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Optical feedback interferometry (OFI) based flowmetry enables simple, robust, self-aligned and low cost systems to measure the fluid flow velocity with reasonable accuracy. The particle concentration in the fluid causes significant changes in the signal of OFI sensors. While the spectral analysis of the particle induced Doppler shift remains as the most usual approach to determine the flow properties, different processing algorithms have been proposed in order to evaluate the average flow velocity within the measurement volume. In this paper, the validity of the commonly used methods with regards to particle concentrations and flow rates is verified.

I. INTRODUCTION

O NE of the earliest applications of the laser after its advent was the measurement of velocity. The technique known as Laser Doppler Velocimetry (LDV) enabled the velocity measurement of fluid flow using an optical array that required to split a laser beam into two components and combine them in a measurement volume to create an interference pattern with bright and dark fringes [START_REF] Yeh | Localized fluid flow measurements with an he-ne laser spectrometer[END_REF]. A few years later, optical feedback interferometry (OFI) also called self-mixing interferometry was discovered by Rudd [START_REF] Rudd | A laser doppler velocimeter employing the laser as a mixeroscillator[END_REF], which has the advantage of being compact, simple, self-aligned, and cost effective in comparison with traditional laser based measurements like LDV. OFI was then applied to measure physical parameters such as displacement, absolute distance, velocity, flow, and refractive index [START_REF] Bosch | Optical feedback interferometry[END_REF], [START_REF] Donati | Developing self-mixing interferometry for instrumentation and measurements[END_REF]. Apart from industrial implementations, OFI is also used for biomedical applications [START_REF] Donati | Self-mixing interferometry for biomedical signals sensing[END_REF], [START_REF] Perchoux | Current developments on optical feedback interferometry as an alloptical sensor for biomedical applications[END_REF] including blood flow measurement [START_REF] De Mul | Mini laser-doppler (blood) flow monitor with diode laser source and detection integrated in the probe[END_REF], [START_REF] Norgia | Self-mixing laser doppler spectra of extracorporeal blood flow: A theoretical and experimental study[END_REF], blood perfusion measurement [START_REF] De Mul | Self-mixing laser-doppler velocimetry of liquid flow and of blood perfusion in tissue[END_REF], and tissue phantom imaging [START_REF] Zakian | Laser doppler imaging through tissues phantoms by using self-mixing interferometry with a laser diode[END_REF].

In OFI based velocimetry (flowmetry), the signal spectrum is computed to determine the velocity of moving objects (particles) [START_REF] Campagnolo | Flow profile measurement in microchannel using the optical feedback interferometry sensing technique[END_REF]. Since the OFI spectra are generated from the Doppler shifted light resulting from the scattering of the laser beam by the particles, their morphological aspect strongly R. da Costa Moreira, A. Quotb and J. Perchoux are with the LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France e-mail: julien.perchoux@laas.fr. R. Atashkhooei depends on the velocities distribution in the sensing volume.

For the purpose of simplicity, the "sensing volume" is here considered as the volume where the particles are generating measurable contribution to the signal spectrum. Hence, the number of scattering centers in the probe volume is also an influencing factor of the spectrum morphology. As the sensing volume is related to the optical configuration, it has a direct impact on the spectrum morphology that should also be considered [START_REF] Mowla | Effect of the optical system on the doppler spectrum in laser-feedback interferometry[END_REF]. Different signal processing approaches were proposed to extract the information regarding the particle velocities but, to the best of our knowledge, these methods were not evaluated as a function of the particle concentration, which becomes a relevant issue in multiple scattering media, which are mostly the media of interest in both chemical and biomedical applications. Moreover, a broad range of concentrations has been unexplored in previously published works.

In this paper, a simple OFI configuration using a singlelens optics is used as a reference laser flowmeter to evaluate the different signal processing methods. Particular attention is given to the impact of the particle concentration that demonstrates important results regarding the reliability of all different approaches.

In section II, the OFI based flow sensing principle is presented and the signal processing approaches for different signal spectrum morphologies are reviewed. In section III, the impact of the particle concentration is experimentally investigated and the domain of applications for the different signal processing is discussed.

II. DESCRIPTION OF THE FLUID VELOCITY EVALUATION

METHODS

In OFI based flowmetry, light back reflected from the particles carried by the fluid is collected through the optical system and re-enters into the laser cavity causing a modulation of the laser emitted power at the Doppler frequency f D . The Doppler frequency shift of the back-scattered electric field is related to the particle velocity V as [START_REF] Bosch | Optical feedback interferometry[END_REF] 

f D = 2nV cos θ λ , (1) 
where λ represents the laser wavelength, n is the refractive index of the liquid, and θ is the angle formed by the laser propagation axis and the scatterer velocity vector. An integrated photodiode inside the laser package is commonly used to monitor the laser intensity changes. To observe the Doppler frequency, a Fast Fourier Transform (FFT) is performed on the amplified photodiode current [START_REF] Norgia | Self-mixing laser doppler spectra of extracorporeal blood flow: A theoretical and experimental study[END_REF].

The back scattered light re-entering the laser cavity is the sum of contributions from each particle illuminated by the incident laser beam. Thereby, the velocity distribution of scatterers inside the probe volume determines the frequency distribution in the signal power spectrum. As reported in the literature, when the sensing volume dimensions are small with comparison to the channel diameter, a well-defined Doppler peak is observed in the power spectrum. However, in most practical situations with micro-scale channels, the Doppler frequency peak is very broad and may reach to an extent that no peak will be observed and the spectrum displays either a flat distribution [START_REF] Riva | Laser doppler measurements of blood flow in capillary tubes and retinal arteries[END_REF] or a slow decay from low to higher frequencies [START_REF] Bonner | Model for laser doppler measurements of blood flow in tissue[END_REF].

In the case that flat frequency distribution occurs, a cutoff frequency approximation may be used to estimate the maximum Doppler frequency associated to the maximum fluid velocity [START_REF] Riva | Laser doppler measurements of blood flow in capillary tubes and retinal arteries[END_REF], [START_REF] Nikolić | Approach to frequency estimation in selfmixing interferometry: multiple signal classification[END_REF]. In this method, the frequency at which the plateau-like band in the spectrum is below a threshold (cutoff level) is considered as the Doppler frequency. In fact there is no robust criterion or algorithm to find accurately the cutoff frequency, but it is usually accepted a threshold of 3 dB below the flat frequency band [START_REF] Campagnolo | A new optical feedback interferometer for measuring red blood cell velocity distributions in individual capillaries: a feasibility study in microchannels[END_REF] although Nikolić et al [START_REF] Nikolić | Multiple signal classification for self-mixing flowmetry[END_REF] highlighted that depending on the concentration of scatterers the cutoff level varies significantly. Moreover, the cutoff level is not only related to the concentration as the sensing volume dimensions may also have some influence. However, in case that the optics and the concentration of particles are fixed during the measurement, as in most of the in vitro or ex vivo flowmetry cases, this method can be used to monitor the variations of the velocity [START_REF] Quotb | Optical feedback interferometry sensor for flow characterization inside ex-vivo vessel[END_REF].

In the case that the frequency distribution shows a decrease from low frequencies to higher frequencies without any noticeable plateau, the average particle velocity in the sensing volume can be obtained by calculating the weighted moment of the power spectrum which is given by [START_REF] De Mul | A semiconductor laser used for direct measurement of the blood perfusion of tissue[END_REF]:

f = M 1 M 0 = ∞ 0 f • p(f )df ∞ 0 p(f )df (2) 
where f is the average Doppler frequency shift calculated from the ratio of the first and zero order moments. The first order moment (M 1 ) is expected to be proportional to the average velocity and to the amount of particles that contribute to the Doppler frequency shifts. The zero order moment (M 0 ) accounts for the number of particles that produce Doppler shifts. p(f ) is the power spectrum of the OFI signal.

Reported works and experiment presented in this paper show that the flat distribution occurs when the particle density is low in the carrying fluid while continuous decay spectrum is likely to be observed at high density of particles cases. However to the best of our knowledge, this weighted moment method was never experimented in the case of low concentrations.

III. RESULTS AND ANALYSIS

Various concentrations of particles are tested to evaluate the impact of the particle concentration in measuring the average Doppler frequency using the weighted moment of power spectrum and the cutoff frequency approximation method.

In order to obtain various concentrations of particles in the fluid flowing inside the channel, different dilutions of bovine full cream milk in demineralized water were used. Milk is an interesting fluid to be employed as an optical phantom for blood [START_REF] Tuchin | Optical biomedical diagnostics[END_REF]. The milk concentrations by mass in water were: 2, 4, 6, 8, 10, 12.5, 25, 100% w/w.

A. Experimental setup

Fig. 1 depicts the experimental setup. The semiconductor diode laser (LD) was a Thorlabs L785P090 emitting at 785 nm a maximum power of 90 mW. A focusing aspheric lens (Thorlabs C240-TME-B, focal distance f d = 8 mm) was placed at twice its focal length from the laser source thus to obtain the sharpest focus and a good recollection of the feedback power by having the measurement volume at the closest possible distance to the lens. The laser beam was focused onto the cylindrical polydimethylsiloxane (PDMS) fluidic chip consisting in a single circular channel with a diameter of 320 µm. A linear syringe pump (Picoplus, Harvard Apparatus) was employed to introduce the fluid flow into the channel at a controlled flow rate with 0.5% accuracy. The channel diameter being relatively large as compared to the expected laser waist radius in the channel (10 to 12 µm), we have considered that any eventual lensing effect induced by the channel shape is neglectable in first approximation.

The output optical power is monitored by the photodiode (PD) integrated in the laser package. The signal of the photodiode is then amplified by a custom built transimpedance amplifier (TIA). The laser, the lens and the electronic driver/receiver assembly were mounted on a xyz dc motorized stage (LSM050A, Zaber Technologies Inc.) controlled by a custom made Labview program. The assembly was tilted by 80.5 degrees with respect to the flow direction. The photodiode signal was acquired by a National Instruments data acquisition card (BNC-2110) with a sampling rate of 500 kHz. At each measurement ten consecutives frames of 8192 samples were acquired and the calculated spectrum was the average of the ten consecutive spectra. The determination of the average Doppler frequency was done in a post-processing step although, especially for the weighted moment method it could have been conveniently performed using real-time implementation algorithm.

B. OFI signal spectra

Each milk dilution has been pumped at ten different flow rates from 10 to 100 µl/min. At 100 µl/min, the Reynolds number for the cylindrical channel was calculated to be 12, which is well within the laminar regime (Reynolds number < 2100). Figs 2 and 3 depict the signal spectra for all flow rates from 10 to 100 µl/min for milk concentrations of 2% and 100% respectively. As can be seen, due to the relatively large expansion (with respect to the channel diameter) of the sensing volume along the laser propagation axis, the OFI signal is a distribution of frequency shifts rather than a sharp Doppler peak. The repetitive peaks at 40 kHz in the spectra are due to an electrical disturbing noise that is present even when the fluid is not in movement. These peaks do not impact the measurements by the cutoff frequency method, but they could be major with the weighted moment method. In order to make the weighted moment calculation less subject to the sensor noise, the spectral density of the OFI signal p(f ) in ( 2) is actually the difference between the sensor signal spectral density while liquid is flowing in the channel and a reference spectral density calculated in absence of flow (black curve in Figs. 234).

With the 2% concentration, the power spectrum is showing an almost flat distribution while at 100% milk concentration, a continuous decay is obtained and no flat distribution can be observed. As can be seen in Fig. 4, the evolution from flat plateau spectrum to continuous decay is progressive and at 25% the plateau is barely visible. Thus a natural limitation of the cutoff frequency method with regard to the particle density can be concluded.
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Fig. 2. Power spectra for flow rates from 10 to 100 µl/min with 2% milk concentration The interpretation of these spectra is not trivial and if the signals obtained at low concentrations can be explained as the sum of Doppler shift contribution to the OFI signal from particles flowing at different positions from one wall to the other in the channel [START_REF] Zhao | Optical feedback interferometry for microscale-flow sensing study: numerical simulation and experimental validation[END_REF], the signals at higher concentrations show a more complex light-particles interaction such as attenuation, multiple scattering [START_REF] Norgia | Self-mixing laser doppler spectra of extracorporeal blood flow: A theoretical and experimental study[END_REF] , speckle [START_REF] Atashkhooei | Dealing with speckle effects in self-mixing interferometry measurements[END_REF], etc . . . However, the evolution of the OFI signal spectra with the concentration of scatterers shows the importance of the 

C. Evaluation of the methods against concentration

To evaluate the milk concentration range within which the cutoff frequency method and the weighted moment approximation are valid for the determination of the average velocity, the average Doppler frequencies have been calculated for flow rates from 10 µl/min to 100 µl/min. In a cylindrical duct, the maximum velocity is expected to be twice the average value calculated over the channel cross-section. In consequence, while the weighted moment method provides directly the average velocity value, we just divided by two the maximum Doppler shift that was obtained with the cutoff frequency method to obtain the average velocity value. Fig. 5 shows the calculated average Doppler frequency shift obtained with the cutoff method and the weighted moment method for 2, 4, 10, 25% w/w concentrations while Fig. 6 shows the average Doppler frequency shift with the weighted moment method for 100% w/w concentrations. In these figures, the error bars show the standard deviation calculated from 10 consecutive measurements.

As can be observed, both methods show a good linear trend of the average Doppler frequency with the flow rate in the channel. However, for the 25% w/w concentration, the cutoff frequency method shows a strong deviation from this linear trend. This is due to the difficulty of detection of the actual cutoff frequency of the spectrum at such concentrations. At higher concentrations, the cutoff frequency method is not anymore relevant. For the weighted moment method, the average Doppler frequency measurement for 2% milk concentration is not reliable, not only because of the significant deviations from the expected linear relationship but also because of low repeatability of the measurement over the 10 measurement. From 4% to 100% concentrations, the calculated average frequencies show very small deviations from the expected values as can be seen in Fig. 5 and Fig. 6. Fig. 7 shows the relative error for both tested processing methods. Fig. 7a presents the evolution of the relative error (averaged over the flow-rate range) with the milk concentrations, while Fig. 7b presents the evolution of the relative error (averaged over the concentration range) with the flow rate.

In the calculated values of figure 7b only the concentration where the method is efficient have been taken into account which means that for the cutoff frequency method milk concentrations higher than 25% have been discarded while for the weighted moment, method milk concentrations lower than 4% have been discarded.

Fig. 8 shows, with a similar approach, the evolution of the relative standard deviation against concentration (Fig. 8a) and flow rate (Fig. 8b). In Fig. 8b the measured relative standard deviation calculated at very low concentration ratio (under 4% w/w) have not been taken into account for the calculation of the average values by the weighted moment method. Fig. 7 and8 show, as expected, that the concentration of scatterers has a much bigger impact on the ability of the two methods to measure the local velocity than the flow rate has. Also, the cutoff frequency method appears as a more robust method with a stable relative error and a much lower relative standard deviation for any flow rate and for any milk concentration as long as the plateau remains visible in the signal spectrum. The robustness of the weighted moment method is degraded for both the highest dilution (2% concentrated milk in mass) and, to a lesser extent, for the lowest flow rate. We believe this may be due to the low values of both the zero and the first order moments which induce a higher sensitivity of these quantities to any energy of the signal spectrum that is not related to the Doppler effect: the electrical noise (mostly Flicker noise), the mechanical noise (any residual variation of the laser-fluidic chip distance) or the Speckle effect that can occur on the microfluidic chip surfaces. While the weighted moment relative standard deviation at low flow rate remains in an acceptable range, the degradation at low concentrations is dramatically high and this method should be discarded to the benefit of the cutoff frequency approximation method.

IV. CONCLUSION

In this work, Optical Feedback Interferometry based flowmetry using a single lens has been presented to measure the fluid velocity at various particle concentrations and different flow rates. We have used diluted milk from 2% concentration in weight to 100% (no dilution) causing the signal spectrum distribution to change from a flat distribution of power at low concentration rate up to a slow decay with frequency at the highest concentrations. We have shown that the weighted moment approximation cannot be used to accurately estimate the average Doppler frequency in the case of highly diluted milk solutions, while for moderate milk concentrations up to full milk it is a robust and reliable method with relative standard deviations below 10%. The cutoff frequency method is a much more efficient method at very low concentration and a slightly more robust and reliable one at moderate concentrations, but it is not suitable for higher concentrations of scatterers as the signal spectrum power distribution does not allow for the determination of a significant cutoff frequency. All experiments have been performed using milk and demineralized water and the results presented can be extended to any solution with similar scatterer sizes and densities as in particular blood flows.
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 56 Fig.5. Average Doppler frequency calculated with the cutoff frequency method (blue circles) and the weighted moment method (red squares) versus flow rates for milk concentrations of 2, 4, 10, 25% w/w. Error bars are standard deviations calculated from 10 measurements.
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 7 Fig.7. Relative error of the cutoff frequency method (blue solid line) and the weighted moment approximation (red dashed lined) with regard to the value expected from equation[START_REF] Yeh | Localized fluid flow measurements with an he-ne laser spectrometer[END_REF]. (a) Against milk concentration ratios by averaging the values obtained at each flow rate and (b) against flow rate by averaging the value obtained for each milk concentration except for concentration ratio lower than 4% for the weighted moment method and above 25% for the cutoff frequency method.
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 8 Fig.8. Relative standard deviation for the cutoff frequency method (blue solid line) and the weighted moment approximation (red dashed lined) with regard to the value expected from equation[START_REF] Yeh | Localized fluid flow measurements with an he-ne laser spectrometer[END_REF]. (a) Against milk concentration ratios by averaging the values obtained at each flow rate and (b) against flow rate by averaging the value obtained for each milk concentration except for concentration ratio lower than 4% for the weighted moment method and above 25% for the cutoff frequency method.

  and S. Royo are with the Center for Sensors, Instruments, and Systems Development (CD6 Research Center), Universitat Politècnica de Catalunya, Terrassa 08222, Barcelona, Spain e-mail: santiago.royo@upc.edu

E. E. Ramírez-Miquet was with the LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France and with the Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba. He is now with the Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, CNRS UMR 7162, Sorbonne Paris-Cité, France R. Atashkhooei, E. E. Ramírez-Miquet and J. Perchoux contributed equally to this work. Manuscript received April 19, 2005; revised August 26, 2015.

ACKNOWLEDGMENT

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the Seventh Framework Programme of the European Union (FP7/2007-2013) under REA grant agreement no. 600388 (TECNIOspring programme), and from the Agency for Business Competitiveness of the Government of Catalonia, ACCI.

Also, this research was partly supported by the French Embassy in Havana and COST action BM1205.