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Optical feedback flowmetry: Impact of particle
concentration on the signal processing method

Reza Atashkhooei, Evelio E. Ramı́rez-Miquet, Raul da Costa Moreira, Adam Quotb, Santiago Royo and Julien
Perchoux

Abstract—Optical feedback interferometry (OFI) based
flowmetry enables simple, robust, self-aligned and low cost sys-
tems to measure the fluid flow velocity with reasonable accuracy.
The particle concentration in the fluid causes significant changes
in the signal of OFI sensors. While the spectral analysis of
the particle induced Doppler shift remains as the most usual
approach to determine the flow properties, different processing
algorithms have been proposed in order to evaluate the average
flow velocity within the measurement volume. In this paper, the
validity of the commonly used methods with regards to particle
concentrations and flow rates is verified.

Index Terms—Optical feedback, self-mixing interferometry,
flowmetry, single scattering, multiple scattering, flow measure-
ment.

I. INTRODUCTION

ONE of the earliest applications of the laser after its advent
was the measurement of velocity. The technique known

as Laser Doppler Velocimetry (LDV) enabled the velocity
measurement of fluid flow using an optical array that required
to split a laser beam into two components and combine them
in a measurement volume to create an interference pattern with
bright and dark fringes [1]. A few years later, optical feedback
interferometry (OFI) also called self-mixing interferometry
was discovered by Rudd [2], which has the advantage of being
compact, simple, self-aligned, and cost effective in comparison
with traditional laser based measurements like LDV. OFI
was then applied to measure physical parameters such as
displacement, absolute distance, velocity, flow, and refractive
index [3], [4]. Apart from industrial implementations, OFI is
also used for biomedical applications [5], [6] including blood
flow measurement [7], [8], blood perfusion measurement [9],
and tissue phantom imaging [10].

In OFI based velocimetry (flowmetry), the signal spectrum
is computed to determine the velocity of moving objects
(particles) [11]. Since the OFI spectra are generated from
the Doppler shifted light resulting from the scattering of the
laser beam by the particles, their morphological aspect strongly
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depends on the velocities distribution in the sensing volume.
For the purpose of simplicity, the “sensing volume” is here
considered as the volume where the particles are generating
measurable contribution to the signal spectrum. Hence, the
number of scattering centers in the probe volume is also
an influencing factor of the spectrum morphology. As the
sensing volume is related to the optical configuration, it has
a direct impact on the spectrum morphology that should also
be considered [12].

Different signal processing approaches were proposed to
extract the information regarding the particle velocities but, to
the best of our knowledge, these methods were not evaluated
as a function of the particle concentration, which becomes a
relevant issue in multiple scattering media, which are mostly
the media of interest in both chemical and biomedical appli-
cations. Moreover, a broad range of concentrations has been
unexplored in previously published works.

In this paper, a simple OFI configuration using a single-
lens optics is used as a reference laser flowmeter to evaluate
the different signal processing methods. Particular attention
is given to the impact of the particle concentration that
demonstrates important results regarding the reliability of all
different approaches.

In section II, the OFI based flow sensing principle is
presented and the signal processing approaches for different
signal spectrum morphologies are reviewed. In section III,
the impact of the particle concentration is experimentally
investigated and the domain of applications for the different
signal processing is discussed.

II. DESCRIPTION OF THE FLUID VELOCITY EVALUATION
METHODS

In OFI based flowmetry, light back reflected from the
particles carried by the fluid is collected through the optical
system and re-enters into the laser cavity causing a modulation
of the laser emitted power at the Doppler frequency fD. The
Doppler frequency shift of the back-scattered electric field is
related to the particle velocity V as [3]

fD =
2nV cos θ

λ
, (1)

where λ represents the laser wavelength, n is the refractive
index of the liquid, and θ is the angle formed by the laser
propagation axis and the scatterer velocity vector. An inte-
grated photodiode inside the laser package is commonly used
to monitor the laser intensity changes. To observe the Doppler
frequency, a Fast Fourier Transform (FFT) is performed on the
amplified photodiode current [8].
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The back scattered light re-entering the laser cavity is
the sum of contributions from each particle illuminated by
the incident laser beam. Thereby, the velocity distribution of
scatterers inside the probe volume determines the frequency
distribution in the signal power spectrum. As reported in the
literature, when the sensing volume dimensions are small with
comparison to the channel diameter, a well-defined Doppler
peak is observed in the power spectrum. However, in most
practical situations with micro-scale channels, the Doppler
frequency peak is very broad and may reach to an extent that
no peak will be observed and the spectrum displays either
a flat distribution [13] or a slow decay from low to higher
frequencies [14].

In the case that flat frequency distribution occurs, a cutoff
frequency approximation may be used to estimate the max-
imum Doppler frequency associated to the maximum fluid
velocity [13], [15]. In this method, the frequency at which
the plateau-like band in the spectrum is below a threshold
(cutoff level) is considered as the Doppler frequency. In fact
there is no robust criterion or algorithm to find accurately the
cutoff frequency, but it is usually accepted a threshold of 3 dB
below the flat frequency band [16] although Nikolić et al [17]
highlighted that depending on the concentration of scatterers
the cutoff level varies significantly. Moreover, the cutoff level
is not only related to the concentration as the sensing volume
dimensions may also have some influence. However, in case
that the optics and the concentration of particles are fixed
during the measurement, as in most of the in vitro or ex
vivo flowmetry cases, this method can be used to monitor the
variations of the velocity [18].

In the case that the frequency distribution shows a decrease
from low frequencies to higher frequencies without any no-
ticeable plateau, the average particle velocity in the sensing
volume can be obtained by calculating the weighted moment
of the power spectrum which is given by [19]:

f =
M1

M0
=

∫∞
0
f · p(f)df∫∞

0
p(f)df

(2)

where f is the average Doppler frequency shift calculated
from the ratio of the first and zero order moments. The first
order moment (M1) is expected to be proportional to the
average velocity and to the amount of particles that contribute
to the Doppler frequency shifts. The zero order moment (M0)
accounts for the number of particles that produce Doppler
shifts. p(f) is the power spectrum of the OFI signal.

Reported works and experiment presented in this paper
show that the flat distribution occurs when the particle density
is low in the carrying fluid while continuous decay spectrum
is likely to be observed at high density of particles cases.
However to the best of our knowledge, this weighted moment
method was never experimented in the case of low concentra-
tions.

III. RESULTS AND ANALYSIS

Various concentrations of particles are tested to evaluate the
impact of the particle concentration in measuring the average

Doppler frequency using the weighted moment of power
spectrum and the cutoff frequency approximation method.

In order to obtain various concentrations of particles in the
fluid flowing inside the channel, different dilutions of bovine
full cream milk in demineralized water were used. Milk is
an interesting fluid to be employed as an optical phantom for
blood [20]. The milk concentrations by mass in water were:
2, 4, 6, 8, 10, 12.5, 25, 100% w/w.

A. Experimental setup

Fig.1 depicts the experimental setup. The semiconductor
diode laser (LD) was a Thorlabs L785P090 emitting at 785 nm
a maximum power of 90 mW. A focusing aspheric lens
(Thorlabs C240-TME-B, focal distance fd = 8 mm) was placed
at twice its focal length from the laser source thus to obtain
the sharpest focus and a good recollection of the feedback
power by having the measurement volume at the closest
possible distance to the lens. The laser beam was focused
onto the cylindrical polydimethylsiloxane (PDMS) fluidic chip
consisting in a single circular channel with a diameter of 320
µm. A linear syringe pump (Picoplus, Harvard Apparatus) was
employed to introduce the fluid flow into the channel at a
controlled flow rate with 0.5% accuracy. The channel diameter
being relatively large as compared to the expected laser waist
radius in the channel (10 to 12 µm), we have considered that
any eventual lensing effect induced by the channel shape is
neglectable in first approximation.

The output optical power is monitored by the photo-
diode (PD) integrated in the laser package. The signal of
the photodiode is then amplified by a custom built trans-
impedance amplifier (TIA). The laser, the lens and the elec-
tronic driver/receiver assembly were mounted on a xyz dc
motorized stage (LSM050A, Zaber Technologies Inc.) con-
trolled by a custom made Labview program. The assembly was
tilted by 80.5 degrees with respect to the flow direction. The
photodiode signal was acquired by a National Instruments data
acquisition card (BNC-2110) with a sampling rate of 500 kHz.
At each measurement ten consecutives frames of 8192 samples
were acquired and the calculated spectrum was the average
of the ten consecutive spectra. The determination of the
average Doppler frequency was done in a post-processing
step although, especially for the weighted moment method
it could have been conveniently performed using real-time
implementation algorithm.

B. OFI signal spectra

Each milk dilution has been pumped at ten different flow
rates from 10 to 100 µl/min. At 100 µl/min, the Reynolds
number for the cylindrical channel was calculated to be 12,
which is well within the laminar regime (Reynolds number
< 2100). Figs 2 and 3 depict the signal spectra for all flow
rates from 10 to 100 µl/min for milk concentrations of 2% and
100% respectively. As can be seen, due to the relatively large
expansion (with respect to the channel diameter) of the sensing
volume along the laser propagation axis, the OFI signal is a
distribution of frequency shifts rather than a sharp Doppler
peak.
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Fig. 1. Fig. 1. Diagram of the experimental system.

The repetitive peaks at 40 kHz in the spectra are due to an
electrical disturbing noise that is present even when the fluid is
not in movement. These peaks do not impact the measurements
by the cutoff frequency method, but they could be major
with the weighted moment method. In order to make the
weighted moment calculation less subject to the sensor noise,
the spectral density of the OFI signal p(f) in (2) is actually
the difference between the sensor signal spectral density while
liquid is flowing in the channel and a reference spectral density
calculated in absence of flow (black curve in Figs. 2-4).

With the 2% concentration, the power spectrum is showing
an almost flat distribution while at 100% milk concentration,
a continuous decay is obtained and no flat distribution can be
observed. As can be seen in Fig. 4, the evolution from flat
plateau spectrum to continuous decay is progressive and at
25% the plateau is barely visible. Thus a natural limitation of
the cutoff frequency method with regard to the particle density
can be concluded.
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Fig. 2. Power spectra for flow rates from 10 to 100 µl/min with 2% milk
concentration

The interpretation of these spectra is not trivial and if the
signals obtained at low concentrations can be explained as the
sum of Doppler shift contribution to the OFI signal from par-
ticles flowing at different positions from one wall to the other
in the channel [21], the signals at higher concentrations show
a more complex light-particles interaction such as attenuation,
multiple scattering [8] , speckle [22], etc . . .

However, the evolution of the OFI signal spectra with
the concentration of scatterers shows the importance of the
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Fig. 3. Power spectra for flow rates from 10 to 100 µl/min with 100% milk
concentration
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Fig. 4. Power spectra for varying concentration rates from 2 to 100% w/w
with 50 µl/min flow rate

evaluation of the two main methods used to determine the
local velocity of the flows against this parameter.

C. Evaluation of the methods against concentration

To evaluate the milk concentration range within which the
cutoff frequency method and the weighted moment approxi-
mation are valid for the determination of the average velocity,
the average Doppler frequencies have been calculated for flow
rates from 10 µl/min to 100 µl/min. In a cylindrical duct, the
maximum velocity is expected to be twice the average value
calculated over the channel cross-section. In consequence,
while the weighted moment method provides directly the
average velocity value, we just divided by two the maximum
Doppler shift that was obtained with the cutoff frequency
method to obtain the average velocity value. Fig. 5 shows
the calculated average Doppler frequency shift obtained with
the cutoff method and the weighted moment method for 2, 4,
10, 25% w/w concentrations while Fig. 6 shows the average
Doppler frequency shift with the weighted moment method
for 100% w/w concentrations. In these figures, the error bars
show the standard deviation calculated from 10 consecutive
measurements.

As can be observed, both methods show a good linear trend
of the average Doppler frequency with the flow rate in the
channel. However, for the 25% w/w concentration, the cutoff
frequency method shows a strong deviation from this linear
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Fig. 5. Average Doppler frequency calculated with the cutoff frequency method (blue circles) and the weighted moment method (red squares) versus flow
rates for milk concentrations of 2, 4, 10, 25% w/w. Error bars are standard deviations calculated from 10 measurements.
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Fig. 6. Average Doppler frequency obtained by the weighted moment
approximation versus flow rates for milk concentrations of 100% w/w. The red
squares show the average Doppler frequency as calculated with equation (1).
Error bars are standard deviations calculated from 10 measurements.

trend. This is due to the difficulty of detection of the actual
cutoff frequency of the spectrum at such concentrations. At
higher concentrations, the cutoff frequency method is not any-
more relevant. For the weighted moment method, the average
Doppler frequency measurement for 2% milk concentration

is not reliable, not only because of the significant deviations
from the expected linear relationship but also because of low
repeatability of the measurement over the 10 measurement.
From 4% to 100% concentrations, the calculated average
frequencies show very small deviations from the expected
values as can be seen in Fig. 5 and Fig. 6.

Fig. 7 shows the relative error for both tested processing
methods. Fig. 7a presents the evolution of the relative error
(averaged over the flow-rate range) with the milk concentra-
tions, while Fig. 7b presents the evolution of the relative error
(averaged over the concentration range) with the flow rate.
In the calculated values of figure 7b only the concentration
where the method is efficient have been taken into account
which means that for the cutoff frequency method milk
concentrations higher than 25% have been discarded while
for the weighted moment, method milk concentrations lower
than 4% have been discarded.

Fig. 8 shows, with a similar approach, the evolution of the
relative standard deviation against concentration (Fig. 8a) and
flow rate (Fig. 8b). In Fig. 8b the measured relative standard
deviation calculated at very low concentration ratio (under
4% w/w) have not been taken into account for the calculation
of the average values by the weighted moment method.

Fig.7 and 8 show, as expected, that the concentration of
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Fig. 7. Relative error of the cutoff frequency method (blue solid line) and the
weighted moment approximation (red dashed lined) with regard to the value
expected from equation (1). (a) Against milk concentration ratios by averaging
the values obtained at each flow rate and (b) against flow rate by averaging
the value obtained for each milk concentration except for concentration ratio
lower than 4% for the weighted moment method and above 25% for the cutoff
frequency method.

scatterers has a much bigger impact on the ability of the
two methods to measure the local velocity than the flow rate
has. Also, the cutoff frequency method appears as a more
robust method with a stable relative error and a much lower
relative standard deviation for any flow rate and for any milk
concentration as long as the plateau remains visible in the
signal spectrum.

The robustness of the weighted moment method is degraded
for both the highest dilution (2% concentrated milk in mass)
and, to a lesser extent, for the lowest flow rate. We believe
this may be due to the low values of both the zero and
the first order moments which induce a higher sensitivity of
these quantities to any energy of the signal spectrum that is
not related to the Doppler effect: the electrical noise (mostly
Flicker noise), the mechanical noise (any residual variation of
the laser-fluidic chip distance) or the Speckle effect that can
occur on the microfluidic chip surfaces. While the weighted
moment relative standard deviation at low flow rate remains
in an acceptable range, the degradation at low concentrations
is dramatically high and this method should be discarded to
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Fig. 8. Relative standard deviation for the cutoff frequency method (blue
solid line) and the weighted moment approximation (red dashed lined) with
regard to the value expected from equation(1). (a) Against milk concentration
ratios by averaging the values obtained at each flow rate and (b) against flow
rate by averaging the value obtained for each milk concentration except for
concentration ratio lower than 4% for the weighted moment method and above
25% for the cutoff frequency method.

the benefit of the cutoff frequency approximation method.

IV. CONCLUSION

In this work, Optical Feedback Interferometry based
flowmetry using a single lens has been presented to mea-
sure the fluid velocity at various particle concentrations and
different flow rates. We have used diluted milk from 2%
concentration in weight to 100% (no dilution) causing the
signal spectrum distribution to change from a flat distribution
of power at low concentration rate up to a slow decay
with frequency at the highest concentrations. We have shown
that the weighted moment approximation cannot be used to
accurately estimate the average Doppler frequency in the case
of highly diluted milk solutions, while for moderate milk
concentrations up to full milk it is a robust and reliable
method with relative standard deviations below 10%. The
cutoff frequency method is a much more efficient method at
very low concentration and a slightly more robust and reliable
one at moderate concentrations, but it is not suitable for higher
concentrations of scatterers as the signal spectrum power dis-
tribution does not allow for the determination of a significant
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cutoff frequency. All experiments have been performed using
milk and demineralized water and the results presented can
be extended to any solution with similar scatterer sizes and
densities as in particular blood flows.
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[15] M. Nikolić, D. P. Jovanović, Y. L. Lim, K. Bertling, T. Taimre,
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in 1977. He received the B.Sc. degree in applied
physics from the University of Montpellier, France,
in 1999, the M.Sc.degree and the Ph.D. degree in
microwave and photonics from the University of
Toulouse - ISAE, in 2002 and 2005 respectively. He
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