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The kinematics, dynamics and control of a flying parallel robot with
three quadrotors

Damien Six1, Sébastien Briot2, Abdelhamid Chriette1 and Philippe Martinet1

Abstract— This paper deals with a novel flying mecha-
nism. Inspired from parallel manipulators, this flying robot
is composed of three quadrotors linked by a rigid articulated
architecture composed of three legs and a platform. Associating
quadrotor co-manipulation and rigid bodies, this new design
offers novel possibilities for aerial robotics and manipulation.
Previous work leads to the design of a flying parallel robot
with two quadrotors. However, this robot did not allow the
full control of the six degrees of freedom of its end-effector.
With an additional quadrotor, this study seeks to obtain a
full control of the platform position and orientation. To prove
this property, the kinematic constraints are verified through
screw theory. Then, the dynamic model is established and a
decoupling property leads to the design of a specific controller
for the platform and legs configurations. ADAMS/SIMULINK
co-simulations validate the theoretical developments.

I. INTRODUCTION

The last decade has seen the development of a new
generation of aerial robots combining a flying UAV (Un-
named Autonomous Vehicle) with a robotic manipulator.
Several options have been explored, from one DoF (Degree
of Freedom) manipulator [1] toward more complex serial [2]
[3] or parallel [4] [5] robotic devices. The drawbacks of such
solutions are a limited payload and autonomy due to the addi-
tional embedded motors and also a manipulability impacted
by the quadrotor underactuation. To overcome the limits in
payload, some studies investigated co-manipulation between
several quadrotors in cable-load transportation applications
[6]. However, cables cannot apply any pushing forces to
the environment, limiting the manipulation area under the
drones. Such flying device can also be seen as a cable-driven
parallel robot where the actuators have been replaced by
quadrotors. Inspired by this analogy, a new type of flying
robot can be developed from rigid parallel robots. This new
type of flying robots, composed of quadrotors associated to a
rigid articulated passive architecture, presents the following
advantages [7]
• An enhanced payload, by spreading the efforts over

several drones;
• No additional embedded motors, the robot is controlled

only by the quadrotors;
• Reconfiguration of the passive architecture potentially

allows to perform tasks under and over the drone;
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Fig. 1: A flying parallel robot with three quadrotors

• The effector can be placed away from the drone, limit-
ing the perturbations due to rotor wash;

• A large choice of leg topology, issued from the study of
parallel robots, can lead to several properties of interest.

A first design with two quadrotors, based on a planar parallel
mechanism is described in [7]. The end-effector of this robot
was not fully controllable in the six DoFs of space: its
evolution was limited to a vertical plane, thus restraining
its applicability. This study proposes a new solution based
on a spatial architecture with three drones, allowing control
of all possible DoFs of the end-effector. The kinematic study
in section II shows that this architecture offers full control
of the platform position and orientation and it describes
its singularity locus. Its dynamic model is developed in
section III. Decoupling properties in the dynamic model are
exploited to design a cascaded controller in section IV. The
simulation results, illustrating the theoretical developments
are given in section V.

II. KINEMATICS

Figure 1 illustrates the flying parallel robot under study. It
consists of a moving platform connected to three quadrotors
by means of three identical legs. Fp(Op,xp,yp, zp) is a
frame attached to the moving platform. Its origin Op is the
centroid of the platform. zp axis is normal to the platform
top plane. Let `AB be the distance between any set of points
A and B. Three points Ri (i = 1, 2, 3) are defined by their
coordinates

−−−→
OpRi = [`OpRi

cos γi, `OpRi
sin γi, 0]

T in frame
Fp with γi = {0, 2π/3,−2π/3} rad. A leg i is linked to
the platform at point Ri by a revolute joint of direction
ri = [− sin γi, cos γi, 0]

T expressed in frame Fp. Each leg
i is attached to a drone i by a spherical joint situated at Oi

(i = 1, 2, 3) (see Fig. 2). Oi is also the center of mass of



Fig. 2: Side view of the flying parallel robot

drone i. The length of leg i is defined by `RiOi
. The actuation

of the robot is provided by the three quadrotors.
Attaching the leg at the drone center of mass can be

technically challenging, but this configuration is necessary
to obtain the full decoupling property on the robot dynamics
described in section III. On an experimental device, the
centers of the spherical joint may not be exactly situated at
the drones center of mass. Then, the centrifugal and Coriolis
forces caused by the drones rotation motions will affect the
dynamics of the passive architecture and generate additional
coupling. With a large distance between the center of mass
and the center of rotation, the perturbations induced by this
coupling may be higher than the controller stability margin.
In [7], the expression of this coupling term is given for a
flying robot with two quadrotors and an example illustrates
its effect on the tracking precision. Thus, the robustness of
the control law against the perturbations induced by this
coupling requires to be studied. This point is not addressed
in this paper.

A. Parameterization

Let Fi(Oi,xi,yi, zi) be the frame attached to drone i (i =
1, 2, 3). Its origin Oi is at the drone center of mass which
is also the center of leg i spherical joint. xi axis bisects the
angle defined by two arms of quadrotor i. zi axis is aligned
with the quadrotor i propellers axes (see Fig. 1).

q is a vector of the robot generalized coordinates com-
posed of (in the following order)
• xp, yp, zp, φp, θp, ψp the position and orientation coor-

dinates of the moving platform frame Fp with respect
to the world frame;

• q1, q2, q3 the relative angle between the platform plane
and leg 1, 2 and 3, respectively (see Fig. 2);

• φ1, θ1, ψ1, φ2, θ2, ψ2, φ3, θ3, ψ3 the orientation coordi-
nates of the drone frames F1, F2 and F3 with respect
to the world frame.

Note that in this paper, the rotation sequence of the Bryant
angles [8] is chosen such that

v = Rx(φi)Ry(θi)Rz(ψi)v
′ i = 1, 2, 3 or p (1)

where v is a vector expressed in world frame, v′ is the
same vector expressed in local frame Fi and Ru(α) is the
elemental rotation about axis u though the angle α.

B. Mobility and singularity analyses

Joining quadrotors with a parallel kinematic architecture
combines several challenges. One of them is to be ensured
that the platform remains fully controllable. Another chal-
lenge is the drones’ underactuation: they can only provide
an upward thrust force and three independent torques for six
DoFs. Classically, for the control of quadrotors, the under-
actuation is handled through an appropriate controller [9]. In
section IV, a cascaded control law is designed. Constraining
each drone orientation coordinates by a desired thrust force,
this control law allows each drone to apply a force fi at the
associated leg tip (point Oi) in any desired direction. The
torques provided by the quadrotors are not transmitted to
the parallel architecture through the passive spherical joints.
Assuming that such a control law is designed, the kinematic
study of the flying robot can be reduced to the study of a
passive kinematic architecture, composed of the end-effector
and three legs attached to it by the three revolute joints. This
architecture is actuated by a force fi applied at each leg tip
in any desired direction.

The kinematic study will first focus on the end-effector
mobility and its singularity analysis. Then, the results ob-
tained are extended to the whole passive architecture, in-
cluding the mobility of each leg.

1) End-effector mobility: Screw theory [10] [11] is suit-
able for the study of the instantaneous motion of parallel
manipulators [12]. A twist and a wrench are screws that
represent the instantaneous motion of a rigid body and a
system of forces and moments applied on a rigid body,
respectively. Screw theory allows to compute the set of
constraints, named actuation wrenches, provided by each leg
to the platform when the actuators are locked. The rank of the
overall wrench system, spanned by the actuation wrenches
of all the legs, defines the mobility of the platform. If
this system is of dimension six, then the platform if fully
controlled. Otherwise, at least one degree of freedom of the
platform is not controlled.

For each leg i (i = 1, 2, 3), four unit twists ζki define
the instantaneous motions of the leg, one for the revolute
joint motion (k = 1) and three for the spherical joint motions
(k = 2, 3, 4). Any actuation wrench ξ of the leg is reciprocal
to all the unit twists denoted ζki characterizing the displace-
ments of the passive joints [12], i.e. ξT ζki = 0 for any k.
This means that the virtual power developed by the wrench
ξ along the direction of motion ζki is null. Let us consider
one robot leg i. To simplify the expressions of the unit twists
for this leg, let us define a new frame Fli(Oi,S1i,S2i, zli)
attached to this leg with: the origin Oi is at the center of the
spherical joint; axis S1i pointing toward Ri (along the leg);
axis S2i in the direction of the revolute joint axis (see Figs.
1 and 2). The unit twist defining the motion of the passive
revolute joint in frame Fli at point Oi is expressed as [11]

ζ1i =
[
0 0 `RiOi

0 1 0
]T

(2)

while the three unit twists defining the motion of the passive



spherical joint in frame Fli at point Oi are given by

ζ2i =
[
0 0 0 1 0 0

]T
(3)

ζ3i =
[
0 0 0 0 1 0

]T
(4)

ζ4i =
[
0 0 0 0 0 1

]T
(5)

In these twists, the first three components represent the
direction of the translation velocity while the three last com-
ponents represent the direction of the rotational velocity. For
each leg i, only two unit actuation wrenches are reciprocal
to all twists ζki. Their expressions in the frame Fli at point
Oi are

ξ1i =
[
1 0 0 0 0 0

]T
(6)

ξ2i =
[
0 1 0 0 0 0

]T
(7)

in which the first three components represent the direction
of the force exerted on the platform and the three last
components the direction of the moment. For each leg i
(i = 1, 2, 3), ξ1i and ξ2i are two forces, exerted on the
platform by the leg, applied at Oi and directed along S1i

and S2i, respectively. ξ1i and ξ2i can be seen as the two
components of the force fi, applied by the drone i on the
passive architecture, that are transmitted to the platform. The
third component of fi along zli is not transmitted to the end-
effector and do not cause any motion of the end-effector. This
last component available for each leg i will be used to control
the relative orientation between the leg and the platform (see
section II-B.3).

Now considering the three robot legs, the overall actuation
wrench is given by Ξ = [ξ11, ξ21, ξ12, ξ22, ξ13, ξ23], with all
wrenches expressed in the same frame (e.g. the world frame).
This overall wrench system is of dimension 6, then the end-
effector is fully controllable. The next section introduces the
singularity analysis, i.e. it studies the singular configurations
for which the actuation wrench system locally loses its rank.

2) Singularity analysis of the end effector: There are
some tools that define the conditions of degeneracy of a
wrench system among which the Grassmann geometry [13]
and the Grassmann-Cayley algebra [14] [15]. Regarding our
particular case, the Grassmann-Cayley algebra was already
used to prove the condition of singularities if the system
of wrenches is composed of a triplet of two (independent)
forces ξ1i and ξ2i (i = 1, 2, 3), ξ1i and ξ2i being applied at
the same point Oi [15]. Let us define four planes
• Pi (i = 1, 2, 3) is the plane passing through point Oi

and containing the two forces being the resultants of the
wrenches ξ1i and ξ2i (so it contains the vectors S1i and
S2i);

• P4 is the plane containing the three points O1, O2 and
O3.

Conditions of singularities appear if and only if all the four
planes Pi (i = 1, 2, 3, 4) intersect in (at least) a point, that
can be at infinity [15] (see Fig. 3).

Let us illustrate this singularity condition for a case study
(`OpRi

= 0.1 m and `RiOi
= 0.8 m). Each plane Pi is

Fig. 3: Example of a singular configuration for the flying
parallel robot. P1, P2, P3 and P4 are coplanar.

defined by its equation

aix+ biy + ciz + di = 0 (8)

Let A be the matrix composed of the four plane coefficients

A =


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 (9)

The geometric condition of singularity, i.e. all planes in-
tersect in at least a point, is equivalent to detA = 0.
The relative positions of the planes P1, P2, P3 and P4

depends only on the mobile robot internal DoFs. Then, the
robot singular configurations are not affected by translation
or rotation of the whole flying robot in space (i.e. xp, yp,
zp, φp, θp and ψp coordinates). The internal degrees of
freedom, i.e. the legs orientation q1, q2 and q3, are sufficient
to study the singularity locus. To avoid auto-collision, each
coordinates qi is restricted to range [−π/2;π/2]. The 2-
dimensional representations as function of q2 and q3 of the
singularity locus for q1 = 0, −π/6, −π/3 and −π/2 are
shown in Fig. 4. The singularity locus is obtained through
the numerical computation of |detA| for which we retain
the values ”close to zero”. For this numerical analysis, a
threshold is set at 5e−4. The results for positive values of
q1 can be obtained by a central symmetry in the origin of
the figures. From those figures, we can see that a workspace
with each qi restricted to range [−π/2; 0] is singularity free.
However, a change of configuration with a platform under
the quadrotors (all qi > 0) will require the crossing of a
singularity. Still, the effective workspace of the robot could
be extended using singularity crossing techniques already
applied on standard parallel robots [16].

3) Singularity analysis of the passive architecture (end-
effector and legs): Only two components of each force
provided by the drones are transmitted to the platform
(see section II-B.1). Then, one component by leg remains
available to control an additional degree of freedom: one
pure force along zli. This remaining inputs on leg i will
allow the control of the leg configuration qi (see Fig. 2). In
section II-B.2, the singularity conditions have been studied
for the end-effector alone. In this section, by expressing the
Jacobian matrix for the whole passive structure (end-effector
and legs), it will be proven that including those additional
coordinates do not change the conditions of singularity. Let



(a) q1 = 0 rad (b) q1 = −π/6 rad

(c) q1 = −π/3 rad (d) q1 = −π/2 rad

Fig. 4: Singularity locus (|detA| < 5e−4) for the passive
architecture with `OpRi

= 0.1 m and `RiOi
= 0.8 m. The

red square areas represent a singularity free workspace.

qp = [xp, yp, zp, φp, θp, ψp, q1, q2, q3]
T be the generalized

coordinates of the passive architecture only. Let vi (i =
1, 2, 3) be the velocity of the point Oi (leg tip) expressed in
world frame and J be the Jacobian matrix such that

v = Jq̇p (10)

with v =
[
vT
1 ,v

T
2 ,v

T
3

]T
. A singularity of this (9×9) matrix

corresponds to a robot configuration where an infinitesimal
motion of the passive architecture coordinates qp is possible
even if the leg tips are fixed.

To study the singularities of this matrix, its is convenient
to change the reference frame. For each i = (1, 2, 3), let v1i
(respectively v2i and v3i) be the coordinate of vi along S1i

(respectively S2i and zli). The vector vl is defined by

vl =
[
v11 v12 v12 v21 v22 v23 v31 v32 v33

]T
(11)

Let Jl be a Jacobian matrix such that

vl = Jlq̇p (12)

J and Jl are related through a full rank matrix defined by
the rotations from the world frame to the local frames Fli

and the coordinate ordering defined in (11). Skipping the
mathematical calculations, Jl takes the form

Jl =


Jr 06×3

?
`R1O1

0
0 `R2O2

0
0 0 `R3O3

 (13)

with Jr linking the velocity of the leg tips along S1i and
S2i only (i = 1, 2, 3) to the derivative of the end-effector
coordinates, i.e.[

v11 v12 v13 v21 v22 v23
]T

= Jrq̇e (14)

qe = [xp, yp, zp, φp, θp, ψp]
T is the vector of the end-

effector coordinates. Jr is thus the inverse Jacobian matrix
of the passive architecture in the case where the drones
are able to exert motions (but also forces) along S1i and
S2i (i = 1, 2, 3) only. It is known from [17] that the
rank of this Jacobian matrix is equal to the rank of the
overall wrench system. This overall wrench, composed of
units forces applied on the end-effector by the legs along
S1i and S2i, is the one studied in section II-B.2. If the end-
effector is not in a singular configuration, shown in section
II-B.2, then Jr is of full rank.

By (13), the rank of the matrix Jl is equal to the rank of
Jr plus 3, both matrices have the same conditions of rank
deficiency. Then, the singularity locus of the whole passive
architecture is equivalent to the singularity locus of the end-
effector given in section II-B.2.

III. DYNAMICS

The major difficulty in controlling quadrotor is underac-
tuation. A quadrotor can only produce three independent
torques and an upward thrust force to control its six DoF in
space [9]. In a single quadrotor dynamic model, the attitude
dynamics is independent from its position dynamics and
is controlled only through torques, while the translational
dynamics only depends on the thrust force and the drone
orientation. This property is exploited to design cascaded
controllers for quadrotors. Because the spherical joint cen-
ters are situated at the drones center of mass, the attitude
dynamics of the quadrotors are not linked to the passive
architecture dynamics, allowing to find the same kind of
decoupling. In this section, the dynamic equations of the
passive architecture and the quadrotor attitude are given.
The following assumptions are made. On each quadrotor,
four control inputs are available, one thrust input u1i and
three torques τ i = [u2i, u3i, u4i]

T . The rotor dynamics is
considered fast before the body dynamics and is neglected
in the scope of this study. Disturbances from aerodynamic
effects are also neglected in the model. In this section,
the dynamic equations of the passive architecture alone
will first be established. Then, the Newton-Euler equations,
applied at the drones center of gravity, will give two set of
dynamic equations: one linking the drones attitude dynamics
to the input torques and one linking the passive architecture
dynamics to the drone thrust forces.

A. Passive architecture dynamics

From the quadrotors, only one force fi per quadrotor i
(i = 1, 2, 3) is transmitted to the passive architecture through
the passive spherical joints at each leg tip. Let L(qp, q̇p)
the Lagrangian of the passive architecture. The Lagrangian



equation of the architecture with three forces (f1, f2, f3)
applied on the leg tips are

d

dt

(
∂L

∂q̇p

)T

−
(
∂L

∂qp

)T

= JT

f1
f2
f3

 (15)

with J a Jacobian matrix defined in (10) that remains full
rank out of singularities as described in section II-B.2.

The robot is now considered to remain away from singu-
larities. Equation (15) can be written as [18]

Mpq̈p + cp = JT

f1
f2
f3

 (16)

where Mp is the (9 × 9) generalized inertia matrix and
cp the 9-dimensional vector of Coriolis, centrifugal and
gravitational effects.

B. Quadrotor dynamics

Only reaction forces (-f1, -f2 and -f3) are transmitted to
the drones from the passive architecture through the spherical
joints. The Newton-Euler laws applied at the drone i center
of mass give

mv̇i = mg − fi + ti (17)
τ i = Iiω̇i + ωi × Iiωi (18)

where
• m the mass of one drone1;
• ti the thrust force of drone i;
• g the gravity vector
• τ i is the torque vector of quarotor i in local frame;
• ωi is the angular velocity of quarotor i in local frame ;
• Ii is the inertia matrix of quadrotor i.

The angular velocity of a quadrotor i is related to the
derivative of its coordinates through the relation

ωi = Tiη̇i (19)

with ηi = [φi, θi, ψi]
T and

Ti =

 cos θi cosψi sinψi 0
− cos θi sinψi cosψi 0

sin θi 0 1

 (20)

This matrix depends on the choice in the orientation repre-
sentation which is defined in (1) for this study. Introducing
(19) in (18) gives

τ i = Ii(Tiη̈i + Ṫiη̇i) + Tiη̇i × IiTiη̇i (21)

Equation (21) is the attitude coordinate dynamic model for
each drone as function of its input torques. This equation is
independent from the thrust force and the passive architec-
ture dynamics.

1Masses of the three drones are considered equal to simplify notations,
but the result can easily be extended to drones with various masses.

C. Whole robot dynamics

Equations (17) and (16) link the translational dynamics of
the drones and the passive architecture dynamics through the
reaction forces. Introducing (17) and the time derivative of
(10) in (16) gives, skipping the mathematical calculations,

Mq̈p + c = JT t (22)

with
• t =

[
tT1 , t

T
2 , t

T
3

]T
• M = Mp +mJTJ

• c = cp +mJT J̇q̇p −mJT
[
gT ,gT ,gT

]T
Another way to compute directly this expression is to con-
sider an equivalent passive architecture that has an additional
mass corresponding to one quadrotor mass at each leg tip
with only the thrust force of each drone applied to the leg
tip. Equation (22) gives the dynamic equations of the passive
structure coordinates qp as function of the drones thrust
forces only. The thrust force of a drone i in world frame
is related to its thrust input u1i by

ti = Ri

[
0 0 u1i

]T
(23)

with Ri = Rx(φi)Ry(θi)Rz(ψi) the rotation matrix of the
local frame Fi.

Equations (21) and (22) are the two set of equations
expressing the dynamics of the whole robot. They show
a decoupling between the passive structure dynamics and
the drones attitude dynamics. However, the decoupling is
not complete as the thrust forces t in the passive structure
dynamic equations (22) depends on the thrust inputs u1i but
also on the orientation coordinates of the drones (23). Section
IV-A shows how this coupling can be handled by binding the
desired drone coordinates to the desired thrust forces.

IV. CONTROL

The main challenge to control the full architecture is linked
to the quadrotors underactuation. However, imposing a con-
dition on the quadrotors orientation coordinates allows the
definition of a virtual input that decouples the dynamics of
the passive architecture from the drone attitude coordinates.
Based on this property, a two steps controller is established.
The global scheme of this controller is given in Fig. 5.

A. Decoupling for control of the passive architecture

The design of the passive architecture control law is
based on feedback linearisation of the robot dynamics. Such
controller is well known for the control of robot manipulators
[18] but has also been used for the control quadrotors [19].
From the robot dynamic model (22), let us define a virtual
control input vector ν1

ν1 = M−1(JT t− c) (24)

If such control vector exists, then introducing (24) in (22)
gives the double integrator

q̈p = ν1 (25)



Fig. 5: General controller scheme

From (24), the desired thrust forces td =
[
td1

T
, td2

T
, td3

T
]T

in world frame to obtain the virtual control input ν1 are
given by

td = J−T (Mν1 + c) (26)

From (23), the thrust force provided by each drone depends
on its thrust input and its orientation coordinates

ti =

 sin θi
− sinφi cos θi
cosφi cos θi

u1i (27)

The desired thrust td in (26) force may only be obtained for
a given orientation of each quadrotor. From (27), this desired
orientation for a quadrotor i is given by the following angles

φdi = −atan2(tdyi, tdzi) (28)

θdi = asin

(
tdxi
||tdi ||2

)
(29)

with tdi =
[
tdxi, t

d
yi, t

d
zi

]T
. tzi > 0 is assumed in all flight

configurations (which is the case as long as the dynamic
forces and the passive architecture reaction forces along z
axis remain lower than the drone weight). The thrust input
u1i is defined by the projection of the desired thrust tdi in
world frame onto the local zi axis of the drone

u1i = sin θit
d
xi − cos θi sinφit

d
yi + cosφi cos θit

d
zi (30)

Suppose θi = θdi and φi = φdi , then introducing (28) and
(29) in (30) gives, skipping the mathematical calculations

u1i = ||tid||2 (31)

And introducing (28), (29) and (31) in (23)

ti = Ri

[
0 0 u1i

]T
= ti

d i = 1, 2, 3 (32)

Equation (32) proves that the desired thrust force td as well
as the virtual control input ν1 (24) can be obtained as long
as the desired attitudes angles defined by (28) and (29) are
respected with thrust inputs given by (30) on each quadrotor.

B. Passive architecture control law

Suppose a trajectory qd
p defined for the coordinates of the

passive architecture. Let us design a control law for the
virtual input ν1. As ν1 is the control input of a double
integrator (25), any control law that stabilizes a double
integrator can be designed. A PD (Proportional-Derivative)
controller is then designed

ν1 = q̈d
p −Kp(qp − qd

p)−Kd(q̇p − q̇d
p) (33)

with Kp, Kd strict positive gains to ensure the closed-loop
stability.

C. Quadrotors attitude control law

The control of the attitude coordinates of the quadrotors is
based on Sliding Mode Control (SMC). SMC have already
been applied for the control of a single quadrotor attitude in
[20]. The reference trajectories of the drone i (i = 1, 2, 3)
attitude coordinates φdi and θdi are defined by (28) and (29).
The reference trajectories for the last coordinate on each
drone ψd

i remains free to be defined by the user. It can be
exploited to avoid the collision between the drone arms and
the legs. Those three reference trajectories for each drone
forms the desired attitude vector ηd

i =
[
φdi , θ

d
i , ψ

d
i

]T
. From

(21), three auxiliary inputs (one for each drone) are defined

ν2i = T−1i I−1i (τ i −Tiη̇i × IiTiη̇i)−T−1i Ṫiη̇i (34)

Introducing (34) in (21) gives

ν2i = η̈i (35)

Each auxiliary input ν2i acts as a double integrator on
the drone attitude coordinates ηi. A fast convergence is
required on the attitude closed-loop system as the desired
angles are necessary to obtain the convergence on the passive
architecture coordinates (see section IV-A). To ensure also
robustness against model errors, a SMC is defined. Let σi

be the sliding variable for each quadrotor

σi = (η̇i − η̇d
i ) + λ(ηi − ηd

i ) (36)

with λ > 0. The sliding mode control law is defined by

ν2i = η̈
d
i − λ(η̇i − η̇d

i )−Kssign(σi) (37)

where Ks > 0 and the sign(.) function of a n-dimensional
vector σ is the n-dimensional vector s defined by

sj =


1 if σj > 0

0 if σj = 0

−1 if σj < 0

(38)

where sj is the ith element of a vector s. Consider now the
Lyapunov function candidate

Vi = σ
T
i σi (39)

Taking the first time derivative of (39) by considering (35),
(36) and (37), we have

V̇i = −2Ksσ
T
i sign(σi) (40)

V̇i is negative definite for Ks > 0 therefore the stability and
convergence of σi toward zero is ensured. The stability is
also ensured with any bounded disturbances by increasing
the gain Ks. The sliding mode control law ensures that
the manifold σi = 0 is reached in finite time. Once on
the manifold, the convergence of the attitude coordinates ηi

towards the desired one ηd
i is guaranteed by (36) with λ > 0.

One drawback of the sliding mode control is that it
generates chattering on the control inputs. To reduce this
chattering effect, the sign(.) function is replaced by the sat(.)



Parameter Value
Platform mass (kg) 1

Platform inertia matrix (kg.m2)
in frame Fp

0.03 0 0
0 0.03 0
0 0 0.05


Leg mass (kg) 0.6

Leg inertia matrix (kg.m2)
in frame Fli

0.00001 0 0
0 0.01 0
0 0 0.01


Drone mass (kg) 1.5

Drone inertia matrix (kg.m2)
in frame Fi

0.015 0 0
0 0.015 0
0 0 0.03


TABLE I: Mass and inertia parameters for simulation

Passive architecture
coordinates

Error mean
(rad or m) Drone coordinates Error mean

(rad)
x 3.8e− 3 ψ1 4.7e− 4
y 7.2e− 4 θ1 1.3e− 3
z 2.7e− 3 φ1 1.4e− 3
ψ 1.7e− 3 ψ2 4.5e− 4
θ 4.4e− 3 θ2 7.3e− 4
φ 5.0e− 3 φ2 7.8e− 4
q1 7.3e− 3 ψ3 4.5e− 4
q2 5.6e− 3 θ3 5.2e− 4
q3 6.5e− 3 φ3 4.2e− 4

TABLE II: Mean of the absolute value of the filtered error
on each coordinate obtained in simulation

function. The sat(.) function of a n-dimensional vector σ is
the n-dimensional vector s defined by

sj =


1 if σj > ε

σj/ε if |σj | ≤ ε
−1 if σj < −ε

(41)

ε defines a thin boundary layer neighboring the sliding sur-
face. The stability beyond this boundary layer is guaranteed,
and the system remains in this boundary once entering it.

D. Overall control system

The overall control system consists in the inner attitude
and the outer passive architecture control loops, forming
the structure as shown in Fig. 5. The two control systems
determine the twelve input variables u1i, u2i, u3i and u4i
for i = (1, 2, 3). The feedback linearization for the passive
architecture control law takes into account the dynamics
nonlinear behavior of the robot. The sliding mode control
for the attitude control law ensures a fast convergence of the
attitude coordinates and robustness against disturbances.

V. SIMULATION

A simulator has been developed using co-simulation be-
tween the softwares ADAMS and MATLAB/SIMULINK.
A discrete sample time of communication is set at 1kHz
between the two softwares. The geometrical parameters for
the simulation are `OpRi

= 0.1 m and `RiOi
= 0.8 m.

The dynamics parameters are given in Table I. To test
the robustness of the controller against model errors, an
aerodynamic perturbation is implemented. On each drone a
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Fig. 6: Desired trajectory and filtered tracked trajectory in
simulation for successive motions of the passive architecture
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Fig. 7: Desired trajectory and filtered tracked trajectory for
one drone attitude in simulation

perturbation force is defined in local frame by

ai = −Avi (42)

where A is a diagonal friction matrix. The friction coeffi-
cients are the same for each direction (1 kg.s−1). Also, a
white noise of amplitude 10−2 (m or rad) is added to the
robot state measurements.

The coefficients of the control laws defined in section
IV are Kp = 4, Kd = 4, λ = 15, Ks = 10, ε = 1.
Successive trajectories, defined by nine-degrees polynomials
have been designed to test the several degrees-of-freedom
of the robot (translation, rotation of the platform and legs
orientation). Those trajectories and the tracking obtained are
show in Fig. 6. Fig. 7 shows the drone 1 desired attitude
coordinates and the tracking of those coordinates for the
whole simulation. The controller robustly completes the
mission under disturbances and sensor noise. Table II gives
the mean of absolute value of the filtered error for each
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(b) Torque along x2
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(c) Torque along y2
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(d) Torque along z2

Fig. 8: Torque and forces input for drone 2 in simulation

coordinate for the whole simulation.
Figure 8 shows the thrust force and torque inputs on

drone 2 during the whole simulation. The chattering effect
is induced on torques by the high level of noise on the
sensors. The parameter ε acts as a trade-off between stability
and level of chattering effect. A video of the simulation is
available in the attached media content. In this video content,
an example of a task that can be performed by such device
is also illustrated. For this task, the robot has to insert a tool
into a hole and provide a rotation motion about the vertical
axis while maintaining the effector in the hole. This task
illustrates the ability of the system to perform a rotation of
the platform along a direction without any coupling along
the other coordinates.

VI. CONCLUSION

In this paper, a new type of flying robot was proposed.
The robot is composed of three quadrotors linked by a rigid
articulated passive architecture. This new flying robot offers
the ability to control a platform position and orientation in
space, with a high potential to perform aerial operations
from this platform. The study of the dynamic model showed
decoupling properties. Those properties have been exploited
to design a cascaded controller adapted for this new fly-
ing robot. Simulations showed controller performance and
robustness against noisy pose estimation and disturbances.
With a white noise of amplitude 10−2 (m or rad) on the
robot state measurements, the controller showed a mean error
lower than 7.5e − 3 (m or rad) on the passive architecture
coordinates and lower than 1.5e − 3 rad on the orientation
coordinates.

Future work includes exploring the application of recon-
figuration techniques known for parallel robots on the flying
robot to increase its workspace. Thus, more possibilities will

be offered for the relative position of the drones and the
platform. Physical interactions with the environment can also
be explored, leading to applications in aerial manipulation.
Finally, the extension of the theoretical aspects to a general
architecture associated to any number of quadrotors will be
studied. More than three quadrotors will offer redundancy to
control the platform, enhancing the robustness of the whole
system against quadrotor failures and facilitating reconfigu-
ration tasks.
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