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Abstract

We propose several quantum mechanical models to describe electronic field emission from first

principles. These models allow to correlate quantitatively the electronic emission current to the

electrode surface details at the atomic scale. They all rely on electronic potential energie surfaces

obtained from three dimensional density functional theory calculations. They differ by the various

quantum mechanical methods (exact or perturbative, time dependent or time independent) which

are used to describe tunneling through the electronic potential energy barrier. Comparison of

these models between them and with the standard Fowler-Nordheim one in the context of one

dimensional tunneling allows to assess the impact on the accuracy of the computed current of the

approximations made in each model. Among these methods, the time dependent perturbative one

provides a well balanced trade-off between accuracy and computational cost.
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I. INTRODUCTION

Electronic emission1,2 induced by static electric field can cause vacuum electrical break-

down. This poses challenges to the design of vacuum insulation structures in high voltage

systems, especially nowadays for the nuclear fusion industry. Indeed, one of the heating

strategies of magnetically confined plasma in tokamaks uses high energy hydrogen or deu-

terium atoms accelerated by the electric field of a high voltage system, the performance

of which is severely limited by damaging electron currents resulting from field emission3–6.

These currents can be reduced by raising the pressure in the vacuum system, typically from

ultrahigh vacuum to pressures of the order of 10−4− 10−2 Pa7–13. This gas effect, known for

quite some time, has been investigated recently in details for tungsten carbide and tungsten

cathodes14–18.

It is known that such current variations correlated to changes in ambient pressure are

related to modifications in the cathode surface state at the atomic scale, but there is no

consensus on the nature of these changes. Some believe that they result from adsorption

of ambient gases or other contaminants12,19. In a recent experimental study, the main

contaminant was found to be carbon17. Others attribute the gas effect to the transformation

of sharp emitting tips into blunt ones by sputtering from ion bombardment localized near

emitting protrusions8–10. Accurate emission models from first principles are required to

understand better the correlations between surface states at the atomic scale and emission

properties. Unfortunately, most of them are currently too crude to provide such detailled

information.

Indeed, our understanding of electronic emission still relies mainly on the historical

Fowler-Nordheim model1,20, corrected in ref. 21, extented to thermo-ionic emission by Mur-

phy and Good in ref. 2, to curved emitters in ref. 22. A generalization using the local density

of states at the surface has been proposed in ref. 23. Convenient simplifications of the ana-

lytical functions involved in this model have been given in ref. 24. A universal formulation

of the model has been proposed in ref. 25. It has been used widely and successfully over the

years as a fitting model of experimental data, recent examples of applications are given in

the references of ref. 26,27. This model, referred to as the SFN (Standard Fowler Nordheim)

model in the following, describes electron emission as a one dimensional tunneling process

through a simple analytical electronic potential energy barrier. Tunneling probability is

2



obtained from an approximate semi-classical JWKB (Jeffreys–Wentzel–Kramers–Brillouin)

approximation. In fact, this model relies on a crude description of the emitting electrode by

a single parameter, the work function. It is more a semi-empirical model than an ab initio

one and it can barely correlate emission to the surface structure details such as the presence

of defects or individual adsorbed atoms or molecules.

The design of more quantitative models has therefore been the goal of more recent in-

vestigations, in particular in the context of the development of carbon based nanomaterials

(for reviews, see ref. 28,29). The first step common to these methods is a Density Func-

tional Theory (DFT) calculation of the Hartree and exchange-correlation potentials which

drive electron emission. The second step is the modelling of the emitted electron dynam-

ics. One class of such models involves improvements of the Fowler-Nordheim models and

their adaptation to the context of DFT potentials29. Although the equation used to com-

pute the emitted current is one dimensional, the potential energy surface it relies on can

be extracted from three dimensional data (see for instance ref. 30), also facetization of the

emitting structure allows to take into account complex structures31. A second class of meth-

ods uses Schrödinger-like equations to describe the electron dynamics, and solve them either

by time dependent or by time independent quantum mechanical methods. Concerning time

independent methods, we find wavefunction propagation methods, mainly in the context

of one dimensional problems32–35 but close-coupling type extensions to full dimensionality

have also been attempted36,37. The cylindrical symetry of carbon nanotubes has been taken

advantage of in ref. 38. Alternatively, non-equilibrium time independent Green ’s function39

and Fisher-Lee ’s transmission formulation40 have also been used. Time dependent methods

involve propagation of a wavepacket describing the emitted electrons41. The emitted current

is obtained by a fit of the decay (linear at short times) of the residual charge in the mate-

rial. This model has been used in studies of emission from double-wall carbon nanotubes42

and metal nanowires43. However, these methods have found limited applications because of

implementation difficulties. For instance, concerning time dependent methods, the decrease

of the charge is very slow at the atomic scale (for usual external field values) and large

integration times have to be reached for significant decrease to be observed. The exter-

nal field, which is typically less than 5 GV/m, is indeed smaller than the intrinsic electric

field experienced by the electrons at the material/vacuum interface, typically more than 10

GV/m. The external field acts as a weak perturbation on the electrons of the electrode.
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This suggests that perturbative methods may be well adapted to model electronic emission

in standard engineering conditions. We speculate that the simplifications resulting from the

use of such approximate formalisms may reduce the formal and computational difficulties of

the numerical implementations. Validating this hypothesis is the main goal of the present

paper.

We present in section II the different models developed for the present study. We first

introduce in subsection II A a general framework common to all the methods presented here.

We recast in subsection II B the SFN model in a form suitable for subsequent extensions.

Then, we substitute a numerical DFT electronic potential energy to the crude analytical

one of the SFN model. Tunneling through this DFT electronic potential energy barrier is

subsequently computed. This can be achieved with the approximate semi-classical JWKB

method of the original SFN model, this corresponds to the Numerical Fowler Nordheim

(NFN) model in the following. Alternatively, tunneling through the same DFT barrier can

be computed with an Exact Quantum Mechanical (EQM) numerical method. These NFN

and EQM models are described in subsection II C. They both suffer however from severe

limitations. Because it relies on the JWKB method, the NFN model, similarly to the SFN

method, can not be applied to realistic three dimensional (3D) problems. The EQM does not

suffer from this formal limitation, but applications to 3D problems encounter implementation

difficulties, similar to those exposed in the preceeding paragraph. Our proposal to use the

quantum mechanical perturbation theory to overcome these difficulties is implemented in

Time-Independent and Time-Dependent Pertubative models (named TIP and TDP models,

respectively) presented in subsections II D and II E.

We then apply these different methods in sections III and IV to predict emission from

a tungsten cathod. The DFT model of the cathode is described in subsection III A and

the potentials and states drawn from it in subsection III B. The computed currents are

presented and discussed in section IV. We validate our use of the perturbation theory by

comparing TIP and TDP emitted currents with the SFN, NFN and EQM ones. We trace

back the relative contributions to the error in the current to the approximations inherent to

each of these models. Conclusion follows (section V).
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II. COMPUTATIONAL METHODS

A. General framework

In the following, bold-face symbols refer to vectors, the corresponding standard symbols

refer to their norms. We consider the electrons of a metallic slab infinite in the x and y

directions and of finite thickness L in z, subjected to an external field F parallel to z. An

electronic current then flows from the metal into the vacuum and we investigate numerical

methods which have sufficient accuracy to predict this emitted current from the definition

of the surface structure at the atomic level, including defects and adsorbates, and which at

the same time can be related to the widespread semi-empirical SFN model. Therefore, we

describe in this section a hierarchy of improvements to the SFN picture leading to ab-initio

models where the emitted current is related more closely to the details of the emitting metal.

We assume that the emitting surface is at 0 K temperature. We assume that the electrons

occupy orbitals Ψm(r,F = 0) defined by :

(T + U(r,F = 0)) Ψb
m(r,F = 0) = εm Ψb

m(r,F = 0) (1)

T is the electronic kinetic energy operator and U(r,F = 0) is the total potential energy

experienced by an electron of the material located at r in the absence of external field.

The Ψb
m(r,F = 0) orbitals are Bloch functions (p. 179 in ref. 44). They are labelled by

the composite state index m which provides their electron momentum in the first Brillouin

zone (p. 37 in ref. 44) and the band to which they belong. The solutions of eq. 1 form

a continuum of states which can extend to infinity in the x y plane. In practice, periodic

conditions are applied at the boundary of a portion of the slab Ω consiting of Nk unit cells

and usually called a supercell (see for instance ref. 45, p. 35). Applying such boundary

conditions is equivalent to discretizing the first Brillouin zone with Nk k-points. The orbitals

are normalized such that they correspond to one electron charge over Ω.

When the external field is applied, the electrons are no more confined to Ω, they can leak

into vacuum. We call the leakage rate of each orbital, Im, a ”state current”. Notice that the

notion of ”state current” introduced here is less common in the field emission community

than the one of ”state current density” one introduced in ref. 46. It should be pointed out

that in the present context of a possibly non uniform emitting surface, the state current

density is local quantity depending on the location on the surface, whereas the state current
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is a global quantity. Both quantities contain the same information in the context of a uniform

surface considered in ref 46.

It should be noticed however that neither state current nor state current density are

accessible to experiments. A summation over the states is necessary to obtain a measurable

quantity. The total current emitted by Ω is :

IΩ = 2
∑
m

Im (2)

assuming double occupancy of each orbital because of the Pauli exclusion principle. An

averaged emitted current density over Ω can be obtained simply from :

J =
IΩ

NkAuc
(3)

where Auc is the area of the intersection of the unit cell and the x y plane. This current

density can be measured in the ideal context of a perfectly clean surface. We now describe

different levels of approximations to obtain this averaged currrent density.

B. The standard Fowler-Nordheim model

We now derive the SFN model (ref. 1,2, see also ref. 26,27) by performing drastic

simplifying assumptions to the general framework presented in subsection II A. First, we

assume that the slab is invariant in the xy plane so that the motion of the electrons in the

plane can be described by plane waves. The orbitals (eq. 1) are now labelled by the electron

momentum parallel to the plane kxy and a discrete index j associated to the bound orbitals

ψj(z) :

Ψb
kxy,j(r,F = 0) =

1√
NkAuc

eikxyrψbj(z) (4)

The current associated to the state Ψb
kxy,j

(r,F = 0) depends only on the kinetic energy

along the z direction : εz = ~2k2
z

2m
(kz : corresponding wavevector, ~ : Planck constant, m :

electron mass) and is referred to as I(εz). Computation of the total current from eq. 2 now

requires a straightforward integration over kxy as well as a summation on j which becomes

an integral over kz if we substitute plane waves periodic over L to the bound states ψbj(z).

The result is :

IΩ = 2

∫
εz<εF

dkz
L

2π
nΩ(εz)I(εz) (5)
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where εF is the Fermi energy. nΩ(εz) is the number of states of a two dimensional free

electron gaz of area NkAuc at energy εF − εz : nΩ(εz) = m(εF−εz)
2π~2 NkAuc

The second ingredient of the model is to write the state current as :

I(εz) = eρ
~kz
m
D(εz) (6)

where e is the elementary positive charge. ρ is the electronic density, but we substitute to

its true value, ρ = |ψbj(z)|2, the one for a one dimensional normalized plane wave : ρ = 1
L

.

D(εz) is the transmission through a potential energy barrier, responsible for the electron

leakage.

Insertion of eq. 6 into eq. 5 provides :

IΩ =
e

π~

∫
εz<εF

dεznΩ(εz)D(εz) (7)

This integral can be calculated approximately by performing a Taylor expansion of the

transmission near the Fermi energy. Using eq. 3 and 7 and following ref. 46, we obtain for

the current density :

J = sSd
2
FD(εF ) (8)

where sS is the so-called Sommerfeld’s electron supply constant46 : sS = em
2π2~3 , and d−1

F =

d lnD(εz)
dεz

|εz=εF . In terms of the state current at Fermi level, we obtain using eq. 6 :

J = sSd
2
F

m

eρ~kF
I(εF ) (9)

where kF = kz at the Fermi energy. The original Fowler-Nordheim theory as well as the

Murphy-Good improvement were obtained for a particular potential energy which consists

in the simple superposition of a charge-image interaction and of a linear external variation

in electrostatic potential energy :

U(z) = − e2

16πε0(z − zs)
− eF (z − zs) + Uvac (10)

(zs : surface position, ε0 : electric constant, Uvac : local vacuum level, measured relative to

the base of the conduction band). In this case, the tunneling probability can be obtained

analytically from the approximate semiclassical JWKB method (p. 158 in ref. 47) :

D(εz) = exp

(
− 4

3e

(
2m

~2

) 1
2 (Uvac − εz)

3
2v(y)

F

)
(11)
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v(y) is a function of the variable y =

(
e3F
4πε0

) 1
2

Uvac−εz . It can be expressed in terms of complete

elliptic integrals and it can also be approximated by simpler expressions24. Inserting eq. 11

into eq. 8 provides the usual result :

J =
e3F 2

16π2~ϕ(t(yF ))2
exp

(
− 4

3e

(
2m

~2

) 1
2 ϕ

3
2v(yF )

F

)
(12)

where ϕ = Uvac − εF is the work function, yF the value of y for εz = εF and t(y) =

v(y)− 2
3
y dv(y)

dy
.

In the following, we will use the expression given by eq. 9 to improve the SFN model

with predictions for I(εF ) more accurate than the ones obtained within the SFN model for

an analytical potential energy with the JWKB method.

C. Improved Fowler-Nordheim models

Refined numerical potential energies obtained from DFT calculations can be substituted

to the simple analytical expression of eq. 10. We provide details on the numerical method we

use to obtain such potential energies in subsection III A. Since such computations provide 3D

potential energy surfaces, a procedure has to be implemented to extract a one dimensional

potential from the 3D one for the purpose of the comparison with the SFN model which is

the scope of the present study. Such a procedure is described in subsection III B. Obviously,

the emitted current density for such numerical potential energies cannot be obtained any

more from an analytical expression, but several numerical methods can be used to compute

the transmission probability and the emitted current.

The simplest improvement is to continue to apply the semiclassical JWKB approxima-

tion, but now integrating numerically rather than analytically the local wavevector in the

tunneling region. Eq. 9 can still be applied with this new transmission D(εF ). We call this

method the Numerical Fowler-Nordheim (NFN) method.

Alternatively, one can solve numerically the Schrödinger equation describing the elec-

tron tunneling process without semiclassical approximation. This was done in ref. 48

using the transfer matrix technique. Here, we use a wavefunction propagation method.

The purely outgoing solution at large distance describing electrons emitted in the vacuum

at energy ε is known to be proportional to the complex combination of Airy functions
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Bi

(
− (ε− U(z)) (2m)

1
3

(~eF )
2
3

)
+ i Ai

(
− (ε− U(z)) (2m)

1
3

(~eF )
2
3

)
since the potential is linear in this

region (ref. 47, p. 73). A solution satisfying this boundary condition can be obtained by

numerical spatial integration from this vacuum region to the metal region. Once the wave-

function is known in both regions of space, a new transmission probability D(εF ) can be

extracted straightforwardly, and then again, emitted current can be obtained using eq. 9.

We refer to this method as the Exact Quantum Mechanical (EQM) method.

D. Time independent perturbative models

In the present context of field emission, the external field is orders of magnitude smaller

than the intrisic electrostatic field (i.e. the one experienced by the electrons of the material

without external field), in particular in the vicinity of the material/vacuum interface18. It

is therefore reasonable to study the effect of the external field on electronic emission using

perturbation theory. The formalism is presented for a full 3D potential energy surface but

it is also implemented here to one dimension cases to allow for comparison with the usual

Fowler-Nordheim and Murphy-Good models. This formalism provides an electronic current

associated to each quantum state of the emitting material (see eq. 6). The state current at

the Fermi energy I(εF ) is inserted in eq. 9 to obtain the global emitted current density J .

The total potential energy is split as follows : U(r,F) = U(r,F = 0) + ∆U(r,F).

∆U(r,F) is the perturbation associated with the external field : it vanishes inside the

metal and its gradient assumes the linear form −eF far away from the metal.

We define continuum states for emitted electrons labelled by their energy ε and state

index n :

(T + ∆U(r,F) + Uvac) Ψc
ε,n(r,F) = εΨc

ε,n(r,F) (13)

The state index n now describes the different possible values of the electronic momentum

of the continuum state far from the surface. We enforce the energy normalization condition

< Ψc
ε,n(r,F)|Ψc

ε′,n′(r,F) >= δ(ε− ε′) δnn′ . The standard Fermi golden rule (ref. 47, p. 147)

then provides the emission rate induced by the external field F from the initial bound state

εb,m as 3D integrals which, multiplied by the electron charge, provides the currents :

Im =
2πe

~
∑
n

| < Ψb
m(r,F = 0)|∆U(r,F)|Ψc

εb,n
(r,F) > |2 (14)
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This is the expression for the state current of eq. 6 in the Time Independent Perturbation

(TIP) model. It can also be viewed as the result of a generalized Born expansion (ref. 49,

chapter 15.3, p. 832-841) of the matrix element of the evolution operator connecting initial

and final states which are eigenvectors in different spaces. The energy normalized contin-

uum state Ψc
ε,n(r,F) which represents electrons emitted to infinity may be unconvenient to

compute in the 3D case. However, for one dimensional tunneling which is the context of the

SFN model, eq. 13 has a simple analytical solution. Indeed, the solution which vanishes

inside the metal can be obtained analytically for a linear approximation to ∆U(z, F ) (see

subsection III B below) : Ψc
εb

(z, F ) = NAi
(
−
(

2mFe
~2

) 1
3 (z − zT (εb))

)
(zT (εb) : turning point

at energy εb). The normalization constant N is obtained by enforcing the energy normaliza-

tion condition on the asymptotic form of this solution, this provides : N =
(

4m2

~4eF

) 1
6
. Once

the bound states are obtained from eq. 1, for instance by expansion on a basis set, the state

currents are computed from eq. 14 by numerical quadratures. The current for εb ≈ εF is

injected in eq. 9 to give the TIP current density emitted by the material.

E. Time dependent perturbative models

There exists a Time-Dependent version of the Perturbation (TDP) method which

avoids the difficult computation of the 3D continuum states. This time-dependent Fermi

Golden rule method has been used extensively, for instance, in the field of molecular

photodissociation50. The present work is an extension of the use of this method to electronic

emission. We first consider a new state, defined as the action of the perturbation on the

initial bound state |Φm(r,F) >= ∆U(r,F)|Ψb
m(r,F = 0) >. The time evolution of this state

induced by the external field is obtained by applying the evolution operator and the corre-

sponding correlation function can be computed as : Cεb,m(t) =< Φm|e−i
T+∆U(r,F)+Uvac

~ t|Φm >.

The correlation function is much easier to compute in the present perturbative framework

than in the non perturbative wave packet propagation formalism41 because it decays here

very quickly to 0. Indeed, the wavepacket |Φm > is expelled quickly from the vicinity of the

emitting material where it is initially located by the strongly repulsive ∆U(r,F) potential

energy. It can then be shown50 that the current of eq. 14 is simply the Fourier transform of

this correlation function :

Im =
e

~2

∫ +∞

−∞
dtei

εbt

~ Cm(t) (15)
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We make two uses of this current. One is to inject its value for εm ≈ εF in eq. 9, this provides

the TDP current density emitted by the material. This a simple hybrid version of the

TDP method mixing perturbation theory and the Fowler-Nordheim model of the material.

Alternatively, a numerically more challenging three dimensional version of the method can

also be implemented. Indeed, eq. 15 can also be used with full three dimensional orbitals

|Ψb
m(r,F = 0) > to compute individual state currents and the total current can be obtained

by direct summation of these contributions (eq. 2). We refer to this method as the TDP-3D

one.

III. NUMERICAL IMPLEMENTATION

A. Potential energies and states

We now illustrate the use of the different methods described above on the electronic emis-

sion from flat (100) surfaces of bcc tungsten. This commonly used material for electrodes

has already been the subject of numerous studies using DFT (see our recent work, ref. 16–

18 and references therein). Many properties of the material have been studied in depth :

cohesive energy, lattice constant a and elastic parameters, relaxation, reconstruction param-

eters and surface formation energies, work functions... The effect on electronic emission of

carbon adsorption16 and of surface nanoscale structures18 was also modeled and compared

to experimental results17.

The structure considered in the present study is a slab of 17 atomic planes limited on

both sides by a (100) surface chosen to be the xy plane. Its thickness is L = 8 a. The

slab is embedded in a static electric field parallel to z, one of its sides plays the role of the

cathode and emits electrons while the other is the anode18. The slab is thick enough for the

interaction between both sides to be negligible, emission from its cathode side is the same

as from a macroscopic size electrode. The unit cell contains one atom per layer, shifted

between neighboring planes by a/2 in both x and y directions to generate by periodicity the

bcc structure. Using results from our previous studies16, the lattice parameter is chosen as

a = 3.179 Å and the work function is ϕ = 4.2 eV.

The ab initio total-energy and molecular dynamics program VASP (Vienna ab initio

simulation program) developed at the Institut für Materialphysik of the Universität Wien
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has been used for all DFT calculations51–54. We use this program in a way very similar to the

one already described in refs. 16,18. The electron-ion interaction for tungsten is described

by the projector augmented wave potential (PAW)55,56. The exchange-correlation energy

is calculated within the generalized gradient approximation (GGA) using the revised form

of the Perdew, Burke, and Ernzerhof functional (PBE)57–59. We consider six 5d6s valence

electrons for each tungsten atom and we use the convergence parameters resulting from a

previous study16. Fractional occupancies are calculated using a second-order Methfessel-

Paxton smearing function60 with a width of 0.2 eV. All plane waves of the basis set are

expanded up to a kinetic energy cutoff of 223 eV and we use a (8× 8× 1) k-point grid and

we checked convergence by comparison with (7× 11× 1) and (5× 15× 1) grids. The slab

is part of a supercell 20 a thick. In presence of the external field, an artificial dipole must

be added in the vacuum region to allow for periodicity of the electrostatic potential between

the upper and lower rim of the supercell. This correction also cancels the long range dipolar

interactions between the periodic replicates of the structure in the z direction.

B. DFT results post-processing

VASP provides 3-dimensional Hartree (electrostatic) UH(r,F) and total

(Hartree+exchange-correlation) potentials U(r,F) = UH(r,F) + UXC(r,F) for a given

external field F. These potential energies present deep minima close to the nuclei and are

relatively flat between them. The total potential energies along the z line x = a/2, y = 0 are

shown on fig. 1 for F = 0 and F = 0.5 GV/m. These potentials do not depend significantly

on the external field amplitude inside the slab. There, they are not far from being constant,

which is expected as the chosen line avoids all nuclei, and present only weak oscillations

around the average value −10 eV. Such a behavior is qualitatively consistent with the free

electron Fowler-Nordheim and Murphy-Good picture for metals. This justifies why, in the

following, we use the z line x = a/2, y = 0 to define the one-dimensional potential-energy

barriers used in conventional field emission theory.

VASP also provides the expansions of the Kohn-Sham orbitals on a plane-wave basis

for the different wavevector values and bands. We obtained the values of these orbitals on

a 3D spatial grid using our implementation based on fast Fourier transforms of the post-

processing Wavetrans61. We use these Kohn-Sham orbitals as the orbitals Ψb
m(r,F = 0) (eq.
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1) in our formalism (subsection II A). One may question the validity of such a choice, as it

is well known that Kohn-Sham orbitals are in general computation intermediates without

specific physical meaning. It is known, however, that the total density which is obtained by

summation of the orbital amplitudes squared is physically correct. By similarity, we assume

here that the total current which is obtained by summation of the state currents (eq. 2) is

also physically meaningful.

The perturbative potential ∆U(r,F) which induces emission should in principle be ob-

tained from the difference U(r,F)−U(r,F = 0) of two different VASP computations. How-

ever, we experienced convergence problems with VASP for fields of the order of 1 GV/m

or larger. Fig. 1 (right scale) compares ∆U(r,F = 0.5 GV/m) obtained from two VASP

calculations with the simple linear approximation −eF (z − zs), where zs is the extreme

atomic layer position. This simple linear approximation follows closely the numerical result

∆U(r,F = 0.5 GV/m), but with a shift in z which is of the order of 2 Å both on the anode

and cathode sides. This shift is the result of the displacement of the induced charge away

from the surface18, it is equivalent to the repulsion distance used in the charged surface

theory in the field ion emission context62,63. In the following, we assume that the simple

linear approximation : ∆U(z, F ) = −eF (z − zs), is valid even for the strongest external

fields.

The bound states Ψb
m(r,F = 0) which emit electrons are obtained as the eigenstates of

the Hamiltonian associated to the one-dimensional total potential energy for F = 0. These

eigenstates were computed by expansion on a basis set of sine functions. We found 20 states

in the potential energy well, their energies are shown on fig. 2. Among them, state # 15 is

the most important one for emission, as it is the occupied state with energy closest to the

Fermi level.

IV. STATE CURRENT AND CURRENT DENSITY

Fig. 3 shows the emitted current from a single quantum state, the state # 15, which

coincides with the Fermi level. We compare the results obtained for the different methods

presented in section II. The SFN result corresponds to the analytical potential energy of

eq. 10, the three others to the numerical potential energies extracted from VASP outputs

using the procedure described in section III B. Results are shown in mA (left scale) and
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e−/fs (right scale). They correspond to a single quantum state filled with one electron (no

spin degeneracy). All four curves on fig. 3 show the linear decrease behavior expected from

a Fowler-Nordheim (lin-log) type plot. This behavior reflects the tunneling through the

potential energy barrier experienced by the electrons emitted from the surface, shown for

instance on fig. 2 for 5 GV/m. Saturation corresponds to D(εF ) = 1 in eq. 6. This happens

when electrons are transmitted above the potential energy barrier for high enough fields.

This occurs above 11.9 GV/m and 7.1 GV/m for the SFN and NFN models respectively.

These different thresholds result from differences between the analytical potential energies

of eq. 10 and the numerical one. Notice that the transition from the tunneling to the over

barrier regime is sudden in the SFN and NFN results, which both correspond to WKB type

calculations, and is more gradual for the EQM model, which corresponds to a numerically

exact solution of the 1D Schrödinger equation. This represents the only significant difference

between the NFN and EQM results, as expected since they both correspond to the same

numerical potential energy.

By contrast, the TIP calculation provides results significantly different from the EQM and

SFN ones, although it is also performed with the same potential energy. This results from the

approximations inherent to this perturbative scheme, as illustrated by fig. 2. The electronic

emission is a dynamical process which can be described by the matrix representation of the

Hamiltonian (including the external field) in a composite basis including bound states in

the metal (dashed and dotted lines on fig. 2) as well as continuum states for the emitted

electrons (one of them is the dashed horizontal arrow at the right of fig. 2). The static

field induces coupling between all these states, but in our perturbative scheme, only the

direct coupling between the initial state - the bound state # 15 - and the final state - the

continuum state at exactly the same energy - is considered. This approach neglects higher

order processes involving intermediate states, such as those depicted by the arrows of fig.

2. Such second order processes can be computed with a Born expansion of the evolution

operator, see for instance ref. 64, p. 23-31. As it is a first order model, the TIP model

provides lower current than the EQM and NFN ones, except when saturation is reached in

the EQM/NFN models, where the perturbative model is no more adequate. Thus, fig. 3

shows that the simple TIP model provides the right order of magnitude for the current, as

expected since it contains the main physical contributors to emission, as long as saturation

is not reached. Finally, it should be noticed that the excellent agreement between SFN and

14



TIP currents on fig. 2 is simply the result of a fortunate cancellation between two differences,

namely the use of different potential energies and the use of perturbation theory in the TIP

model.

Fig. 4 compares the TIP (lines) and TDP (dots) results for the states # 13, 14 and 15,

which correspond to the energies -2.2, -1.1 and 0 eV with respect to the Fermi level. The

TIP result for state # 15 is the same as the one of fig. 3. Obviously, the Fermi level is

the largest contributor to the emitted current, as the tunneling attenuation is weakest for

this state. The agreement between TDP and TIP is excellent, as expected since these are

just two numerically different methods to compute the same quantity. However, as the field

becomes weaker and current smaller, the TDP method has increasing numerical convergence

problems. This can be traced back to the fact that this rate is the Fourier transform given

by eq. 15. This integral becomes small when contributions which arise from different time

intervals and which can be individually large cancel each other. Small relative errors in

several of these contributions turn into a large relative error in the full integral when it

is close to zero. The use of the TDP method is therefore limited to large enough fields,

albeit simultaneously small enough for the perturbative approximation to remain valid.

Fig. 4 shows that the TDP method is valid for currents as low as typically three orders of

magnitude below the saturation value. Although this represents a drawback of this method

with respect to all the others, it should be pointed out that the TDP method is the only

one which can be extended straightforwardly to realistic 3D cases, as no continuum state is

required in the computation. Only a simple time propagation of an initially bound state,

followed by a Fourier transform, is required. This opens the way for many applications, like

the study of the effects of the details of the surface structure like the presence of adsorbates

on emission.

Fig. 5 is a usual Fowler-Nordheim plot. The current density is obtained from eq. 12 for

the SFN model and from eq. 9 for the NFN, EQM and TIP models, with I(εF ) as shown

on fig. 3, i.e. obtained from eq. 6 for the NFN and EQM models and from eq. 14 for

the TIP model. As already discussed on fig. 3, the difference between the SFN result and

the others reflects the difference of the potential energies, the difference between NFN and

EQM result is due to the approximations inherent to the NFN approach, and TIP results

differ from NFN ones because of the approximations of the perturbation theory. The present

comparison between perturbative treatments (either time independent or dependent, fig. 4

15



shows that they are equivalent) and more accurate models, which can be implemented here

because the context is one dimensional, shows that perturbative models provide satisfactory

results.

Finally, we performed a feasability study of the numerically more challenging TDP-3D

method using the three dimensional Kohn-Sham orbitals as initial states in the wavepacket

propagation (subsection II E). The current density is now obtained directly from eq. 2

and 3. A critical parameter for convergence is the number of states included in the current

summation (eq. 2). We expect the major contribution to come from states near the Fermi

level, we retain in the summation the states below Fermi level which are distant in energy by

no more than 0.25 eV. Then we did calculations with increasingly denser k-point sampling

of the first Brillouin zone. We thus performed 3 batches of calculations including 256, 576

and 900 states in the summation (eq. 2). We found the largest calculation to differ by less

than 10% from the smallest one, indicative of acceptable convergence. The results of the

largest calculation are shown on fig. 5. The current shows a qualitatively correct behavior

as a function of energy, interestingly, the results differs by less than an order of magnitude

from the SFN model, although the 3D model describes a physically different situation from

the other models which are all one dimensional. We therefore conclude that the TDP-3D

method is a promising one to study the effects of the details of the surface structure on

emission.

V. CONCLUSION

We described in this paper several models beyond the standard Fowler-Nordheim one to

describe electronic emission from first principles. These models all rely on DFT calculations

which provide electronic potential energies. Tunneling through the potential energy barriers

are described beyond JWKB methods, either by exact or by perturbative quantum mechan-

ical methods. Among these methods, the time dependent perturbative method provides a

well balanced trade-off between accuracy and computational cost. These results set future

use of perturbative models of realistic cathodes on a safe ground. Studies establishing precise

correlations between surface state (defects, corrugation, adsorbates...) and emitted current

will be the subject of future work.
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FIG. 1: Full lines (left scale) : total (Hartree+exchange-correlation) potential energy for external

fields F = 0.5 GV/m and F = 0. The potential energies are shown along the z line perpendicular

to the slab and defined by : x = a/2, y = 0. There is no tungsten atom on this line so that

the potential energy curves have only limited undulations (inside the slab) : the 17 minima are

located at the intersections of this line with the perpendicular atomic planes. The zero energy

is the Fermi level. The work function is 4.2 eV. Dashed-dotted line (right scale) : difference

U(F = 0.5 GV/m) − U(0) of the Hartree potential energies obtained from VASP simulations for

F = 0.5 GV/m and F = 0 external fields. Dashed line (right scale) : simple linear potential energy

curve −eF (z − zs) for F = 0.5 GV/m. zs refers to the last atomic plane position before vacuum.

The difference U(F = 0.5 GV/m)−U(0) follows closely this simple linear dependence, but shifted

away from the slab by nearly 2 Å, which corresponds to the ”repulsion distance” described in refs.

18,62,63.
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FIG. 2: Full lines : 1D total (Hartree+exchange-correlation) potential energy along the line x =

a/2, y = 0, for the two external field values 0 and 5 GV/m. The zero energy is the Fermi level.

Dashed lines : bound state energies in the F = 0, 1D potential energy curve, up to the Fermi

level. The zero energy continuum state is also symbolized by a dashed arrow. Dotted lines : bound

states in the F = 0, 1D potential energy curve, above the Fermi level. Arrows indicate possible

dynamical transition processes between the Fermi level and the zero energy continuum state, either

direct tunneling through the barrier or virtual transitions to intermediate excited states.
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FIG. 3: State currents from state # 15 at the Fermi energy : comparison between TIP (full

line+squares), EQM (full line), NFN (dashed line) and SFN (dashed-dotted line) results. Currents

are given in mA (left scale) and in number of electrons per femtosecond (e−/fs, right scale). The

SFN result is obtained from eq. 6 and eq. 11, it corresponds to the potential energy given

by eq. 10. The EQM and NFN results are obtained from eq. 6 and corresponding tunneling

probabilities (see subsection II C) for the one-dimensional numerical potential energy obtained

from VASP calculations (see subsection III B). The TIP result is obtained from eq. 14, also for

the 1D potential energy extracted from VASP results.
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FIG. 4: State currents for the states # 13, 14 and 15, which correspond to the energies ε = -2.2,

-1.1 and 0 eV with respect to the Fermi level. Comparison between TIP results (full line) and TDP

ones (dots). Currents are given in mA (left) and in number of electrons per femtosecond (e−/fs,

right). The TIP result for state # 15 is the same as the one of fig. 3.
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FIG. 5: Fowler-Nordheim plot : total emitted current density divided by the field squared vs inverse

field : TIP (full line+squares), EQM (full line), NFN (dashed line) and SFN (dashed-dotted line)

results. Dark circles are the results of the time dependent perturbation method calculation on the

full 3 dimensional structure (TDP-3D).
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