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A Stochastic Projection-Based Hyperreduced Order Model for
Model-Form Uncertainties in Vibration Analysis
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A feasible, nonparametric, probabilistic approach for quantifying model-form uncertain-
ties associated with a High-Dimensional computational Model (HDM) and/or a corresponding
Hyperreduced Projection-based Reduced-Order Model (HPROM) designed for the solution of
generalized eigenvalue problems arising in vibration analysis, is presented. It is based on the
construction of a Stochastic HPROM (SHPROM) associated with the HDM and its HPROM
using three innovative ideas: the substitution of the deterministic Reduced-Order Basis (ROB)
with a Stochastic counterpart (SROB) that features a reduced number of hyperparameters;
the construction of this SROB on a compact Stiefel manifold in order to guarantee the linear
independence of its column vectors and the satisfaction of any applicable constraints; and
the formulation and solution of a reduced-order inverse statistical problem to determine the
hyperparameters so that the mean value and statistical fluctuations of the eigenvalues pre-
dicted in real time using the SHPROM match target values obtained from available data. If
the data are experimental data, the proposed approach models and quantifies the model-form
uncertainties associated with the HDM, while accounting for the modeling errors introduced
by model reduction. If on the other hand the data are high-dimensional numerical data, the
proposed approach models and quantifies the model-form uncertainties associated with the
HPROM. Consequently, the proposed nonparametric, probabilistic approach for modeling
and quantifying model-form uncertainties can also be interpreted as an effective means for
extracting fundamental information or knowledge from data that is not captured by a deter-
ministic computational model, and incorporating it in this model. Its potential for quantifying
model-form uncertainties in eigenvalue computations is demonstrated for what-if? vibration
analysis scenarios associated with shape changes for a jet engine nozzle.

I. Introduction
In computational modeling, one can distinguish at least between two sources of uncertainty: parameter uncertainty,

and model-form uncertainty. Parameter uncertainty is associated with those parameters of the mathematical model
whose exact values are unknown to or cannot be controlled by experimentalists, or whose values cannot be exactly
inferred by statistical methods [1]. Model-form uncertainties can result either from the lack of knowledge of the true
physics underlying the problem of interest, or the omission or truncation of modeling details, for reasons ranging from
the lack of available information to the inability to discern in some circumstances between important and unimportant
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modeling details. Such uncertainties affect the ability of even a High-Dimensional Model (HDM) to deliver predictive
results – that is, results that match reasonably well their experimental counterparts (which themselves can also be
tainted by other types of uncertainties). Examples in computational structural dynamics include constitutive, multiscale,
friction, homogenization, and free-play modeling errors. In the literature, the modeling, quantification, and propagation
of parameter uncertainty has dominated the scene. By comparison, model-form uncertainty has been far less studied:
therefore, its modeling and quantification are still in their infancies. This, despite the fact that once a model must be
considered for any purpose, model-form uncertainties are unavoidable.

Indeed, many if not most of the approaches developed so far for Uncertainty Quantification (UQ) are based on
parametric probabilistic methods, and prior and a posterior stochastic models of uncertain model parameters pertaining,
for example, to geometry, boundary conditions, and material properties. Such approaches are particularly well developed
for modeling model parameter uncertainty, at least for a small number of parameters. Their computational feasibility has
been demonstrated for relatively small-size HDMs. For larger-scale HDMs, the underlying Monte Carlo simulations, or
other type of stochastic computations, become so computationally intensive that model reduction becomes unavoidable.
Unfortunately, model reduction introduces in the process its ownmodel-form uncertainties which parametric probabilistic
methods for UQ cannot take into account.

For example, Projection-based Model Order Reduction (PMOR) is one approach to achieve model order reduction
that is grounded in mathematics. It is also the most popular and perhaps the most rigorous approach for reducing
the dimension of an HDM. It achieves this objective by projecting the HDM onto a subspace of lower dimension
represented by a Reduced-Order Basis (ROB). This projection requires first constructing this ROB, then approximating
the solution in the lower-dimensional subspace described by this ROB, and finally projecting some form of the governing
equations associated with the HDM onto the same ROB or a related one. The outcome of PMOR is a Projection-based
Reduced-Order Model (PROM). This reduced-order model distinguishes itself from simplified models that are also
often called reduced-order models as follows: if the ROB is carefully constructed, the PROM can maintain most of the
fidelity of the HDM, which a simplified model can rarely do. Unfortunately, a PROM inherits by construction any form
of uncertainty in its underlying HDM. It also inherits the model-form uncertainties associated with the construction of
the ROB onto which the HDM is projected to obtain this PROM. These uncertainties include at least:

• The uncertainty associated with finite sampling in the design of experiments type of procedure performed offline
(and usually referred to as training or learning) to construct a global ROB whose domain of validity covers a large
part of the design space.

• That associated with the model truncation errors due to the truncation of the subspace of approximation underlying
such a ROB via a data compression method such as, for example, SVD (Singular Value Decomposition) or POD
(Proper Orthogonal Decomposition).

• The uncertainty arising from the approximation errors introduced by hyperreduction to achieve computational
feasibility.

Hence, a PROM that is used to accelerate stochastic computations propagates in these computations the above model-form
uncertainties which cannot be accounted for by parametric probabilistic methods for UQ. Considering that such methods
are often designed for modeling model parameter uncertainty, it follows that at least in this case, modeling and
quantifying model-form uncertainty is a pre-requisite for studying parameter uncertainty.

Even though the issues and solution approaches discussed in this paper are very broad, the focus of this work is
on vibration analysis, and more specifically, on the associated generalized EigenValue Problem (EVP). For structural
dynamics analysis in general, nonparametric probabilistic approaches for modeling uncertainties induced by general
modeling errors been have been developed in [2–4], albeit for linear problems and a limited class of geometrically
nonlinear structural analysis problems. More recently, a new nonparametric probabilistic approach based on the
construction of a Stochastic PROM (SPROM) was recently introduced in [5] for addressing specifically model-form
uncertainties, and the broader context of arbitrarily nonlinear structural dynamics problems. In [6], its scope was
extended to generalized eigencomputations, as these are important in many fields including vibration analysis. The
resulting method was also successfully demonstrated for a jet engine application for which a small-scale Finite Element
(FE) HDM and experimental data are available. However, even for medium-scale HDMs, this extension to the generalized
EVP of the nonparametric, probabilistic approach proposed first in [5] for modeling and quantifying model-form
uncertainties in nonlinear structural dynamics applications is practically infeasible. This paper explains the reasons why
this is the case. It also remedies this issue by redesigning the original model-form UQ method originally proposed in [5]
around the concept of a Stochastic Hyperreduced PROM (SHPROM) rather than an SPROM. It also demonstrates for
the first time the ability of this method to operate outside the training parameter points of its Hyperreduced PROM
(HPROM), by illustrating its application to what-if? vibration analysis scenarios associated with shape changes of a jet
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engine nozzle.
For this purpose, the focus of this paper is specifically set on the discrete, generalized EVP associated with a given

FE structural dynamics model, and on the modeling and quantification of model-form uncertainties in such a model for
which an HPROM can be constructed.

II. Projection-based dimensional reduction of parametric generalized eigenvalue problems
Here and throughout the remainder of this paper, the words “parameter”, “parametric”, and “parameterized” do not

refer nor relate to parametric probabilistic approaches for UQ, but to a parameterized (or parametric) computational
model such as an HDM, PROM, HPROM, SPROM, or SHPROM – that is, a computational model that depends on a
vector of deterministic parameters that are varied for the purpose of performing parametric studies. Such studies are
typically computationally intensive. When the HDM and/or the parameter domain have very large dimensions, they may
be even practically infeasible, unless they are performed using a reduced-order model such as a PROM or an HPROM.
As a matter of fact, parametric studies, which include stochastic studies as a particular case, are one of the driving
applications of model reduction.

A. High-dimensional form
A parameterized, discrete, generalized EVP associated with a structural dynamics FE HDM of dimension N can be

written as
K (%)u(%) = ω(%)2M (%)u(%) (II.1)

where % ∈ Ω% ⊂ Rm% is a vector of deterministic, physical or nonphysical model parameters, Ω% is a parameter
domain of interest and m% is its dimension, M (%) ∈ RN×N and K (%) ∈ RN×N are the FE mass and stiffness matrices,
respectively, and the notation •(%) emphasizes the dependence of the quantity • on %. Occasionally, this dependence
is not explicitly highlighted in the remainder of this paper for the sake of brevity. The vector u(%) ∈ RN denotes the
semi-discrete amplitude of an assumed harmonic vibration of the structure (also called the eigenmode), ω(%) = 2π f (%)
is the corresponding circular frequency, and f is the ordinary frequency. It is assumed that the displacement boundary
conditions are incorporated into the above governing equation, in which case the dimension N of the given FE HDM is
equal to its number of unconstrained unknowns.

For large-scale FE models (large values of N), and in particular when the problem is parameterized by many
parameters (large values of m%) and/or over a large parameter domain Ω% , the solution of the generalized EVP (II.1)
becomes computationally very intensive. Practical interest is usually focused on a subset of mu eigenvalues and
eigenvectors at the lower end of the frequency spectrum: this is because the high eigenvalues and the associated
eigenvectors are often unresolved by the mesh underlying the HDM, and therefore non-physical mesh frequencies and
corresponding eigenvectors are captured instead. Even in this case, reducing the dimension of the problem (II.1) before
solving it in the parameter domain of interest is attractive for many applications. However, the reduction of this problem
is considered here primarily for the purpose of modeling and quantifying the model-form uncertainties affecting M (%),
K (%), and the mu pairs of eigensolutions (ωi (%)2, ui), i = 1, · · · ,mu < N . Indeed, it will be shown that in this case,
dimension reduction may become interesting if not necessary even for relatively small values of N .

The natural frequencies f i (%) = ωi (%)/2π, i = 1, · · · ,mu < N , are defined in this paper as the Quantities of Interest
(QoIs) for problem (II.1).

B. Projection-based dimensional reduction using a global reduced-order basis
In order to accelerate the solution of the generalized EVP (II.1) over the parameter domain Ω% ⊂ Rm% , a PROM is

considered here for this application. This PROM is constructed by projecting the governing equation (II.1) onto a small
subspace spanned by a ROB, which leads to an approximation of this EVP of lower dimension. To achieve accuracy
over the entire parameter domain, a global ROB is built from local subspaces constructed at a few sampled parameter
points in Ω% . Details about the implied sampling procedure are given in the following section. Here, the focus is set
instead on the construction of a global ROB – that is, a ROB that leads to accurate approximations in a large part of, if
not the entire domain Ω% – given an n%-point sampling {%i }

i=n%
i=1 of this parameter domain.

In the context of structural dynamics problems, a modal basis consisting of eigenvectors ui (%), i = 1, · · · ,mu < N
obtained from the numerical solution at one parameter point %? ∈ Ω% of problem (II.1) is used as a ROB to reduce
the dimension of this problem at this parameter point. However, such a ROB cannot be considered in this work since
the main interest here is in modeling and quantifying the effect of model-form uncertainties on the computation of
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the eigenpairs (ωi (%)2, ui (%)), i = 1, · · · ,mu . Hence, an alternative ROB V ∈ RN×n, where mu ≤ n � N , is built in
this work by applying the Proper Orthogonal Decomposition (POD) method and the method of snapshots [7] to the
following time domain equivalent of problem (II.1)

M (%)ü(%, t) + K (%)u(%, t) = f ext(%, t)
u(%, 0) = u0(%) (II.2)
u̇(%, 0) = v0(%)

where t denotes time, a dot designates a time derivative, and f ext(%, t), u0(%) and v0(%) denote the semi-discrete,
time-dependent, external force vector and displacement and velocity initial conditions, respectively. The external force
vector and the initial conditions are chosen so as to generate a broadband excitation of the modeled structural dynamics
system.

Specifically, the semi-discrete initial-value problem (II.2) is solved for each sampled parameter point % ∈ {%i }
i=n%
i=1

using a preferred time-integrator. The computed solutions are collected at a chosen time-interval frequency into a global
snapshot matrix X ∈ RN×ns , where ns denotes the total number of collected solution snapshots. Then, the snapshot
matrix X is compressed using, for example, the SVD method, in which case the first n left singular vectors associated
with the n dominant singular values are selected to form the global ROB V ∈ RN×n. Denoting these n singular values by
σ1, σ2, · · · , σn and ordering them so that σ1 ≤ σ2 ≤ · · · ≤ σn, the accuracy of the approximation of X by V measured
in the Frobenius norm is controlled by the ratio

rσ =

n∑
i=1

σ2
i

ns∑
i=1

σ2
i

(II.3)

Thus, this ratio can be used to determine the appropriate dimension n of the ROB by specifying an “energy” threshold
and finding the smallest value of n for which the above ratio exceeds this threshold.

For many structural dynamics applications, it is advantageous to choose an M-orthonormal ROB V [8] – that is, a
ROB V which satisfies VT MV = In, where In denotes the identity matrix of dimension n. However for a parametric
application, M may vary from one parameter point of the parameter domain to another. For this reason, the standard
orthonormality condition VTV = In, which is satisfied by the ROB V delivered by the standard SVD applied to the
compression of the matrix of snapshots X , is adopted here.

Next, the generalized EVP (II.1) is projected onto the subspace spanned by the columns of V using a Galerkin
projection. To this end, a generalized eigenvector is approximated as

u ≈ Vur (II.4)

where ur denotes the reduced vector of generalized coordinates, and substituted into (II.1). The resulting equation is
premultiplied by VT , where the superscript T denotes here and throughout the remainder of this paper the transpose
operation. This yields the following PROM for the discrete, generalized EVP (II.1)

Kr (%)ur (%) = $2(%)Mr (%)ur (%) (II.5)
where

Kr (%) = VT K (%)V and Mr (%) = VT M (%)V (II.6)

The notation $ is introduced above to differentiate the circular frequencies governed by the PROM (II.5) from their
counterparts governed by the HDM (II.1). It is noted that the problem (II.5) is of size n � N and therefore can be
solved in real time. It is also noted that if the ROB V accurately represents the dynamic behavior of the FE HDM, the
eigensolutions of the problem (II.5)

($2
i ,Vuri ), i = 1, · · · ,mu ≤ n � N

can be expected to be accurate approximations of the eigensolutions of the problem (II.1).

C. Parameter sampling and construction of the global reduced-order basis
A PROM that is built at a single parameter point %? in the parameter domain Ω% is expected to perform well at this

parameter point, and possibly in its immediate neighborhood. In order to build a PROM that performs well however in a
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large part of, if not the entire parameter domain Ω% ⊂ Rm% , an approach that constructs a global ROB (and then the
corresponding PROM by projection onto this ROB) by sampling many parameter points in the parameter domain is
often adopted. In general, it is difficult, if not impossible, to determine a priori the best parameter points for this purpose.
Thus, a progressive, iterative approach usually referred to as the greedy [9, 10] sampling procedure or algorithm, is
adopted instead. While this sampling algorithm is in general sub-optimal (in the sense of minimizing the number of
parameter points to be sampled in Ω% or the dimension of the resulting global ROB V ), it is easy to implement. It has
also the merit of converting the difficult problem of finding the optimal parameter points %j ∈ Ω% into an easier one –
namely, finding the next point %j+1 that is optimal in some sense with respect to the present state of the list of sampled
parameter points.

The greedy sampling algorithm has two principal ingredients:
1) A pre-sampling scheme that is used to find candidates for the next parameter point to be sampled.
2) An error indicator that is exploited to discriminate between the aforementioned candidate parameter points and

to monitor the convergence of the progressively constructed global PROM.
At each iteration of this algorithm, candidate parameter points are pre-sampled in Ω% . The nature of this pre-sampling
depends on the application. For a parameter domain of small dimension, a uniform pre-sampling is affordable. For
a parameter domain of a large dimension, sparse and random pre-samplings methods such as the Latin hypercube
sampling method are more appropriate. Once the candidate parameter points have been determined, the error indicator
is applied at each of these points and the candidate parameter point where the indicated error is the largest is sampled. If
the cost of the offline phase is of no concern, the true error can be computed and used as the perfect indicator. However,
this is seldom the case. For this reason, a computationally inexpensive and yet accurate error indicator such as the
residual of the governing equation – or some quantity derived from it – is often adopted instead to discriminate at each
iteration among the pre-sampled candidate parameter points.

Let PROM(k) denote the PROM associated with the global ROB V obtained after k iterations of the greedy sampling
algorithm, S (k) = {%(k)

j }
j=n

% (k )

j=1 , where %(k)
j ∈ Ω% } denote the set of candidate parameter points pre-sampled at iteration

k, and ER(PROM, ρ?) ∈ R denote the value of the error indicator for a given PROM at the parameter point %?. Using
these definitions and a specified tolerance ε , the basic version of the greedy sampling algorithm which builds a global
PROM that is in principle accurate (up to the tolerance ε) in a large part of the parameter domain Ω% can be summarized
as follows:

1) Initialize k := 1 and randomly sample the first parameter point %1.
2) Build PROM(k) using the set of sampled parameter points {%j }i=ki=1 .
3) Pre-sample a set of candidate parameter points S (k) .
4) For each pre-sampled candidate parameter point %(k)

j ∈ S
(k) , compute |ER(PROM(k), %(k)

j ) |
5) Sample the parameter point in S (k) where the error indicator is maximized

%k+1 | %k+1 ∈ S
(k) and∀%(k)

j ∈ S
(k), |ER(PROM(k), %(k)

j ) | ≤ |ER(PROM(k), %k+1) |
6) If |ER(PROM(k), %k+1) | < ε , then exit;

else set k := k + 1 and go to 2.
For the application considered in this paper, Step 2 of the above algorithm includes – as discussed in the previous

section – solving numerically (II.2) to collect a set of snapshots at the sampled parameter point %k , updating the snapshot
matrix X by concatenating its content with these newly collected solution snapshots, and compressing the updated
matrix X using SVD and the truncation criterion (II.3) to update the global ROB V and its dimension. Step 2 of the
above algorithm also incorporates a hyperreduction approximation that is described in Section IV. This approximation
transforms the updated PROM into an HPROM whose construction has a computational complexity that scales only
with the small dimension n of the associated PROM, which significantly accelerates the execution of the stochastic
computations detailed in Section III.

It is also noted that Step 3 has a few variants, as it can be implemented using: the same set of candidate parameter
points throughout the iterations of the greedy sampling algorithm, as in the uniform sampling approach; or a random set
of candidates generated either at the beginning of the algorithm, or at the beginning of every iteration of the algorithm.

For each eigenpair (ωi (%)2, ui (%)) that is a solution of the generalized EVP (II.1), the residual associated with its
approximation by the eigenpair ($2

i ,Vuri ) that is a solution of the PROM (II.5) can be written as

ri = (K −$2
i M)Vuri = (K − ω2

i M)(Vuri − ui) + (ω2
i −$

2
i )MVuri

This expression of ri indicates, as expected, that two errors contribute to the residual ri: one associated with the
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approximation of the eigenvector; and another error associated with the approximation of the eigenvalue. For this
reason, and because the objective of the greedy sampling algorithm is to enable the construction of a global PROM that
delivers in this case accurate approximations of the first mu eigenvalues of (II.1) in a large part of the parameter domain
– specifically, the subdomain of Ω% defined by the envelope of the set of n% sampled parameter points {%i }

i=n%
i=1 – the

following, residual-based, family of error indicators was first considered in this work

ri =
mu∑
i=1

‖(K −$2
i M)Vuri ‖2

op(‖KVuri ‖2, $
2
i ‖MVuri ‖2)

(II.7)

where the operator op can be either the sum, maximum, minimum, first operand, or second operand. Practical experience
revealed that for all aforementioned operators op, the family of error indicators (II.7) leads to a reasonable performance
of the greedy sampling algorithm. However, practical experience also revealed that the following variant of the above
family of error indicators maintains a relatively small and constant discrepancy factor with respect to the true error

ri =
mu∑
i=1

|uTriV
T MT (K −$2

i M)Vuri |

$2
i ‖MVuri ‖

2
2

(II.8)

It is worthwhile noting that whereas neither of the error indicators (II.7) and (II.8) provides a sharp upper or lower
bound on the true error, both of them can be calibrated by the true error computed at the parameter point where the error
indicator is maximized. Such a calibration makes the error indicator bear a closer relationship to the true error in terms
of scale, which in turn makes the choice of convergence tolerance ε more meaningful for the user.

III. Data-driven construction of a stochastic projection-based reduced-order model

A. Data-driven model adaptation
In [5], an innovative, nonparametric, probabilistic approach based on PMOR was developed to model and quantify

model-form uncertainties in a given deterministic computational model. Simply put, the main idea behind this method
can be described as the following six-fold idea:

• Recognize that data, whether experimental or numerical and high-dimensional, may contain fundamental
information or knowledge that is not captured by the given deterministic computational model (which is similar to
recognizing that once a model must be considered for any purpose, model-form uncertainties are unavoidable).

• Adapt the subspace in which the solution of the computational model is searched for rather than the model
parameters in order to discover some form of this information or knowledge, which requires parameterizing this
subspace.

• Parameterize this subspace by randomizing its representative basis using hyperparameters, which transforms the
deterministic computational model into a hyperparametric stochastic one.

• Determine these hyperparameters by constructing and solving an inverse statistical problem designed to minimize
the discrepancies between themean value and statistical fluctuations of theQoIs predicted using the hyperparametric
stochastic model and target values obtained from the available data.

• Implement all of the above ideas into a surrogate, lower-dimensional model if the given deterministic model is an
HDM in order to make them computationally feasible, and choose as surrogate model a PROM because it can be
built to preserve the needed fidelity.

• Recognize that the above steps amount to extracting from the available data the information missing in the
deterministic computational model and infusing it into a stochastic, lower-dimensional counterpart, which is why
these steps are described here as a data-driven model adaptation.

This six-fold idea addresses both types of model-form uncertainties outlined in Section I: those inherent to the HDM,
because they are inherited by its PROM surrogate; and the modeling errors introduced by the model reduction process
used to construct the PROM. If experimental data are not available, this six-fold idea leads to the modeling and
quantification of the modeling errors due to model reduction only. Otherwise, it leads to a nonparametric probabilistic
approach for performing model-form UQ of the given HDM, while accounting for all modeling errors introduced during
model reduction.

In [5], it was proposed to randomize the ROB V in order to transform the deterministic solution of the problem of
interest into a stochastic one that can adapt to the available data so that it can learn from it. To this effect, it is noted here
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that throughout the remainder of this paper, the bold font is used to designate a stochastic quantity. For example, V
denotes the Stochastic ROB (SROB) associated with the deterministic ROB V .

However, the randomization of V cannot be performed arbitrarily, because V must remain an admissible basis of
global modes. Hence, in all events, its columns must remain linearly independent. A simple, albeit stronger approach
for enforcing almost surely the linear independency of the columns of the SROB V is to preserve almost surely the
orthonormality property satisfied by its deterministic counterpart V . Therefore, if V ∈ RN×n is constructed as stated
earlier to satisfy VTV = In, the SROB V is constructed so that:

• V ∈ RN×n is a random matrix whose probability distribution is constructed using the Maximum Entropy principle
of Information Theory and a stochastic representation of random fields.

• The support of this probability distribution is the subset of real N × n matrices satisfying the constraints

VT V = In (III.1)

almost surely.
• The probability distribution of V depends on a hyperparameter vector α = (α1 . . . αmα )T , where the dimension

mα is sufficiently small to enable the identification of α from the solution of a reduced-order inverse statistical
problem. This problem is designed to minimize the discrepancies between the mean value and statistical
fluctuations of the QoIs predicted using the SPROM constructed using V, and their counterparts based on the
available data.

• The statistical fluctuations of V happen around its deterministic counterpart V .
The general procedure for constructing an SROB V that meets the above requirements was first presented in [5].

It is described in simplified form in Section III.C.1 of this paper in order to keep it self-contained. The selection of
the hyperparameters governing the probability distribution of this SROB is tailored in Section III.C.2 to the context
of the discrete, generalized EVP (II.1). The approach for identifying the hyperparameter vector α so that the SROB
constructed in Section III.C.1 can reproduce the mean value and statistical fluctuations of the QoIs computed from the
available data is presented in Section III.D. However, the SPROM to be built using the constructed SROB V and the
Galerkin projection procedure is first presented in Section III.B below.

B. Stochastic projection-based reduced-order model
The stochastic counterpart of the approximation (II.4) can be written as

u ≈ Vur

where u and ur are the stochastic counterparts of u and ur , respectively, and therefore represent the stochastic solution
and its generalized coordinates in the basis V, respectively. Substituting this approximation in problem (II.1) and
premultiplying both sides of the algebraic equation defining this problem by VT leads to the following SPROM for the
discrete, generalized EVP of interest

Krur = $2Mrur

where
Kr = VT KV and Mr = VT MV (III.2)

Because it is formulated using an SPROM of dimension n � N , the stochastic problem (III.2) can be rapidly solved to
compute the realizations of the stochastic QoIs

(ω2
i , ui) ≈ ($2

i ,Vuri ), i = 1, · · · ,mu ≤ n � N

where ($2
i , uri ) is the i-th eigenpair solution of problem (III.2).

C. Stochastic reduced-order basis

1. Construction procedure
From (III.1), it follows that the N × n SROB V must be constructed on a compact Stiefel manifold denoted here by

SN,n. This can be done using the procedure summarized below and graphically depicted in Fig. 1.
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• Generate a centered random matrix U ∈ RN×n (see the corresponding numerical procedure outlined below)
• Transform U into a random matrix Z that lies on the tangent space to SN,n at V , TVSN,n

Z = U −
1
2

V
(
VTU + UTV

)
(III.3)

Indeed, it follows from (III.3) that Z can also be written as

Z =
1
2

V (VTU − UTV ) + (IN − VVT )U (III.4)

where, from the orthonormality property of V , it follows that VT (IN − VVT )U = VTU − VTU = 0. This shows
that (III.4) expresses Z as the sum of one component in the subspace generated by V and one component in the
subspace that is I-orthogonal to V , and therefore Z lies on the tangent space to SN,n at V .

• Transform Z into the matrix V which satisfies (III.1) and therefore lies on SN,n

V = (V + sZ)
(
In + s2ZTZ

)−1/2
(III.5)

where 0 ≤ s ≤ 1 can be treated as a hyperparameter of the probability model underlying V. Indeed, from the
orthonormality property of V and the definition of Z given in (III.3), it follows that

VT V =
(
In + s2ZTZ

)−1/2
(VT + sZT ) (V + sZ)

(
In + s2ZTZ

)−1/2

=
(
In + s2ZTZ

)−1/2 *..
,
In + s (VTZ + ZTV )︸            ︷︷            ︸

0

+s2ZTZ
+//
-

(
In + s2ZTZ

)−1/2

= In

Fig. 1 Construction of the SROB V on the compact Stiefel manifold SN,n (construction procedure shown for
V/VTV = I).

Note that the definition (III.5) given above shows that:
• The statistical fluctuations of V happen around its deterministic counterpart V , as desired. In particular, for s = 0,

V = V . However, it is noted that in general, E(V) , V (see [5]).
• The real number s controls the level of fluctuations of V in the tangent plane to SN,n, around V ∈ SN,n.

Note also that whereas the matrices U, and Z leading to the construction of V are random matrices, the construction
process of V itself is deterministic. In particular, no matter how large is the excursion of V + sZ in the tangent plane to
SN,n around V ∈ SN,n, the resulting matrix V = (V + sZ)

(
In + s2ZTZ

)−1/2
lies on the manifold SN,n. Hence, for all

these reasons, the SROB V defined in (III.5) satisfies all requirements formulated in Section III.A.
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2. Random matrix U and associated hyperparameters
From (III.3) and (III.5), it follows that if U = 0, then Z = 0 and V = V . This suggests that, consistently with the idea

that the statistical fluctuations of V should occur around its deterministic counterpart V , U should be a centered random
matrix (E[U] = 0, where E designates the mathematical expectation of a random variable).

The covariance tensor Cjk j′k′ = E[UjkUj′k′] is a fourth-order symmetric tensor with Nn(Nn + 1)/2 = O(N2n2)
coefficients that can be considered as parameterization coefficients. As already mentioned in Section III.A, part of
the idea here is to use such coefficients as hyperparameters and determine them so that the mean value and statistical
fluctuations of the eigenvalue solutions of the SPROM (III.2) match target values obtained from available data. However,
working for this purpose with O(N2n2) hyperparameters is not computationally feasible. Hence, in order to reduce its
number of hyperparameters, the random matrix U is constructed so that

Cjk j′k′ = E[UjkUj′k′] = CN (β)j j′cnkk′ (III.6)

where β is a hyperparameter, CN (β) ∈ RN×N controls the correlations between the components of each column vector
of U, and the matrix cn ∈ Rn×n, which is a Symmetric Positive Definite (SPD) matrix, controls the correlations between
the column vectors of U. For a given application, the construction of CN (β) is given by a mathematical process whose
description can be found in Appendix D of Reference[5]. According to the Cholesky decomposition, cn can be written
as

cn = τT τ (III.7)

where τ ∈ Rn×n is an upper triangular matrix. This approach for constructing U reduces the number of hyperparameters
from Nn(Nn + 1)/2 to 1 + n(n + 1)/2 = O(n2).

In Reference[5], it is shown that both objectives E[U] = 0 and (III.6) can be achieved by constructing a random
matrix G ∈ RN×n that: is centered (E[G] = 0); is computed by semi-discretizing a random field defined at the continuous
level of the governing equation of the problem of interest; verifies E[GjkGj′k′] = CN (β)j j′δkk′; and generates the
random matrix U as follows

U = G(β)τ (III.8)

Given that s in (III.5) is also a hyperparameter, it follows that the probability model underlying V defined so far has
2 + n(n + 1)/2 hyperparameters: s, β, and the coefficients of the upper triangular matrix τ. In the remainder of this
paper, these parameters of prior distribution are referred to as the main hyperparameters.

3. Additional hyperparameter for reducing the bias of the mean value
For computing the lowest eigenvalues, it is sometimes difficult to identify optimal values of the main hyperparameters

described in Section III.C.2 – that is, values of these parameters that sufficiently reduce the bias between the mean value
E{$2

j } estimated using the SPROM (III.2) and the corresponding value extracted from the available data. To address
this issue, an additional, strictly positive hyperparameter sM > 0 belonging to a real interval in the neighborhood of 1 is
introduced here as follows. Specifically, each stochastic QoI$2

j in the SPROM (III.2) is re-written as

$2
j = sM $̂

2
j, j = 1, . . . ,mu (III.9)

and the statistics of the random eigenvalues are constructed for $̂2
j instead of $2

j . Noting that E{$2
j } = sM E{$̂2

j },
it follows that the purpose of the hyperparameter sM is to enable a better global fit of the mean values {E{$2

j }, j =
1, · · · ,mu }.

In summary, for the class of generalized eigenvalue problems considered in this paper, the hyperparameters governing
the probability distribution of the SROB V are:

• The hyperparameter s which is a real number and controls the level of fluctuations of V in the tangent plane to
SN,n, around V ∈ SN,n (see (III.5)).

• The hyperparameter β controlling the matrix CN (β)j j′ (see (III.6)).
• The n(n + 1)/2 hyperparameters of the matrix τ (see (III.8)) represented here by the vector vec(τ).
• The hyperparameter sM introduced above (see (III.9)).

These parameters of prior distribution are collected here in the hyperparameter vector

α = (s, sM , β, vec(τ)) (III.10)
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In principle, the upper triangular matrix τ (III.7) can be sparsified. Thus, an upper bound for the total number of
hyperparameters described above is mub

α = 3 + n(n + 1)/2, and a lower bound is mlb
α = 4. Consequently, the dimension

of the hyperparameter vector (III.10) satisfies in general

4 ≤ mα ≤ 3 + n(n + 1)/2

D. Identification of the hyperparameters
As already stated in Section III.A, the identification of the hyperparameter vector α is to be achieved so that the

mean value and statistical fluctuations of the QoIs predicted using the SPROM match target values obtained using the
available data. This can be performed using the maximum likelihood method, or a nonlinear Least-Squares (LS) method
for the QoIs. For example, a nonlinear LS method can be formulated as described below, for both types of model-form
uncertainties outlined in Section I.

Let
o(%) = (o1(%), . . . , oj (%), . . . , omo (%))

denote the vector QoI (or system observation). For example, for problem (II.1), this vector can be o(%) =
(ω2

1 (%), . . . , ω2
j (%), . . . , ω2

mu
(%)) (mo = mu ≤ n � N). For problem (II.5), it can be o(%) = ($2

1(%), . . . , $2
j (%),

. . . , $2
mu

(%)) (mo = mu ≤ n � N), and for problem (III.2), it can be o(%) = ($2
1(%), . . . ,$2

j (%), . . . ,$2
mu

(%))
(mo = mu ≤ n � N).

Let also J (α) be the cost function defined as

J (α) = wJ Jmean (α) + (1 − wJ ) Jstd (α) (III.11)

where wJ is a weight satisfying 0 ≤ wJ ≤ 1, and Jmean (α) and Jstd (α) are two functions constructed for controlling the
identification of α with respect to the mean value and statistical fluctuations, respectively. Specifically, Jmean (α) and
Jstd (α) are defined as

Jmean (α) =
1

cmean(%1, . . . , %n% )

n%∑
k=1

| |oref(%k ) − E[o(%k, α)]| |2

and

Jstd (α) =
1

cstd(%1, . . . , %n% )

n%∑
k=1

| |vref(%k ) − v(%k, α) | |2 (III.12)

where:
• n% denotes as before the number of sampled parameter points %k ∈ Ω% .
• E denotes as before the mathematical expectation.
• The definition of oref depends on the type of available data, which dictates the types of model-form uncertainties
that can be accounted for by the proposed approach for modeling model-form uncertainties:

– If only high-dimensional data – that is, data generated using an HDM – is available, oref corresponds to the
QoIs of the parametric problem (II.1) formulated using an HDM. In this case, only the errors/uncertainties
due to model reduction are taken into account by the proposed approach for modeling model-form
uncertainties.

– If experimental data are available:
∗ If these data are nonstatistical experimental data, then

oref = oexp (III.13)

where oexp is extracted from these available data.
∗ If these data are statistical experimental data, then

oref = E[oexp]

where oexp is extracted from these available data.
In either case of experimental data described above, both of the errors/uncertainties due to model reduction
and the uncertainties inherited from the parametric HDM are taken into account by the proposed approach
for modeling model-form uncertainties.
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• vref(%k ) = (vref
1 (%k ), . . . , vref

j (%k ), . . . , vref
mo

(%k )), k = 1, · · · , n% , is defined as follows:
– If only high-dimensional data is available, then

vref
j (%k ) = γ |oref

j (%k ) − oj (%k ) |, j = 1, . . .mo

where γ > 0 is a tunable control parameter, oref
j (%k ) = ω2

j (%k ) and oj (%k ) = $2
j (%k ).

– If nonstatistical experimental data are available, then

vref
j (%k ) = γ |oref

j (%k ) − oj (%k ) |, j = 1, . . .mo

where, again, γ > 0 is a tunable control parameter and oj (%k ) = $2
j (%k ), but oref

j (%k ) = oexp
j (%k ) (from

(III.13)).
– If statistical experimental data are available, then

vref
j (%k ) =

√
E

(
oexp
j (%k )2

)
−

[
E

(
oexp
j (%k )

)]2
, j = 1, . . .mo

• v(%k, α) =
(
v1(%k, α), . . . , vmo (%k, α)

)
, where

vj (%k, α) =

√
E

(
o2
j (%k, α)

)
−

[
E

(
oj (%k, α)

)]2
, j = 1, . . .mo

• The positive constants cmean(%1, . . . , %n% ) and cstd(%1, . . . , %n% ) are defined as

cmean(%1, . . . , %n% ) =
n%∑
k=1

‖oref(%k )‖2, cstd(%1, . . . , %n% ) =
n%∑
k=1

‖vref
j (%k )‖2

It follows that in the definitions (III.11) and (III.12) of the cost function J (α), oref is the target for the mean value with a
weight wJ , and vref is the target for the standard deviation with a weight 1 − wJ .

The identification of the hyperparameter vector consists in calculating α such that

α = arg min
ϑ

J (ϑ) (III.14)

IV. Hyperreduction
The reader is reminded that the notation •(%) emphasizes the dependence of the quantity • on the parameter vector

% ∈ Ω% , and that occasionally, this dependence is not explicitly highlighted in the remainder of this paper for the sake of
brevity.

Whichever optimization strategy is chosen for solving the minimization problem (III.14) to determine the hyperpa-
rameter vector α, it is bound to be an iterative one. From (III.2), it follows that at each k-th iteration of such a strategy,
the stochastic reduced stiffness and mass matrices

Kr (ϑ) = VT (ϑ)KV(ϑ) and Mr (ϑ) = VT (ϑ)KV(ϑ) (IV.1)

must be recomputed so that: multiple independent realizations of the QoIs may be regenerated by solving different
instances of the SPROM (III.2) using the updated value of the hyperparameter vector ϑ; and Jmean and Jstd (III.12) may
be reevaluated accordingly.

Each reconstruction of Kr (ϑ) (Mr (ϑ)) requires:
• (R1) First, reconstructing the SROB V(ϑ) ∈ RN×n on the compact Stiefel manifold SN,n, as explained in Section
III.C.1 and summarized in Fig. 1.

• (R2) Then, reconstructing the new reduced matrix Kr (ϑ) (Mr (ϑ)), which incurs the computation of the
matrix-matrix-matrix product VT (ϑ)KV(ϑ) (VT (ϑ)MV(ϑ)), where K (M) ∈ RN×N , respectively.

Unfortunately, the computational complexity of each of the above two requirements, and therefore that of rebuilding each
of Kr (ϑ) and Mr (ϑ), does not scale only with the size of the SPROM n, but also with that of the HDM N . Therefore,
reconstructing each of these two reduced matrices at the beginning of each iteration of the solution of the minimization
problem (III.14) constitutes a serious computational bottleneck.
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In model reduction, such a bottleneck, which is typically encountered in deterministic nonlinear PROM computations
but occurs here in stochastic linear PROM ones, is avoided by hyperreducing the PROM – that is, by approximating
quantities such as Kr and Mr using a method whose computational complexity scales only with the dimension n of
the SPROM. Here, the ECSW (Energy Conserving Sampling and Weighting) [8] method is chosen for this purpose
because for structural dynamics problems: its superior performance relative to alternative hyperreduction methods has
been amply demonstrated (for example, see [11]); and this hyperreduction method preserves the Lagrangian structure
associated with Hamilton’s principle for second-order dynamical systems (see also [11]).

In the deterministic case – for example, for the PROM (II.5) – the reduced stiffness and mass matrices defined in
(II.6) can be written as

Kr = VT KV =
∑
e∈E

(LeV )T Ke (LeV ) and Mr = VT MV =
∑
e∈E

(LeV )T Me (LeV )

where Le is the standard localization operator to the element e of the FE mesh underlying the given FE HDM, and
E = {e1, · · · , ene } is the set of all ne elements of this mesh. The ECSW hyperreduction method approximates the above
matrices using a quadrature rule that can be written as

Kr ≈ K̃r =
∑
e∈Ẽ

ξe (LeV )T Ke (LeV ) and Mr ≈ M̃r =
∑
e∈Ẽ

ξe (LeV )T Me (LeV ) (IV.2)

where Ẽ ⊂ E is a subset of the elements of the FE mesh that is sampled by ECSW, and for each element e ∈ Ẽ,
ξe ∈ R>0 is a positive scalar weight that is also determined by ECSW. In other words, the ECSW approximation (IV.2)
is a quadrature approximation where each element e ∈ Ẽ plays the role of a quadrature “point”, and the corresponding
coefficient ξe ∈ R>0 plays the role of a quadrature “weight”. The positivity requirement for ξe is enforced so that
ξe (LeV )T Ke (LeV ) preserves the meaning of a stiffness matrix and therefore remains a symmetric positive semi-definite
matrix. To this end, the ECSW method samples the set of elements E to construct the reduced mesh with ñe elements
defining Ẽ ⊂ E, and determines the associated weight vector ξ = (ξe1, . . . , ξeñe ) by minimizing an objective function
that promotes:

• Sparsity (ñe � ne) in order to reduce the computational complexity of the approximations (IV.2).
• Accuracy for a given set of training data that is relevant to the quantities being hyperreduced.

Substituting the approximations (IV.2) into the PROM (II.5) yields the HPROM for the discrete, generalized EVP (II.1)

K̃r (%)ur (%) = $2(%)M̃r (%)ur (%)

In [8] and [11], ECSW was developed for the hyperreduction of deterministic PROMs associated with various
nonlinear versions of the equation of dynamic equilibrium (II.2) such as, for example, the governing equation

M (%)ü(%, t) + f int (u(%, t), u̇(%, t),Ξ(t)) = f ext (%, t)

where f int denotes the internal force vector, and Ξ(t) ∈ Rnint is a time-dependent vector of nint internal variables
associated with some nonlinear constitutive relation. Using the notation of this paper, the nonlinear PROM associated
with the above equation can be written as

Mr ür + VT f int (Vur (%, t),Vu̇r (%, t),Ξ(t)) = VT f ext (%, t)

(Specifically, ECSW was developed in [8] for hyperreducing the reduced internal force vector f intr = VT f int .) The
time-discretization of this nonlinear PROM by an implicit scheme leads to a discrete system of nonlinear equations
whose solution by a Newton method gives rise at each iteration to a linearized system of equations of the form

Kdyn
r ∆ur = gr

where
Kdyn
r = VT KdynV and gr = VTg (IV.3)

Here, the symbol ∆ designates the increment of a quantity, and the exact expressions of the dynamic tangent stiffness
matrix Kdyn ∈ RN×N and the right-hand side vector g ∈ RN depend on the linearization of the internal force vector
and the time-discretization scheme. Specifically, the approximation of Kr given in (IV.2) was developed in [8] for
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the matrix Kdyn
r of (IV.3) which has the same algebraic form and structure. Furthermore, training for finding the

reduced mesh Ẽ and the associated weight vector ξ was performed in [8] using a precomputed set of internal forces
f int

(
V (VTV )−1VTus

)
, where us is the s-th collected solution snapshot of (II.2) for some sampled value of % ∈ Ω% .

For an orthonormal basis V (VTV = In), this training data can be simply written as f int
(
VVTus

)
. Hence, the training

procedure developed in [8] consisted in finding the smallest subset Ẽ and the associated weight vector ξ for which the
approximation of each reduced force f intr

(
VVTus

)
= VT f int

(
VVTus

)
using the same quadrature rule as that implied

by (IV.2) – that is,

f intr = VT f int
(
VVTus

)
≈ f̃ intr

(
VVTus

)
=

∑
e∈Ẽ

ξe (LeV )T f int
(
(LeV )(LeV )Tus

)
, s = 1, · · · , ns

is sufficiently accurate in the sense of

‖ f intr

(
VVTus

)
− f̃ intr

(
VVTus

)
‖2 ≤ ε ‖ f intr

(
VVTus

)
‖2, s = 1, · · · , ns (IV.4)

where ε is some small tolerance. Hence, this training procedure can be formulated as the solution of the following
minimization problem

ξ = arg min
ζ ∈Rne

≥0

‖ζ ‖0 such that ‖Gζ − b‖2 ≤ ε ‖b‖2 (IV.5)

where the notation ζ ∈ Rne
≥0 implies that, in the above formulation, the weight vector ξ is defined for the entire mesh

associated with the FE HDM and represented by the set of elements E, ‖ζ ‖0 counts the number of nonzero entries in the
vector ζ , G and b arise from the matrix form of (IV.4), and ε is a specified small tolerance. Using this formulation, it
follows that the reduced mesh constructed by the ECSW hyperreduction method is the subset of elements Ẽ ⊂ E for
which the entries of the vector ξ ∈ Rne

≥0 computed by solving the minimization problem (IV.5) are nonzero.
Unfortunately, the minimization problem (IV.5) is NP-hard. For this reason, it was argued in [8] and shown in [12]

that the alternative, non-negative least squares minimization problem

ξ ≈ arg min
ζ ∈Rne

≥0

1
2
‖Gζ − b‖22 (IV.6)

delivers an excellent if not the best approximate solution of problem (IV.5).
In the nondeterministic case, hyperreductionmust be applied to both requirements (R1) and (R2) to be computationally

effective. To this end, it is first noted that from (IV.1) and (IV.2), it follows that applying ECSW to the requirement
(R2) implies approximating the reduced stochastic matrices Kr (ϑ) and Mr (ϑ) at each iteration of the solution of the
minimization problem (III.14) as follows

Kr (ϑ) ≈ K̃r (ϑ, ξ) =
∑
e∈Ẽ

ξe
(
LeV(ϑ)

)T Ke (
LeV(ϑ)

)
and

Mr (ϑ) ≈ M̃r (ϑ, ξ) =
∑
e∈Ẽ

ξe
(
LeV(ϑ)

)T Me (
LeV(ϑ)

)
(IV.7)

where the dependence of K̃r and M̃r on ξ is emphasized. These approximations transform the SPROM (III.2) into the
following SHPROM for the discrete, generalized EVP (II.1)

K̃rur = $
2M̃rur (IV.8)

In this case, the training procedure outlined above for determining the weight vector ξ can be extended to the construction
of the above SHPROM by noting that the stochastic counterpart of the inequality (IV.4) can be written in the context of
the time domain equivalent of problem (III.2) as

‖Kr (ϑ)V(ϑ)VT (ϑ)us − K̃r (ϑ, ξ)V(ϑ)VT (ϑ)us ‖2 ≤ ε ‖Kr (ϑ)V(ϑ)VT (ϑ)us ‖2, s = 1, · · · , ns
‖Mr (ϑ)V(ϑ)VT (ϑ)üs − M̃r (ϑ, ξ)V(ϑ)VT (ϑ)üs ‖2 ≤ ε ‖Mr (ϑ)V(ϑ)VT (ϑ)üs ‖2, s = 1, · · · , ns

(IV.9)
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where the first and second of the above two inequalities state that the hyperreduction of the internal and inertia force
vectors using the ECSW method are sufficiently accurate, respectively. Hence, following the same reasoning as in
the deterministic case, the training procedure for determining the weight vector ξ underlying the construction of
the SHPROM (IV.8) using the ECSW hyperreduction method can be formulated as the solution of the following
minimization problem

ξ ≈ arg min
ζ ∈Rne

≥0

1
2
‖G(ϑ)ζ − b(ϑ)‖22

where G and b arise from the matrix form of the stacked inequalities (IV.9).
Next, it is also noted that from (IV.7), it follows that applying ECSW to the requirement (R1) essentially implies

constructing only the trace of the SROB V(ϑ) on the reduced mesh defined by Ẽ. Since Ẽ is identified by the nonzero
entries of ξ ∈ Rne

≥0, if follows that Ẽ = Ẽ (ξ). Hence, the trace of V(ϑ) on Ẽ, which is denoted here by V
Ẽ
, can be

written as
V
Ẽ
= V

Ẽ
(ϑ, ξ)

It follows that the counterpart of the minimization problem (III.14) based on the SHPROM (IV.8) is given by

α = arg min
ϑ

J (ϑ, ξ)

In summary, applying the ECSW hyperreduction method to both requirements (R1) and (R2) – or equivalently, to
the construction of the SHPROM (IV.8) – leads in principle to the following ξ − α coupled minimization problem

ξ ≈ arg min
ζ ∈Rne

≥0

1
2
‖G(α)ζ − b(α)‖22

α = arg min
ϑ

J (ϑ, ξ) (IV.10)

However, for the sake of computational efficiency, the above coupled minimization problem (IV.10) is decoupled here
and therefore simplified as follows

ξ ≈ arg min
ζ ∈Rne

≥0

1
2
‖Gζ − b‖22

α = arg min
ϑ

J (ϑ, ξ) (IV.11)

In other words, hyperreduction via the ECSW method is first applied to both requirements (R1) and (R2) using the same
reduced mesh Ẽ obtained for the hyperreduction of the deterministic PROM (II.5) and the associated weight vector ξ.
Then, the identification of the hyperparameter vector α is performed using this reduced mesh, the associated weight
vector, and the approximate reduced stiffness and mass matrices based on them (IV.7) to construct the SHPROM (IV.8).

V. Application
Here, the potential of the nonparametric probabilistic method described in this paper for performing model-form

UQ is illustrated with what-if? vibration analysis scenarios associated with shape changes of a jet engine nozzle.
The proposed approach is applied to model and quantify the model-form uncertainties associated with the FE HDMs
generated for modeling the structural vibrations of this nozzle. To this end, two shape-parametric FE HDMs are
built: one with a higher fidelity to serve as a surrogate experimental system, and another one with a lesser fidelity
to simulate model-form uncertainties. A shape-parametric SHPROM is constructed for the latter HDM to accelerate
the stochastic computations incurred by the proposed nonparametric probabilistic method for model-form UQ. All
additional uncertainties introduced by this auxiliary SHPROM, including those associated with the finite sampling of
the shape-parameter domain Ω% and the errors introduced by basis truncation and hyperreduction are accounted for.
UQ analysis is performed for the eigenvalues of the modeled structural systems associated with two shape-parameter
points in Ω% .

All FE structural computations reported here, whether at the HDM, PROM, or HPROM level, are performed using
the FE structural analyzer AERO-S [13, 14]. On the other hand, all constructions of SHPROMs and all computations
performed using SHPROMs are carried out using MATLAB©.
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A. Parametric jet engine nozzle and FE representations
The engine nozzle considered here has an axisymmetric cylindrical shape. It consists of five circular sections

delimited by six baffles on the exterior of the nozzle, and four exterior stringers that run from the inlet to the outlet (see
Fig. 2). Furthermore, this shape is parameterized by a scaling factor l along the axis of axisymmetry (the x-axis in Fig.
2), and a scaling factor r in the directions perpendicular to this axis. These two scaling factors define a shape-parameter
domain Ω% = (l, r).

The nominal main length of the nozzle is L = 0.536m. Its nominal radius at its widest circular cross section is
R = 0.42m. Its thickness, which varies along the axis of axisymmetry but is constant in a cross section, decreases from
6.72 × 10−4 m at the outlet to 5.00 × 10−4 m in the middle section; then, it increases from its value at the middle section
to the value of 1.32 × 10−3 m at the outlet. The inlet cross section of the nozzle is clamped.

For each considered shape configuration of this nozzle – that is, for each considered value of the shape-parameter
vector ρ = (l, r)T – two FE structural dynamics HDMs are constructed with 4,640 nodes and 9,200 triangular anisotropic
AQR shell elements with 6 degrees of freedom (dofs) per node. Each of these HDMs has 27,240 unconstrained dofs –
and therefore N = 27, 240 – and 600 constrained dofs where the boundary conditions are applied. They differ only in
how they represent the true thickness of the nozzle, which is discussed in the next section.

Fig. 2 Shape-parametric jet engine nozzle.

B. Model-form uncertainties and what-if? scenarios associated with shape changes
The first shape-parametric FE HDM described in Section V.A is equipped with an accurate representation of the

variable thickness of the nozzle also described in that section. In the absence of true experimental data, this shape-
parametric HDM model is used as a surrogate experimental system. On the other hand, the second shape-parametric FE
HDM described in Section V.A, from which all PROMs, HPROMs and SHPROMs are derived, is equipped with a
constant representation of the thickness set to 6.97 × 10−4 m in order to simulate a model-form uncertainty. Otherwise,
both shape-parametric FE HDMs are varied in the shape-parameter domain Ω% = (l, r) ∈ [0.9, 1.1]m × [0.9, 1.1]m.
Hence, the main length of the nozzle and the radius of its circular cross section at any point along its axisymmetry axis
is varied in the following what-if? vibration analysis scenarios by ±10%.

In all considered scenarios, the QoIs are set to the first eight natural frequencies of the nozzle. Their surrogate
experimental values and the counterpart values predicted using the FE HDM at the four corners and at the center of Ω%
are reported in Table 1, together with the relative discrepancies between these two sets of values of the QoIs. These
discrepancies are reported to range between 0.05% and 5.23%.

C. Shape-parametric HPROM
A global shape-parametric HPROM of the jet engine nozzle is first constructed using: the (second) shape-

parametric HDM described above; the greedy sampling algorithm in the shape-parameter domain Ω% = (l, r) ∈
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Table 1 Natural frequencies (in Hz) predicted using the surrogate experimental system and the deterministic
FE HDM, and relative discrepancies.

Surrogate experimental values (in Hz).
(l, r) f1 f2 f3 f4 f5 f6 f7 f8

0.9,0.9 544.48 559.41 755.12 755.12 867.98 867.98 1056.97 1063.41
0.9,1.1 512.64 526.59 713.64 713.64 755.60 755.60 824.79 836.51
1.0,1.0 486.17 499.71 676.26 676.26 771.72 771.72 859.58 862.39
1.1,0.9 461.63 476.99 629.13 629.13 783.77 783.77 852.47 856.18
1.1,1.1 438.84 451.44 611.61 611.61 694.06 694.06 711.52 713.12

Numerically predicted values (in Hz) using HDM.
(l, r) f1 f2 f3 f4 f5 f6 f7 f8

0.9,0.9 555.79 568.15 771.96 771.96 904.69 904.69 1058.09 1064.41
0.9,1.1 522.90 534.46 728.60 728.60 778.85 778.85 827.95 839.22
1.0,1.0 496.36 507.56 691.25 691.25 804.91 804.91 859.96 862.86
1.1,0.9 471.87 485.09 643.55 643.55 824.65 824.65 853.07 856.84
1.1,1.1 448.08 458.55 624.95 624.95 711.76 713.45 723.79 723.89

Relative discrepancies (%).
(l, r) f1 f2 f3 f4 f5 f6 f7 f8

0.9,0.9 -2.18 -1.56 -2.23 -2.23 -4.23 -4.23 -0.11 -0.09
0.9,1.1 -2.00 -1.49 -2.10 -2.10 -3.08 -3.08 -0.38 -0.32
1.0,1.0 -2.10 -1.57 -2.22 -2.22 -4.30 -4.30 -0.04 -0.05
1.1,0.9 -2.22 -1.70 -2.29 -2.29 -5.22 -5.22 -0.07 -0.09
1.1,1.1 -2.11 -1.57 -2.18 -2.18 -2.55 -2.79 -1.72 -1.51

[0.9, 1.1]m × [0.9, 1.1]m and an 11 × 11 uniform grid for pre-sampling candidate shape-parameter points at each
iteration; and the ECSW hyperreduction method equipped with the non-negative LS optimization problem (IV.6) for
determining the weight vector ξ and the tolerance ε = 10−4. At each sampled shape-parameter point: the linear structural
dynamics problem (II.2) is solved using f ext (%, t) = 0 and a broadband initial displacement u0 and a corresponding
broadband initial velocity v0 that excite all 8 natural modes of interest; 500 solution snapshots are collected in the
time-interval [0, 5 × 10−3] s at the sampling time-step ∆s = 1 × 10−5 s; and these snapshots are accumulated in the
snapshot matrix X which is compressed into a global deterministic ROB V using a truncated SVD that captures 99.99%
of the energy of the snapshots(see (II.3)).

The greedy sampling algorithm is initialized using (l1, r1) = (0.92, 0.95) as the first sampled shape-parameter point.
It is run until the calibrated error indicator falls below the value of 0.5. It samples a total of five shape-parameter points
in Ω% , and produces an HPROM of dimension n = 28 that it computes on a reduced mesh Ẽ with 364 elements and 920
nodes (see Fig. 3).

Fig. 4 shows the progression of the indicated error on the aforementioned 11 × 11 grid during the five iterations
performed by this algorithm. In this figure, the black-filled bullets designate the shape-parameter points sampled by the
greedy sampling algorithm at the previous iteration in order to update the global HPROM, and each red-filled bullet
designates the shape-parameter point sampled at the end of the current iteration.

Given that for this application the (second) shape-parametric FE HDM has a small size, the true HPROM errors are
computed at each iteration of the greedy sampling algorithm in order to verify the performance of the proposed error
indicator (II.8). Fig. 5, which graphically depicts the variations on the aforementioned 11 × 11 uniform grid of both of
the indicated and true HPROM errors at the last iteration performed by the greedy sampling algorithm, confirms the
suitablity of the proposed error indicator. The final error (which is the sum of the true relative HPROM errors for all
QoIs) at any of the sampled shape-parameter points is less than 0.34. The true relative HPROM error for any of the
QoIs at any of the sampled shape-parameter points is less than 8%.
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Fig. 3 Reduced mesh constructed by the ECSW hyperreduction method (sampled elements are highlighted in
red color).
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Fig. 4 Progression of the indicated error (log10) on an 11× 11(l, r) grid during the iterations performed by the
greedy sampling algorithm.
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Fig. 5 Variations on an 11 × 11(l, r grid of the indicated (left) and true (right) HPROM errors upon declared
convergence of the greedy sampling algorithm.
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D. Shape-parametric SHPROM
Following the construction of the global HPROM of dimension n = 28 described above, an SROB V and associated

SHPROM of the same dimension are constructed on the computed reduced mesh using the procedures outlined in
Section III and Section IV. To identify the hyperparameter vector, the decoupled minimization problem (IV.11) is solved
using the weight vector computed by ECSW for the global HPROM and the following settings:

• n% = 5, %1 = (0.9, 0.9), %2 = (1.1, 0.9), %3 = (0.9, 1.1), %4 = (1.1, 1.1), %5 = (1.0, 1.0), and mu = mo = 8.
• oref = oexp, and oexp = ( f exp

1 , f exp
2 , f exp

3 , · · · , f exp
mo

), where f exp
j , j = 1, · · · , mo, denotes the j-th natural frequency

computed using the surrogate experimental system (first FE HDM).
• vref

j , j = 1, · · · , mo, defined as follows

vref
j = γ |o

ref
j − oj |, j = 1, . . .mo

where oj = $ j/2π, j = 1, · · · , mo, and γ is set to γ = 1.2.
The weight wJ is set to 0.95 so that the target for Jmean is preponderant during the identification of the hyperparameter
vector α. The solution of the second minimization problem in (IV.11) is computed using the MATLAB function
fmincon, its active-set algorithm, and the following constraints:

10−5 ≤ s ≤ 10−2

0.001 ≤ β ≤ 0.1
0 ≤ τj j ≤ 20, 1 ≤ j ≤ n and −10 ≤ τi j ≤ 10, 1 ≤ i < j ≤ n

0.9999 ≤ sM ≤ 2.0

The chosen optimization algorithm is initialized with α0 = (s0, β0, sM0
, τ0), where s0 = 4 × 10−5, β0 = 4 × 10−2,

sM0
= 1, and τ0 = In. The probability distributions of the random variables s, β, and sM are chosen as uniform

distributions on the supports defined by their constraints. The probability model of the random matrix τ is constructed
as follows. For 1 ≤ i < j ≤ n, τi j = τ0i j (1+Ni j ), and for i = 1, . . . , n, τii = τ0ii |0.728+Nii |, where {Ni j }1≤i≤ j≤n is a
family of n(n + 1)/2 independent variables. Each of these variables is a Gaussian, centered variable with a unit variance.
Note that the absolute value is introduced in the expression of τii in order to guarantee the required positiveness of the
diagonal terms of the matrix τ.

The Monte Carlo method is used as a stochastic solver for estimating the cost function J (α) (III.11) for every value
of the hyperparameter vector α proposed by the optimizer. Specifically, 10 independent realizations of the QoIs are
performed for each estimation of J (α). After 250 iterations, the value of this cost function is 3.65 · 10−3: it is reached
for α = (s, sM , β, σ)T where s = 1.4182 × 10−5, sM = 1.2391, β = 8.7882 · 10−2, and the 406 entries of τ are not
reported for obvious reasons.

E. Sample CPU performance
As stated earlier, the main purpose of the SHPROM it to ensure the computational feasibility of the nonparametric

probabilistic method described in this paper for performing model-form UQ. Its construction, which is performed here in
MATLAB, requires thousands of evaluations of the cost function J (α) (III.11). Even though many of these evaluations
can be executed in parallel, a single such evaluation is indicative of the overall CPU requirement. Hence, in order to
illustrate the CPU performance of the SHPROM constructed for the application described herein, and the performance
improvement this SHPROM delivers over the SPROM, the CPU cost for a single cost function evaluation is reported
in Table 2 for each of the two stochastic reduced-order models. Each reported CPU time accounts for building the
SPROM/SHPROM and performing 10 generated realizations – that is, solving the stochastic reduced/hyperreduced
generalized EVP – at each of the five shape-parameter points sampled by the greedy sampling procedure when building
the global ROB V (which implies the solution of 50 reduced-order generalized EVPs).

The results reported in Table 2 show that for this application where the HDM has a small dimension (N = 27, 240),
hyperreduction accelerates the construction of the reduced-order model by a factor larger than 8, and reduces the total
CPU time by factor 5.

F. Modeling and quantification of model-form uncertainties
The SHPROM whose construction is described in Section V.D is applied here to perform the model-form UQ

analysis of the (second) HDM, while accounting for all modeling errors introduced by model reduction. Sample results
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Table 2 Performance comparisons of the SPROM and SHPROM for a single cost function evaluation (solution
of 50 reduced-order generalized EVPs).

Computational model CPU time elapsed CPU time elapsed in solution of Total elapsed CPU time
in model building 50 reduced-order generalized EVPs

SPROM 1.414 s 0.021 s 2.9717 s
SHPROM 0.171 s 0.021 s 0.5997 s

of this analysis are reported in Fig. 6 and Fig. 7 for two shape-parameter points in the shape-parameter domain: the
lower left corner (0.9, 0.9) of Ω% , and the upper right corner (1.1, 1.1) of Ω% . Mean values and confidence intervals
corresponding to the quantiles 98% and 2% are constructed using 100 QoI realizations generated by the SHPROM.

The reader can observe in both figures that the global HPROM constructed for this problem reproduces the data
generated by the HDM accurately. This is due to the greedy sampling procedure and its performance discussed in
Section V.C. The reader can also observe that: the surrogate experimental data is captured reasonably well by the mean
values obtained using the SHPROM; and the realizations generated using this SHPROM and the resulting confidence
interval corresponding to the quantiles 98% and 2% encompass the deterministic value of the surrogate experimental
value of each QoI.
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Fig. 6 Vibration analysis at (l, r) = (0.9, 0.9): QoIs (natural frequencies) predicted using the deterministic
HPROM; mean values and confidence intervals corresponding to the quantiles 98% and 2% constructed using
the SHPROM; surrogate experimental values (EXP) of the QoIs; and QoIs predicted using the HDM.
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