η0

)
mod(Z), y =

ξ0
λ(η0 + λt)

, η = η0 + λt .

Let us denote by γ the curve y = 0 in Tx × Ry. We see that the trajectory
spirals around γ infinitely many times with a speed going to 0. Let us then look
at the Poincaré map π associated to the section S = {(x, y, ξ, η) / x = 0, ξ =
λyη, η > 0} with the symplectic form given by dy ∧ dη:

π(y, η) = (e−λy, eλy)

and we have a geometric progression of momenta η, which is an escape function.
This model is therefore a smooth version of the dynamics associated to in-

ternal (or inertial) waves. We will show in Section 6 that, under rather general
assumptions (stated in the next paragraph), one can always reduce the study
of (smooth) Hamiltonians of degree 0 to this simple model.

3 Main results

As explained in the previous paragraph, the mathematical setting we consider
in this paper reproduces the important features of the inertial and internal wave
operators in domains with topography, but with more regularity in order that
techniques of pseudo-differential calculus can be used.

More precisely, we consider a general scalar equation of the form

1

i
∂tu+Hu = fe−iω0t (3.1)
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on a 2D torus X equipped with a smooth density dx, where fe−iω0t is a periodic
smooth forcing, and H is a bounded self-adjoint operator on L2(X, dx) satisfying
the following assumptions.

(M0) H is a pseudo-differential operator with a smooth
principal symbol h : T ∗X \ {0} → R positively homogeneous of degree 0
and a vanishing subprincipal symbol.

Let us recall for the sake of completeness that the sub-principal symbol h−1
of H is the smooth homogeneous function of degree −1 on T ?X \ 0 defined by:

〈H(aeiτS)|aeiτS〉L2(X,dx) =

∫
X

|a(x)|2
(
h(x, S′(x)) + τ−1h−1(x, S′(x))

)
dx+O

(
τ−2

)
Note that the function h−1 depends on the measure dx.

The assumption that h is homogeneous of degree 0 implies that any energy
shell Σω = h−1(ω) is conic:

∀(x, p) ∈ Σω,∀λ ∈ R+, (x, λp) ∈ Σω .

We will then denote by Z the oriented manifold of dimension 2 which is the
quotient of the conic energy shell Σω0

by the positive homotheties

Z = {(x, e) ∈ X × S1 / h(x, e) = ω0} .

We can think of Z as the boundary at infinity of the energy shell.

For the sake of simplicity, we now introduce some geometrical assumptions
on Σω0

(and Z) in order to avoid singularities. These assumptions can actually
be relaxed as shown by the first author in the recent paper [6].

(M1) The energy shell Σω0
is nondegenerate and

the canonical projection π : Z → X is a finite covering of degree n.

The non degeneracy assumption means that dh 6= 0 on Σω0
, it is a generic

assumption on the frequency ω0 thanks to Sard’s theorem. The second assump-
tion means that, for each x ∈ X, the pre-image of x by the canonical projection
π has exactly n elements, and the directions in π−1(x) are smoothly dependent
on x. Note that, in the case of internal waves in a trapezium, the number of
admissible directions n at each regular point x is 4, but there are singularities.

By definition, the Hamiltonian vector field Xh is tangent to Σω0
and homo-

geneous of degree −1. This implies that the oriented direction of Xh induces a
field of oriented directions on Z. We therefore say that Z is equipped with a
1D-foliation, denoted by F . The leaves of this foliation correspond to the orbits
of the Hamiltonian dynamics in Z (which are defined modulo a positive change
of time). The compact leaves correspond to periodic orbits.

Note that the foliation is on Z. The projection on X is a multiple foliation,
meaning that at each point of X there are n distinct oriented directions.

17



Lemma 3.1. Under the assumption (M1), the foliation F is non singular.

Proof. Assume that the foliation F is singular.
Since Σω0

is nondegenerate, the foliation can be singular only at the points
where Xh is parallel to the cone direction. The projection of the foliation F on
X is generated by the vectors (∂p1h, ∂p2h). Therefore the foliation F is singular
if and only if this vector vanishes.

But then the tangent space to Σω0
, which is defined by the non trivial

equation (∂x1
h) dx1 + (∂x2

h) dx2 = 0, does not project in a surjective way on
the tangent space of X. This contradicts our assumption that the canonical
projection is a finite covering of degree n.

Note that we also retrieve the property that the wave number p is orthogonal
(for the duality) to the direction of the projection of Xh on X. This is due to the
Euler relation p1∂p1h+p2∂p2h = 0. Another way to interpret this last condition
is to say that the cones generated by the leaves of F are Lagrangian.

The last assumption is on the dynamics of F :

(M2) The foliation F is Morse-Smale,

which is a generic condition. Let us recall what it means:

• there is a finite number of compact leaves (diffeomorphic to circles), also
called cycles in the sequel.

• Each compact leaf is hyperbolic (the corresponding linear Poincaré map -
which is defined intrinsically - is strictly expanding or contracting).

• And all other leaves are accumulating only along two of the previous closed
leaves at ±∞.

Note that conditions (M1) and (M2) are stable under small perturbations,
therefore are still verified for energy levels close to ω0.

Remark 3.2. The regularity assumption is encoded in (M0). In particular,
at this stage, even though we can capture the effect of the zero flux condition
for internal waves in a model without boundary (see Fig. 4), this model is not
smooth enough to enter in this class of operators.

- If the boundary is a polygon, we have seen that the Poincaré map is only
piecewise affine. This difficulty could be removed by considering a smooth do-
main, which leads to a foliation with singular points (corresponding to critical
angles). But our results can actually be extended to singular foliations (see [6]).

- A more serious difficulty comes from the fact that the wavenumber p jumps
at each return time, which means that there is no smooth normal form which
conjugates the geometric object given by the foliation and the Hamiltonian dy-
namics.

To tackle the original problem, we would probably need to introduce another
covering to take into account this additional complexity.
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In this abstract setting, we can now formulate our result describing the long
time behavior of the forced system.

Theorem 3.1. Let H be a pseudo-differential operator such that assumptions
(M0)(M1)(M2) are satisfied for any ω0 in some (open) interval I.

Then H has at most a finite number of eigenvalues in I, and for any ω0 ∈
I \ σpp(H) and any f ∈ C∞(X), the solution to the forced equation

−i∂tu+Hu = fe−iω0t, u|t=0 = 0

can be decomposed in a unique way as

u(t)eiω0t = u∞ + b(t) + ε(t)

where

• u∞ = (H − ω0 − i0)−1f belongs to the Sobolev spaces H−1/2−0 and is not
in L2 except if it vanishes;

• b(t) is a bounded function with values in L2 whose time Fourier transform
vanishes near 0;

• ε(t) tends to 0 in H−1/2−0.

The wavefront set of the limiting distribution WF (u∞) is contained in the cones
generated by the stable cycles of F .

Furthermore, the energy ‖u(t)‖2L2(X,dx) grows linearly except if u∞ vanishes.

Roughly speaking, the wave front set WF (u∞) characterizes the singularities
of the generalized function u∞, not only in space, but also with respect to its
Fourier transform at each point. In more familiar terms, WF (u∞) tells not only
where the function u∞ is singular, but also how or why it is singular, by being
more exact about the direction in which the singularity occurs.

More precisely, if u is a Schwartz distribution on Rd, (x̄, p̄) /∈WF (u) means
that there exists a test function a with a(x̄) 6= 0 so that the Fourier transform
of au is fast decaying in p in some conic neighborhood of p̄, or in other words
that there exists a pseudo-differential operator A elliptic at the point (x̄, p̄) so
that Au is smooth. This definition is completely intrinsic, and can be extended
for a smooth manifold X. We refer to [25, 4] for a simple introduction to the
wavefront set.

We will give in Theorem 7.1 a much more precise description of u∞ as a
Lagrangian state (or Fourier integral distribution) associated to the previous
conic Lagrangian manifolds.

Note that Dyatlov and Zworski have obtained recently [10] an alternative
proof of a slightly weaker result, based only on microlocal techniques and radial
estimates.
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4 Quasi-resonances and long time behaviour

We first show how the (local) spectral representation of H can be used to de-
scribe the long time behaviour of the solution to the forced equation. The
solution u of (3.1) is given by

u(t) =
e−itω0 − e−itH

H − ω0
f

Assume that H has some continuous spectrum around ω0, and that we know
the spectral decomposition of f with respect to H − ω0:

χ(H − ω0)f =

∫
R
χ(s)dν(s) .

We thus have that

u(t) = e−itω0

∫
1− e−its

s
dν(s) .

We will then use a general result on oscillating integrals, extending the com-
putations of Section 2.1:

Lemma 4.1. Let B,B0 ⊂ B be two Banach spaces. Let ν = νac + νsing be a
compactly supported Radon measure on R with values in B such that

• the absolutely continuous part νac has a density m which is Hölder con-
tinuous C0,µ (µ > 0) near 0;

• the singular part νsing has values in B0 and is supported outside from 0.

Then the oscillating integral I(t) = 〈(1− e−its)s−1|dν(s)〉 can be decomposed in
a unique way as

I(t) = I∞ + b(t) + ε(t)

where I∞ = 〈(s− i0)−1|dν(s)〉 ∈ B, ε(t) → 0 in B as t → ∞, and b is bounded
with values in B0 and inverse Fourier transform supported on supp(νsing).

Proof. The proof is actually a simple calculation on distributions. Let a > 0 be
such that

[−a, a] ∩ supp(νsing) = ∅ .

Since ν is compactly supported, there is no issue of convergence at infinity. We
then split the integral into two parts:

I1(t) =

∫
|s|<a

1− e−its

s
dνac +

∫
|s|≥a

1

s
dνac

I2(t) = −
∫
|s|≥a

e−its

s
dνac +

∫
|s|≥a

1− e−its

s
dνsing .
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We check that the second term in I2(t) satisfies the properties required for b(t),
while the first term in I2(t) tends to 0 thanks to the Riemann-Lebesgue theorem.

We have then to study I1(t). As m is of class C0,µ near 0, we have that
m1(s) = (m(s)−m(0))/s belongs to L1, so that

I1(t) =

∫
|s|<a

1− cos(ts)

s
(m(0) + sm1(s))ds

+ i

∫
|s|<a

sin(ts)

s
(m(0) + sm1(s))ds+

∫
|s|≥a

1

s
dνac

The second integral converges to iπm(0). Using the parity of cos and the
Riemann-Lebesgue theorem, we obtain that the first integral tends to∫

|s|<a

m(s)−m(0)

s
ds = p.v.

(∫
|s|<a

m(s)

s
ds

)
.

Adding the third term, we can remove the truncation.
In the limit, we get finally

p.v.

(∫
m(s)

s
ds

)
+ iπm(0) = 〈(s− i0)−1|m〉

by the Sokhotski-Plemelj theorem.

5 The conjugate operator method

In order to describe the response of the system to some monochromatic forcing
at frequency ω0, we therefore need to get the spectral structure of H close to
this frequency, assuming that it is non degenerate in the sense of assumptions
(M1)(M2). We will first show how to define the spectral density, assuming the
existence of a conjugate operator.

5.1 A short review on Mourre theory

Let H be a self-adjoint operator on some Hilbert space, say L2. Here we will
further assume that H is bounded, as it is the case in the application we have
in mind.

Definition 5.1. Let D be a self-adjoint (unbounded) operator. For any operator
A, we denote by i[A,D] the closure of the form i(AD−DA) defined on D(A)∩
D(D).

• We say that H is n−smooth with respect to D if the iterated brackets
B1 := i[H,D] and Bk := [Bk−1, D] are bounded up to k = n.

• We define also the Sobolev scale Hs (s ∈ R) associated to D by

Hs = {u ∈ L2 / (1 +D2)s/2u ∈ L2}

for s ≥ 0, and as the dual of H−s for s < 0.
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The main result of the conjugate operator theory (see [18, 14]) is the following
theorem:

Theorem 5.1 (Mourre). Let us assume that H is n−smooth with respect to D
with n ≥ 2, and that we have the following commutator estimate: for χ, χ̄ ∈
C∞0 (R,R+) with χχ̄ = χ̄,

χ(H)B1χ(H) ≥ αχ̄(H) +K for some compact operator K. (5.1)

Then, for any closed interval I ⊂ supp(χ̄)

(i) H has a finite set σp(H) of eigenvalues of finite multiplicity in I;

(ii) the resolvent (H − z)−1 defined for =(z) 6= 0 admits boundary values at
the points ω ∈ I \ σp(H) in the space Os := L(Hs,H−s) for s > 1/2.

(iii) the boundary values (H−ω±i0)−1 are Hölder continuous C0,µ(I\σp(H), Os)
with s > 1/2 and µ = (2s− 1)/2s.

(iv) the boundary values (H−ω± i0)−1 admits continuous derivatives of order
n in the spaces Os with s > n− 1/2.

Proof. For the sake of completeness, we give here a sketch of proof of a slightly
simpler result, which turns out to be quite simple in our case since H and B1

are bounded operators in L2.

• The first step is to prove that the discrete spectrum in the interval I is finite. If
it is not, there exists a sequence of orthonormal eigenfunctions φn with Hφn =
ωnφn. By the commutator estimate (5.1), we then get

0 = 〈φn, B1φn〉 ≥ α‖φn‖2 + 〈φn,Kφn〉 .

Since the φn are orthogonal, φn ⇀ 0 weakly in L2, and since K is compact,

lim
n→∞

〈φn,Kφn〉 = 0 .

We obtain a contradiction.

• The second step is to define some suitable approximation for the resolvent,
when ω0 is not an eigenvalue of H. Define Pδ to be the spectral projector of H
on [ω0− δ, ω0 + δ]. As δ → 0, Pδ converges weakly to 0, and since K is compact,
KPδ → 0. One can then find δ small enough so that ±2PδKPδ ≤ αP 2

δ , from
which we deduce that

PδB1Pδ ≥
α

2
P 2
δ . (5.2)

In the sequel we will remove the subscript δ and call P this spectral projection.
We then define BB∗ = PδB1Pδ and

Gz(ε) = (H − z − iεBB∗)−1, Fz(ε) = AεGz(ε)Aε ,
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where Aε = |D + i|−s|εD + i|s−1 for some s > 1/2 and ε > 0. When ε and =z
have the same sign, as H is self-adjoint,

‖(H − z − iεBB∗)ϕ‖2 = ‖(H −<z)ϕ‖2 + ‖(=z + εBB∗)ϕ‖2 − 2=((H −<z)ϕ, εBB∗ϕ)

≥ (=z)2‖ϕ‖2

so that H − z − iεBB∗ is injective with closed range in L2. Since its adjoint
is also injective, the range is actually L2. By the open mapping theorem, its
inverse Gz(ε) exists as a bounded operator.

Using (5.2) and the fact that =z ≥ 0, we also have that

‖PGz(ε)Aε‖2 = ‖AεḠz(ε)P 2Gz(ε)Aε‖

≤ 2

αε
‖AεḠz(ε)(εBB∗ + =z)Gz(ε)Aε‖

≤ 1

αε
‖Aε(Ḡz(ε)−Gz(ε))Aε‖

≤ 2

αε
‖AεGz(ε)Aε‖ ≤

2

αε
‖Fz(ε)‖

Finally, using the spectral localization, we have that for any z such that <z ∈
[ω0 − δ/2, ω0 + δ/2]

‖(I − P )Gz(ε)Aε‖ ≤ Cδ. (5.3)

In particular, one has

‖Gz(ε)Aε‖ ≤ Cα,δ

(
1 +

(
‖Fz(ε)‖

ε

) 1
2

)
. (5.4)

Note that, at this stage, we did not use the specific form of Aε. In particular,
we have that

‖Gz(ε)‖ ≤
C

ε
. (5.5)

• The third step is to obtain a differential inequality in order to control the
dependence with respect to ε. Let us compute the derivative of Fz(ε) with
respect to ε:

dFz(ε)

dε
=
dAε
dε

Gz(ε)Aε +AεGz(ε)
dAε
dε

+AεGz(ε)P [D,H]PGz(ε)Aε .

A straightforward computation shows that

P [D,H]P = [D,H− z− iεBB∗] + [D, iεBB∗] + (P − I)[D,H]P + [D,H](P − I)

from which we deduce that

dFz(ε)

dε
=
dAε
dε

Gz(ε)Aε +AεGz(ε)
dAε
dε

+Aε (−DGz(ε) +Gz(ε)D)Aε

+ εAεGz(ε)[D, iB
∗B]Gz(ε)Aε

+AεGz(ε)(P − I)[D,H]PGz(ε)Aε +AεGz(ε)[D,H](P − I)Gz(ε)Aε
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Since the commutators [D,BB∗] and [D,H] are bounded, and that∥∥∥∥dAεdε
∥∥∥∥ = (1− s)

∥∥|D + i|−s|D||εD + i|s−2
∥∥ ≤ (1− s)εs−1 ,

‖AεD‖ =
∥∥|D + i|−s|D||εD + i|s−1

∥∥ ≤ εs−1 . (5.6)

we deduce from the a priori estimates (5.3)(5.4) that∥∥∥∥dFz(ε)dε

∥∥∥∥ ≤ Cεs−1
(

1 +

(
‖Fz(ε)‖

ε

) 1
2

+ ‖Fz(ε)‖

)
. (5.7)

• The fourth step is then to extend the resolvent as ε → 0 by a continuity
argument. By (5.7) and (5.4), we get that∥∥∥∥dFz(ε)dε

∥∥∥∥ ≤ Cεs−3/2 (ε+ ‖Fz(ε)‖)1/2 ,

which upon integration shows that ‖Fz(ε)‖ is uniformly bounded with respect
to ε, and that ‖Fz(ε)− Fz(ε′)‖ goes to 0 as ε, ε′ → 0.

This proves in particular that (H−z)−1 defined for =(z) > 0 admits bound-
ary values at the points ω ∈ [ω0− δ/2, ω0 + δ/2] in the space Os := L(Hs,H−s).
Furthermore,

‖Fz(ε)− Fz(0)‖ ≤ Cε2s−1 . (5.8)

• To obtain the Hölder continuity with respect to z, we compute

dFz(ε)

dz
= AεGz(ε)Gz(ε)Aε .

Using the uniform bound on Fε(z) and (5.4), we obtain that∥∥∥∥dFz(ε)dz

∥∥∥∥ ≤ C

ε
.

Then,

‖Fz(ε)− Fz′(ε)‖ ≤
C

ε
|z − z′| .

Combining this estimate with (5.8) and choosing ε2s = |z − z′|, we get

‖Fz(0)− Fz′(0)‖ ≤ C|z − z′|µ for µ = (2s− 1)/(2s) .

The additional regularity is obtained by defining a refined approximation of
the resolvent

Ḡε(z) = (H − z − i
n∑
j=1

εj

j!
Bj)
−1,

F̄ε(z) = |D + i|−s|εD + i|s−nGε(z)|D + i|−s|εD + i|s−n with s > n− 1/2 ,

and by looking at higher order derivatives of F̄z(ε). We refer to [14] for the
details of this proof.
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5.2 Scattering for the evolution problem

A refinement of the conjugate operator method allows actually to prove that
there exists a direction of propagation for the evolution exp(−itH). We indeed
have the following theorem

Theorem 5.2 (Mourre). Let us assume that H is at least 2−smooth with respect
to D, and that the commutator estimate (5.1) holds. Denote by P−D the spectral
projectors of D on R−. Then,

sup
λ∈I
‖P−D (H − λ− i0)−1|D + i|−s‖ ≤ C for s > 1 .

Sketch of proof. The arguments here are quite similar to those used in the proof
of Theorem 5.1. We define for =(z) > 0, ε > 0 and s > 1

Gz(ε) = (H − z − iεBB∗)−1, F̃z(ε) = P−D e
εDGz(ε)|D + i|−s .

• Let us now look at the derivative of F̃z(ε) with respect to ε.

dF̃z(ε)

dε
= P−D e

εD (DGz(ε)−Gz(ε)P [H,D]PGz(ε)) |D + i|−s .

The same decomposition as previously shows that

dF̃z(ε)

dε
= P−D e

εDGz(ε)D|D + i|−s

+ εP−D e
εDGz(ε)[D, iB

∗B]Gz(ε)|D + i|−s

+ P−D e
εDGz(ε)(P − I)[D,H]Gz(ε)|D + i|−s

+ P−D e
εDGz(ε)P [D,H](P − I)Gz(ε)|D + i|−s

(5.9)

Note that the exponential term introduces a shift, so that the derivative D
acts only on the right in the first term. From (5.3)(5.4)(5.5) and the bound on
‖Fε(z)‖, we have by interpolation that for any η > 0, there exist Cη > 0 and
η′ > 0 such that

‖Gz(ε)|D + i|−η‖ ≤ Cηεη
′−1 .

In particular, the three first terms in the right hand side of (5.9) are integrable.

• The difficulty here is to get a control on the last term, and more precisely to
prove that [D,H](P − I)Gz(ε)|D + i|−s is a bounded operator from L2 to Hη
for some η > 0.
We start from the following identity

(P − I)Gz(ε)|D + i|−s = (P − I)Gz(0)
(
1 + iεB∗BGz(ε)

)
|D + i|−s

= (P − I)Gz(0)|D + i|−s + o(ε1/2)

where the remainder is estimated by (5.4).
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We then have to prove that |D|η[D,H](P − I)Gz(0)|D + i|−s is a bounded
operator. The idea is to use the fact that, for any bounded operator C and for
any η ∈ [0, 1[

if [C,D] is bounded, then |D|ηC|D + i|−1 is bounded.

The proof of this statement can be found in [19]. In our case, C = [D,H](P −
I)Gz(0) is indeed a bounded operator, and the commutator can be expressed in
terms of [D,H] and [D, [D,H]] which are bounded as well.

The last term in the right hand side of (5.9) is also integrable. We then
obtain that ‖F̃z(ε)‖ has no singularity as ε→ 0.

6 Spectral decomposition of the wave operator

6.1 Construction of a global escape function

As explained in the introduction, the existence of a conjugate operator for a
pseudo-differential operator H of principal symbol h is related to the fact that
the Hamiltonian dynamics of h admits an escape function. The construction of
the escape function d is therefore the heart of the proof.

Proposition 6.1. Under the assumptions (M0), (M1) and (M2), there exists
an escape function d for the Hamiltonian h on Σω0

.
The function d can then be extended to energies close to ω0.

We start by constructing a local change of variables, also called normal form, on
each basin of attraction (resp. of repulsion) of the dynamics, in order to have a
simple expression for the Hamiltonian h.

Lemma 6.2. Let γ be a hyperbolic closed leaf of the foliation F with Lyapunov
exponent e−2πλ 6= 1. Denote by Bγ the basin of attraction (or “repulsion”) of γ.
There exists a diffeomorphism of Bγ on (R/2πZ)x × Ry so that the foliation is
given by dy + λydx = 0 oriented by dx > 0.

Proof. Up to a change of orientation, we can assume that γ is a stable cycle.
• The first step is to construct the normal form close to the cycle. Let S be a
local Poincaré section transverse to γ. By definition, the Poincaré return map π
sends S on itself. By Sternberg’s linearization theorem for 1D maps [26], there
is a chart (I, 0) ⊂ (Ry, 0) of S so that

P (y) = µy with 0 < µ = e−2πλ < 1.

We then choose the normalisation of the vector field V tangent to the foliation F
so that the return time is 2π. And we denote by x the coordinate starting from
0 along S and so that V.x = 1. By construction, x ∈ R/2πZ. This construction
provides a foliation F0 given by dy + λydx = 0 and oriented by dx > 0.
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We have now two periodic foliations F and F0: they agree at x = 0 and x =
2π. Thus, on each section x = constant, there exists a unique diffeomorphism
sending the first onto the second one. One checks that is is smooth. In other
words, the normal F0 is a re-parametrization of F , which encodes the geometry
of the trajectories.

• The second step is then to extend the normal form globally in the basin. We
will use here ideas from scattering theory introduced by Nelson [20].

We first choose the normalization of a generator of the foliation so that it
extends smoothly the vector field V defined near γ. We denote by U(t) the flow
of V on B, and by U0(t) the flow of V0 = ∂x − λy∂y on B0 := (R/2πZ)x × Ry.
Both flows are complete.

Let us then consider the map W : B → B0 defined by

W (q) = lim
t→+∞

U0(−t)U(t)q.

The limit clearly exists because W is the identity near γ and for any q ∈ B,
U(t)q → γ as t→ +∞. Both flows are therefore conjugated by W .

Remark 6.3. Note that for any q ∈ X outside the closed leaves, q belongs both
to the basin of attraction of a stable cycle, and to the basin of repulsion of an
unstable cycle. The foliation F at q is therefore conjugated to two foliations F0

with different λ.

As a corollary of the previous Lemma, we obtain the local expression of the
Hamiltonian h:

Lemma 6.4. Let Bγ be the basin of attraction (or “repulsion”) of the hyper-
bolic closed leaf γ of the foliation F , and denote by (x, y, ξ, η) the coordinates
associated to the normal form introduced in Lemma 6.2.

Then there exists a conic neighborhood of the cone Γγ ⊂ Σω0 generated by
Bγ , defined by

Uγ := {(x, y; ξ, η)| |ξ| < cη} ⊂ T ?X \ 0

such that the Hamiltonian h can be written locally on Uγ

h(x, y, ξ, η)− ω0 = Φ2(x, y, ξ, η)

(
ξ

η
− λy

)
for some non vanishing function Φ homogeneous of degree 0.

Proof. The orthogonal of the foliation F0 is given by ξ − λyη = 0. Hence η 6= 0
on the cone generated by Bγ . Without loss of generality, we choose η > 0 on
the cone Γγ generated by γ.

Any homogeneous function vanishing on Γγ is the product of

h0(x, y, ξ, η) =
ξ

η
− λy
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by a non vanishing multiplier, which is homogeneous of degree 0 because of the
assumption (M0).

Moreover, in order to get the right stability or unstability according to the
sign of λ, this multiplier has to be non negative. Defining Φ as its square root
gives the expected formula.

Proof of Proposition 6.1. Equipped with these preliminary results, we can con-
struct the escape function.
• The first step is to define local escape functions on the basin of attraction Bγ ,
by using the explicit formula of the Hamiltonian h in the coordinates associated
with the normal form. For any k > 0, we can define a smooth function φ ∈
C∞c (R, [0, 1]) such that φ ≡ 1 on [−k, k] and satisfying yφ′(y) ≤ 0 on R. We
then set

dγ := ληφ(y) .

A straightforward computation shows that

{Φ2h0, dγ} = Φ2{h0, dγ}+ h0{Φ2, dγ} = λ2Φ2 (φ− yφ′)

on the cone of Γγ ⊂ Σω0
generated by Bγ .

Hence the function dγ satisfies

{h, dγ} ≥ 0 on Σω0 ,

{h, dγ} > 0 on Γγ,k

where Γγ,k ⊂ Σω0
is the cone generated by {(x, y) ∈ B0| |y| < k}.

• The global escape function is obtained as a sum of local escape functions.
From the assumption (M2), we know that Σω0

is a finite union of Bγ . Each
of these Bγ has a normal form, and the corresponding cone Γγ ⊂ Σω0 can be
covered by the unions of Γγ,k for all k ∈ N∗

Σω0
⊂

⋃
γ closed leaf

⋃
k∈N∗

Γγ,k .

Since the quotient Z of Σω0 by positive dilations is compact, we can extract a
finite covering

Σω0
⊂

⋃
γ closed leaf

Γγ,kγ .

By adding the corresponding local escape functions, we then get a function d
such that {h, d} > 0 on Σω0

.

Remark 6.5. For any z ∈ Σω0 which is not in the union of cones generated
by the unstable leaves, the Hamiltonian trajectory φt(z) converges as t → +∞
to the infinity of the cones generated by the stable leaves, which are invariant
conic Lagrangian submanifolds of T ?X \ 0.
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The dynamics on these cones is spiraling: using the coordinates (x, η) in these
cones, we get

ẋ = Φ2 1

η
, ẏ = −Φ2λy

η
, η̇ = Φ2λ

which gives the spirals
y = y0e

−λx, η = η0e
λx.

6.2 Construction of the conjugate operator

We now construct the conjugate operator D as a pseudo-differential operator
of degree 1 with principal symbol d: the commutator identity (5.1) will follow
from the estimate on the principal symbol of B1 = i[H,D] which is b1 = {h, d}.

Theorem 6.1. If d is an escape function on Σω0 , Mourre’s theorems 5.1 and
5.2 apply near ω0 for any value of n.

Proof. We first extend d as a smooth function d1 homogeneous of degree 1 on
T ?X \ 0 which satisfies {h, d1} ≥ c > 0 in some conical neighborhood U :=
{|h−ω0| ≤ a} of Σω0

. And we choose a self-adjoint pseudo-differential operator
D of principal symbol d1.

We then choose χ, χ̄ as in Theorem 5.1, supported in ]ω0 − a, ω0 + a[ with
χ̄(ω0) > 0. We have then

χ(h){h, d1}χ(h) ≥ cχ̄(h).

The operators χ(H) (resp. χ̄(H)) are pseudo-differential operators of degree 0
with principal symbols χ(h) (resp. χ̄(h)). The property (5.1) is obtained from
the sharp G̊arding’s inequality (see [11] pp 129–136):

Theorem 6.2 (Sharp G̊arding). Let B be a self-adjoint pseudo-differential op-
erator of degree 0 on a compact manifold, with principal symbol b ≥ 0. Then

B ≥ R

for some operator R of order −1.

It follows then that χ(H)[H,D]χ(H) ≥ χ̄(H) + R where R is a pseudo-
differential operator of degree −1, hence compact.

The assumptions on the iterated brackets follow from the fact that the
bracket of a pseudo-differential operator of degree 0 with a pseudo-differential
operator of degree 1 is a pseudo-differential operator of degree 0, and hence
bounded.
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6.3 Characterization of the spectral density

Proposition 6.6. Under the assumptions of Theorem 3.1, the solution to (3.1)
can be decomposed as

u(t) = e−iω0tu∞ + b(t) + ε(t)

where

• b(t) is a bounded oscillating function of t with values in L2 whose inverse
Fourier transform is supported in σpp(H) ∪ σsing(H),

• ε(t) tends to 0 in H−1/2−0,

• and u∞ = (H − ω0 − i0)
−1
f is such that Qu∞ ∈ L2 for any localiza-

tion operator whose microlocal support lies in the basin of repulsion of an
unstable cycle.

Note that this statement is true as soon as we have an escape function for
the energy ω0.
Let us insist on the fact that u(t) stays in L2 for any finite time. Its L2 norm
will in general converge to +∞ as t→∞. This asymptotics says that u(t)eiω0t

converges in H−1/2−0 as t→ +∞, modulo a function in L∞t (L2).

Proof. Proposition 6.6 is now a simple application of Mourre’s theory.

• Theorem 5.1 provides the existence of a closed interval I which contains 0
such that

(i) H − ω0 has no eigenvalue in I;

(ii) the resolvent (H−ω0− z)−1 defined for =(z) 6= 0 admits boundary values
at the points ω ∈ I, which are Hölder continuous in the spaces O1/2+0.

We deduce that the spectral density of the smooth forcing f which is given by
the Sokhotski-Plemelj formula

ν(λ) =
1

2iπ
((H − ω0 − λ− i0)−1f − (H − ω0 − λ+ i0)−1f) ,

is Hölder continuous with respect to λ : ν ∈ C0,µ(I,H−1/2−0).
In other words, ν satisfies the assumptions of the Lemma 4.1 with B =

O−1/2−0 and B0 = L2. The decomposition of the oscillating integral obtained
in Lemma 4.1 gives therefore the expected behavior for u(t).

• Theorem 5.2 shows that the resolvent (H − ω0 − λ− i0)−1 has no singularity
in the vicinity of unstable cycles.

Let γ be an unstable cycle in Σω0 , Bγ its basin of repulsion. Denote by Q
a localization operator whose microlocal support lies in a conic neighborhood
of the cone Γ generated by Bγ . Going back to the construction of the escape
function close to γ, we see that in local coordinates

dγ(x, y, ξ, η) = ληφγ(y)
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with λ < 0. In particular dγ is strictly negative near Γ. In other words, this
means that

Q = QP−D .

modulo smoothing operators.
We then conclude that for any s > 1

Qu∞ = QP−D (H − ω0 − λ− i0)−1f

= QP−D (H − ω0 − λ− i0)−1|D + i|−s (|D + i|sf) ∈ L2(X) ,

which concludes the proof.

Remark 6.7. By using a stronger version of Theorem 5.2 (see [19] Corollary
I.3, Equation (II)), one can get a description of the evolution, and not only of
the resolvent. In particular, one can prove that u(t) stays bounded in L2 near
the unstable cycles as t→ +∞.

7 Precise description of u∞

Thanks to the normal form defined in Lemma 6.2, one can actually obtain a
more precise description of u∞ near any closed leaf γ. In particular this gives
almost explicit formula for the wavefront.

Theorem 7.1. Under the assumptions (M0), (M1) and (M2), for any f ∈
C∞(X), the distribution u∞ = (H−ω0−i0)−1f is smooth outside the projections
on X of the stable closed leaves. If γ is such a stable closed leave generating
a cone Γ, then u∞ is, microlocally near Γ, a Fourier integral distribution of
order 0, whose conic Lagrangian manifold is Γ and whose principal symbol is a
non-homogeneous symbol of order 0 on Γ invariant by the dynamics of Xh.

In more explicit terms, denote by (x, y, ξ, η) the coordinates associated with
the normal form on the basin Bγ so that γ projects onto y = 0. Let χ ∈ C∞c (R)
be a test function which is identically equal to 1 near 0. Then the Fourier
transform with respect to y of χu∞ satisfies

χ̂u∞(x, η) ≡ 1η≥0

∞∑
j=0

uj(x, η)

where uj is a symbol of degree −j. Furthermore the half density u0
√
dxdη is

invariant by the restriction of the Hamiltonian dynamics Xh to Γ.

Once again the challenge here is to transfer informations we have on the
classical Hamiltonian dynamics, especially the local representation of h near
the closed leaves, to get informations on the solutions to (H − ω0)v ∈ C∞(X).
We will then need a counterpart of the normal form at the level of operators.
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7.1 Pseudo-differential normal form

Let γ be a cycle on Σω0
, and Γ the cone associated to γ. In coordinates associ-

ated with the normal form defined in Lemma 6.2,

Γ := {(x, y, ξ, η) / ξ = λyη and η > 0} ⊂ T ? (Tx × Ry) \ 0

By Lemma 6.4, there exists a conic neighborhood U of the cone generated by
the basin Bγ

U := {(x, y; ξ, η)| |ξ| < cη} ⊂ T ?X \ 0 (7.1)

such that the principal symbol of H can be written locally on U

h(x, y, ξ, η)− ω0 = Φ2(x, y, ξ, η)h0(x, y, ξ, η)

with h0(x, y, ξ, η) =
ξ

η
− λy for some λ 6= 0 .

We further know that the sub-principal symbol of H vanishes.
We would therefore like to define a reference operator H0 of principal symbol

h0 and zero subprincipal symbol. The difficulty is that h0 is not an admissible
symbol, being not smooth at η = 0. We therefore choose for H0 any pseudo-
differential operator of degree 0 whose full symbol is h0 in the cone U and which
is elliptic outside U . Note that the symbol of H0 cannot be real valued since
the sign of h0 changes on Γ.

We then have the following pseudo-differential normal form result.

Proposition 7.1. Let H be a self-adjoint pseudo-differential operator, with
principal symbol h = h0Φ2 in U and vanishing sub-principal symbol. There
exists an elliptic pseudo-differential operator A of principal symbol 1/Φ so that

A?HA−H0 = R

where R is a smoothing operator when acting on functions which are microlo-
calized on U , i.e. its full symbol is fast decaying in U .

Proof. We proceed by induction. It is enough to consider symbols in U . In
what follows ≡U means that the difference is smoothing in U .

Defining A0 = OpW (1/Φ), we get first

A?0HA0 ≡U H0 + P2

for some pseudo-differential operator P2 of order -2. This uses the fact that the
sub-principal symbol of A?0HA0 vanishes; this follows from the identity which
extends the formula for the principal symbol of the commutator:

sub(PQ) = sub(P )σp(P ) + σp(Q)sub(P ) +
1

2i
{σp(P ), σp(Q)}

and the fact that sub(A0) = 0 since we have used the Weyl quantization.
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We then have to find, for any integer n ≥ 1, some self-adjoint pseudo-
differential operators An and Pn+2 of respective orders −n and −(n + 2) so
that

e−iAn(H0 + Pn+1)eiAn ≡U H0 + Pn+2

This gives the following co-homological equation in U for the principal symbol
an of An

{h0, an}+ pn+1 = 0 in U .

In order to solve this equation, we decompose an and pn+1 into Fourier series
with respect to x. As we expect an to be homogeneous of degree −n, we set

an = η−n
∑
k∈Z

αn,k

(
y,
ξ

η

)
eikx, pn+1 = η−(n+1)

∑
k∈Z

ρn,k

(
y,
ξ

η

)
eikx,

and we get, using the variable s = ξ/η:

s (∂yαn,k + λ∂sαn,k) + (λn− ik)αn,k = ρn,k

This singular differential equation admits a unique smooth solution in R2
y,s given

by

αn,k(y, s) =
1

λ

∫ 1

0

τn−1−
ik
λ ρn,k

(
y +

(τ − 1)s

λ
, τs

)
dτ

Furthermore, since the partial derivatives of αn,k are controlled by those of
ρn,k uniformly in k, we obtain that the solution an has the same regularity as
pn+1.

7.2 Solutions of (H − ω0)u ∈ C∞ near the closed leaves

The general theory tells us that the wavefront set of any solution to (H−ω0)u ∈
C∞ is contained in the characteristic manifold Σω0

and is invariant by the
dynamics of Xh. The idea is then to use the reference operator H0 to get an
explicit formula for the singularity.

Proposition 7.2. Any distribution u so that (H − ω0)u is smooth, is given,
microlocally near each closed cycle γ in the normal form chart, by an expansion
of the form

u = A

(∑
k∈Z

vk(y + i0)−1+ik/λeikx

)
where A is an elliptic pseudo-differential operator of degree 0, and the growth of
(vk) is controlled by (7.2).

In particular, such a solution is smooth microlocally near a closed cycle γ as
soon as it is microlocally L2 near that cycle.

In order to establish this result, the first step is to solve (microlocally) the
equation H0v ∈ C∞ for the reference operator H0.
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Lemma 7.3. Any solution of H0v ∈ C∞, whose wavefront set is contained in
the set U defined by (7.1), admits the following expansion, up to smooth terms,

v(x, y) ≡
∑
k∈Z

vk(y + i0)−1+ik/λeikx .

Proof. We know already that the wave front set of v is included in the charac-
teristic manifold ξ = λyη intersected with U . Composing on the left by D := ∂y,
we get that v satisfies (∂x − λ(y∂y + 1))v ∈ C∞.

Using a Fourier decomposition in x, we are then reduced to solve

(ik − λ(y∂y + 1)) vk = −λgk

for some smooth gk. This is a simple linear ordinary differential equation whose
solution is given, for y > 0, by

vk(y) =

∫ 1

0

s−ik/λgk(ys)ds+ l+k y
−1+ik/λ
+

A similar expression holds for y < 0. The first term is smooth if gk is.
Summing the Fourier expansions and using again the Sokhotski-Plemelj the-

orem, we get

v ≡
∑
k

v+k (y + i0)−1+ik/λeikx +
∑
k

v−k (y − i0)−1+ik/λeikx

Now, since the Fourier transform of the second sum is supported by η < 0, it
should vanish because of the wavefront set assumption.

We then need to characterize the admissible sequences (vk).

Lemma 7.4. The sum T :=
∑
vk(y+ i0)−1+ik/λeikx defines a tempered distri-

bution if and only if

vke
π(k/λ)− is of polynomial growth. (7.2)

Furthermore, if T ∈ L2
loc near y = 0, the sequence (vk) is identically zero.

Proof. We recall that the Fourier transform extends to tempered distributions
(see [13], section 2.3). In particular we have, for α ∈ R \ 0:

F
(
(y + i0)−1+iα

)
(η) = −2πie−απ/2

Γ(1− iα)
η−iα+ ≡ γαη−iα+

We know also that

|Γ(1− iα)| =
√

πα

sinhπα

so that

|γα| = 2πe−απ/2
√

sinhπα

πα
∼α→∞

√
2π

|α|
eπα− .
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The condition for T to be a tempered distribution is that the series of its
Fourier coefficients grows at most polynomially, which is exactly condition (7.2).

Since none of the elementary functions (y+ i0)−1+iα is in L2
loc, the only way

that T ∈ L2
loc near y = 0 is that all Fourier coefficients vanish.

Equipped with this characterization of the solutions to H0v ∈ C∞, we can
now deduce the structure of singularities in u∞ using the normal form.

Proof of Proposition 7.2. Let u be a solution to (H − ω0)u ∈ C∞. We know
that WF (u) ⊂ Σω0

.

Using a microlocal partition of unity on Σω0
, we can decompose

u =
∑
γ

uγ

where uγ is a solution to (H − ω0)uγ ∈ C∞, microlocalised on the cone Γγ
generated by the cycle γ. We have then WF (uγ) ⊂ Γγ .

By Proposition 7.1, there exists an operator A elliptic on a conic neighborhood
of Γγ such that the equation Huγ ∈ C∞ rewrites

H0A
−1uγ ∈ C∞, WF (A−1uγ) ⊂ Γγ

We get then, from Lemma 7.3 and 7.4

A−1u ≡
∑
k

vk(y + i0)−1+ik/λeikx

.

7.3 Proof of Theorem 7.1

• By Proposition 6.6, we know that u∞ = (H − ω0 − i0)−1f is L2 near the
unstable cycles. Then, by Proposition 7.2, we deduce that u∞ is smooth near
the unstable cycles.

Remark 7.5. Note that the same argument shows that any L2 eigenfunction
of H is actually smooth.

• Since the wavefront set of u∞ is invariant by the dynamics, and that u∞ is
smooth near the unstable cycles, we further obtain that u∞ is smooth in the
unstable basins. In view of the general form of the solutions of (H−ω0)u ∈ C∞
on the cone generated by any basin Bγ , this regularity implies that (vk) is fast
decaying.
• Any distribution microlocalized on U of the form

v(x, y) =
∑
k

vk(y + i0)−1+ik/λeikx,
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with fast decaying coefficients (vke
π(k/λ)−) is a Fourier integral distribution

associated to Γ. This follows easily by taking the y−Fourier transform

v̂(x, η) =
∑

γk/λvkη
−ik/λ
+ eikx

which is a symbol of degree 0 in η. Then applying the operator A keeps that
property.

Remark 7.6. Note that, once we know that the wavefront set is located on the
cones generated by stable orbits, this singular behavior could be also obtained by
semiclassical arguments, or by boundary layer techniques.

8 Conclusion

We have shown that the phenomenon of concentration of the energy on attrac-
tors is a very general feature of forced dynamics governed by a pseudo-differential
operator with principal symbol homogeneous of degree 0, associated to a non
singular foliation.

In the recent paper [6], the first author has extended this work to more
singular situations. There are still the assumptions that Σω0 is nondegenerate,
and that it satisfies a Morse-Smale property which is crucial to build escape
functions and apply Mourre theory. But the assumption that the projection
π is a finite covering is removed by using suitable canonical transformations
and their quantizations as in [27, 28]. We can then admit singular foliations
with singular hyperbolic points which are foci, nodes or saddles. Actually, these
singular points and the corresponding generic normal forms are already studied
in the context of implicit differential equations (see [2]).

However, even extended to singular foliations, this general theory fails to
apply to the specific situation of internal waves observed in lab experiments:

• we would indeed need to understand how to catch the effects of boundaries
which create discontinuities in the frequency space;

• furthermore it would be necessary to add viscous effects, which are no
more negligible when the wavelengths become large (see [24, 21]).

These questions are major challenges for the mathematical analysis.

Another interesting perspective comes from the following remark. Although
it is linear, the system we have studied here exhibit the main features of wave
turbulence. We have indeed proved that

• with a stationary forcing at wavelengths O(1), small scales will be excited;

• the energy cascade is given by the frequency distribution in the wavefront
set WF (u∞).
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These properties are clearly related to the quasi-resonant mechanism, or in other
words to the fact that the spectrum of the operator is continuous. This could be
an indication for the study of turbulence due to some weak coupling of waves.

A Appendix: the integrable case

Let us consider the operator H on L2(X, |dx|), where X is the torus (R/2πZ)d,
defined by

∀n 6= 0, Hen = h(n)en

and He0 = 0, with en(x) = exp(i〈n|x〉) for n ∈ Zd and h : Rd \ 0 → R is
smooth and homogeneous of degree 0. The spectrum of H is the union of {0}
and of the interval J := [minh,maxh], and is pure point dense with eigenvalues(
h(n)

)
n∈Zd .

The solution to the forced wave equation is then given by

u(t) =
∑

h(n)6=0, n∈Zd\0

an
1− e−ith(n)

h(n)
en + it

∑
h(n)=0, n∈Zd\0

anen (A.1)

where the an are the Fourier coefficients of the forcing f (assuming without loss
of generality that a0 = 0).

A.1 The resonant case

Consider first the case when 0 is an eigenvalue of H, i.e. there exists n0 6= 0
with h(n0) = 0. Let us assume in addition that te non degeneracy condition is
satisfied: h′(n0) 6= 0.

Using the euclidean division of n by n0, we get that for n large enough

h(n) 6= 0 ⇒ |h(n)| ≥ 1

2
|h′(n0)|n0

n
.

Hence the first part of the sum in (A.1) is bounded in L2 as soon as∑
|an|2|n|2 <∞,

i.e. as soon as the forcing is in the Sobolev space H1(X).
In this case

u(t) = itf0 +OL2(1)

where f0 is the orthogonal projection of f onto KerH.
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A.2 The non resonant case

We now consider the non resonant case, with the diophantine condition

∀n ∈ Zd \ 0, |h(n)| ≥ C|n|−α

with C > 0, α > 0. Then, if f is smooth enough (depending on α), the solution
to the forced wave equation given by (A.1) remains bounded in L2.

In order to compare this result to the non integrable case, we will translate
the diophantine condition on the symbol h into a dynamical condition. Let us
look at the classical dynamics on the set h(p) = 0. The momentum is constant,
so that we can look at the dynamics on a torus X×{p0} with h(p0) = 0. Assume
for simplicity that h vanishes only on the line generated by p0 with |p0| = 1,
and that we have the non degeneracy condition h′(p0) 6= 0. The dynamics is
linear, given by the vector field

Y =

d∑
j=1

∂h

∂pj
(p0)∂xj

For any n, define n1 = n/|n|. We have, using Y.p0 = 0,

h(n1)− h(p0) = Y.n1 +O(|n1 − p0|2)

• If |n1 − p0| ≤ c/|n|α/2, we get |Y.n1| ≥ C1/|n|α with C1 > 0.

• If |n1 − p0| ≥ c/|n|α/2, we get |h(n1) − h(p0)| ≥ C2/|n|α/2, and hence
|Y.n1| ≥ C3/|n|α/2.

Finally we get that Y satisfies a Diophantine condition. A similar reasoning
shows that the converse is true.

Proposition A.1. The following diophantine conditions are equivalent:

∃C,α > 0, ∀n ∈ Zd \ 0, |h(n)| ≥ C|n|−α ,

∃D,β > 0, ∀n ∈ Zd \ 0, |Y.n| ≥ D|n|−β .
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