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ABSTRACT Genomic selection (GS) is commonly used in livestock and increasingly in plant breeding. Relying
on phenotypes and genotypes of a reference population, GS allows performance prediction for young
individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of
genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding
individuals. In this study, we propose a modification of the reference population composition to mitigate
diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic
interest. This study aims to answer the following questions: how would decisions on the reference population
affect the breeding population, and how to best select individuals to update the reference population and
balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating
strategies for the reference population: random, truncation, and optimal contribution (OC) strategies. OC
maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle popula-
tion with 50K SNP chip genotypes and simulations over 10 generations were used to compare these
different strategies using milk production as the trait of interest. Candidates were selected to update the
reference population. Prediction bias and both genetic merit and diversity were measured. Changes in
the reference population composition slightly affected the breeding population. Optimal contribution
strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the
reference and the breeding populations.
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The development of genomic selection (GS), as described byMeuwissen
et al. (2001), is the most important recent innovation in animal
breeding. In livestock breeding, GS comprises the estimation of geno-
mic estimated breeding values (GEBVs) and the actual selection of
individuals with only genotypes available, e.g., young individuals that
are candidates for selection, based on these GEBVs (Supplemental
Material, Figure S1). A reference population, composed of individuals
with known phenotypes and genotypes based on many markers across
the genome, is used to set up prediction equations and infer GEBVs
of selection candidates. The main advantages of GS, compared to the
traditionalmethods based on phenotype and pedigree, are that generation
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intervals are reduced since phenotypes of mature progenies are no longer
needed to perform genetic evaluation. Second, selection can still be
performed with the same accuracy as classical selection. Lastly, it
allows selection for new traits that are difficult and costly to record
(Meuwissen et al. 2001; Calus and Veerkamp 2011). Despite the
confirmed advantages, most of the knowledge on the long-term
impact of GS is based on simulation studies [e.g., Colleau et al.
(2009), Jannink (2010), Bastiaansen et al. (2012), and Clark et al.
(2013)] and many questions remain concerning its use. In particular
about the design of the reference population: howmany individuals are
needed (Pszczola et al. 2011; Khatkar et al. 2012; Pryce and Daetwyler
2012), how often should marker effects be reestimated (Calus 2010;
Heslot et al. 2013), how closely related should individuals in the
reference population be to the selection candidates (Pszczola et al.
2012a; Meuwissen et al. 2013), and which individuals should be
used to update the reference population (Rincent et al. 2012;
Isidro et al. 2015)?

Many livestock breeds have high inbreeding rates and low genetic
diversity as a result of intensive selection (Leroy et al. 2011). Limited
genetic diversity restricts the potential long-term genetic gain of the
populations (Li et al. 2008; Goddard 2009; Jannink 2010; Engelsma
et al. 2012; Liu 2013; Henryon et al. 2014) and reduces their ability
to respond to new challenges (Toro et al. 2009; Allendorf et al. 2010;
Stock and Reents 2013; Bruford et al. 2015). To allow for long-term
maintenance, individuals representing the overall population’s diversity
need to be used for breeding (Rincent et al. 2012; Heslot et al. 2013;
Isidro et al. 2015). Different strategies have been previously suggested:
(1) limiting the number of offspring per male to avoid the sire “star
system” (Danchin-Burge et al. 2012; Boichard et al. 2015), (2) distin-
guishing individuals according to the marker variation they carry and
giving extra weight to the low-frequency favorable markers (Jannink
2010), or (3) choose individuals to represent the highest overall pop-
ulation diversity (Meuwissen 1997; Rincent et al. 2012; Heslot et al.
2013). One of the available methods developed for such a goal is the
optimal contribution (OC) strategy, as defined by Meuwissen (1997).
The OC strategy can be used to simultaneously conserve genetic di-
versity and achieve genetic gain by minimizing the relationships be-
tween the individuals (Engelsma et al. 2011; Sonesson et al. 2012; Clark
et al. 2013; de Cara et al. 2013; Eynard et al. 2016). The effectiveness of
these methods relies on the final choice of the breeding individuals. In
the case of dairy cattle, such strategies to conserve overall population
genetic diversity may be insufficiently used in the context of competitive
economical markets promoting the use of elite reproducers. Methods
implicitly driving selection toward both genetic gain and the main-
tenance of genetic diversity may be an alternative. With the design of
the reference population there is the potential to modify the breed-
ing population by changing the genetic evaluation.

In this study, we addressed the following question: how does one
choose individuals to update the reference population of aGS scheme in
order to balance genetic gain and genetic diversity? We anticipate that
changes in the compositionof the referencepopulationwill be associated
with changes in the breeding population due to adjustments of the
prediction equations for GS. To test this hypothesis, we compared three
different strategies (random, truncation, and OC) to select individuals
for theupdate of the referencepopulation.Using a real data set of French
dairy cattle (Montbéliarde), we focused on the effect of updating strat-
egies on the population of selected candidates. Using simulations, we
inferred the long-term effect of these updating strategies on the breed-
ing population. For both real and simulated data sets, updating strat-
egies were evaluated in terms of genetic merit, genetic diversity, and
performances of GS.

MATERIALS AND METHODS

Real data set
Apopulation of 14,052 individuals from the FrenchMontbéliarde dairy
cattle breed, 2459 males and 11,593 females, born between 1969 and
2011 was available for the analysis. The complete pedigree record con-
tained 50,852 individuals born from the 1940s until 2011. All individ-
uals had, at the very least, complete pedigree records for their parental
generation with a maximum of seven complete generations. The gen-
eration equivalents [sum of the proportion of known ancestors in all
available generations (Maignel et al. 1996)] ranged from two to nine.
For all individuals 50K SNP genotypes were available. Males were
genotyped using the BovineSNP50 v2 BeadChip (Illumina) and females
were genotyped using the 10K SNP chip (Illumina) and subsequently
imputed, by Hoze et al. (2013), to the BovineSNP50 v2 BeadChip
using the BEAGLE software (Browning and Browning 2007). The
software DAGPHASE (Druet and Georges 2010) was used for phas-
ing. Subsequent quality control steps were required for each SNP: (i)
a minimum call rate . 90%, (ii) nondeparture from Hardy–Weinberg
equilibrium (p-values , 1024), and (iii) MAF . 1%, to minimize po-
tential genotyping errors. The final genotype data comprised 43,801
markers genotyped on the 29 autosomes. In this study, we focused on
milk yield having heritability of 0.3, a genetic variance of 423,390 kg2,
and a residual variance of 987,910 kg2. Milk yield was measured as
the corrected milk yield for the females with, on average, 1.66 re-
cords per female. For the progeny-tested males, milk yield was mea-
sured as daughter yield deviation, reflecting the average milk yield of
their daughters adjusted for fixed and nongenetic random effects
and the additive genetic value of their dam (Mrode and Swanson 2004).
Weights used for male records were defined as effective daughters’
contribution (Fikse and Banos 2001) and were on average 26.21. The
data set was divided into three groups according to individuals’ birth
years. The first group included 5969 individuals (2325 males and
3644 females) born between 1969 and 2007 and was used as the initial
reference population for GS (A1). The second group included 3791 in-
dividuals (134 males and 3657 females) born in 2008 and 2009, and
those individuals were considered to be available to be added to the
updated reference population (A2). The third group included 4292 in-
dividuals (all females) born in 2010 and 2011, and was used for
validation of the GS (V) (Figure S2).

Simulation process
We simulated a population with characteristics similar to a domestic
cattle population and a trait similar to milk yield. An ancestral pop-
ulation of 1000 males and 1000 females that had undergone selection
based on estimated breeding values (EBVs) estimated from a best linear
unbiasedprediction(BLUP)methodwasusedas the startingpointofour
simulations. Next, 10 more generations of selection and breeding were
simulated. In every generation, the 150 males and 500 females from the
previous generations with the highest GEBVs were selected to produce
the next generation n + 1 (a selection rate of 0.6 for the males, of 1 for
the females from the generation n, and of 0.5 for the females from the
generation n 2 1). Males could reproduce for one generation while
females could produce offspring in multiple generations assuming that
their GEBVs were high enough. We assumed that selection excluded
them from the population after 2 yr. Each female produced one off-
spring per generation and the sex ratio in the offspring generation was
0.5 (Figure 1). The simulated design is simpler than what occurs in a
real breeding scheme. Simulations were performed using QMSim
(Sargolzaei and Schenkel 2009). Details of the simulation process are
provided in Supplemental Material (File S1).
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Genomic best linear unbiased prediction (GBLUP)
To investigate the impact of an update to the reference population on
GS in terms of subsequent predicted GEBVs, we used both real and
simulated data sets. The real data set allowed us to study the impact of
reference population updating strategies on the choice of breeding
individuals for the next generation only. Simulations were used to study
the impact on the breeding population over multiple generations.
GEBVs were predicted by a GBLUP model fitted with GS3 software
(Legarra et al. 2011). For the GBLUP model (Croiseau et al. 2011): (i)
the estimated relationship matrix was calculated according to the
VanRaden (2008) equation G ¼ ZZ9=2

Pm
i¼1 pið12 piÞ, where Z is

the genotype matrix and pi the allele frequency of marker i, (ii) the
variance components for this trait were the ones used in the routine
evaluation in France and were fixed in themodel, and (iii) only random
effects were fitted as the phenotypes used were already corrected for
fixed effects and nongenetic random effects.

Reference population update
Three updating strategies were compared: (1) selection at random
(Random) repeated 100 independent times, (2) truncation selection
based on the highest GEBVs (Sel), and (3) selection to simultaneously
maximize the genetic diversity and the genetic merit of the group of
selected individuals (SelDiv) using the OC strategy and the Gencont
program (Meuwissen 1997). The genetic merit of a set of selected
individuals is the average breeding value (BV) of the selected individ-
uals. The rate of inbreeding (ΔF) between the current and next
generation is estimated from the average genomic relationships of
selected individuals. The OC method identifies a set of individuals
with maximum genetic merit with the restriction that the expected
rate of inbreeding is no. 1%, as recommended by the FAO (1998).
If the given constraint of 1% cannot be met because of population
structure, then the choice of individuals is made to minimize the rate
of inbreeding and genetic merit is effectively not considered. The
SelDiv strategy used genomic relationships, computed as similarities
that count the number of identical alleles, averaged across loci
between two individuals (Nejati-Javaremi et al. 1997; Eding and
Meuwissen 2001):

Gjk ¼
2
N

X
i

ðxij21Þðxik21Þ

where N is the number of markers and Gjk is the estimated relation-
ship between individual j and k across all markers. At each marker, i,
xi is the individual variant genotype coded as 0, 1, or 2. Note that
computing these relationships using the methods described by
VanRaden (2008) and Yang et al. (2010), assuming allele frequencies
of 0.5 for all loci, yields exactly the same result. This relationship
matrix has been shown to reduce the loss of overall genetic diversity
better than other relationship matrices when applying the OC strat-
egy (Eynard et al. 2016).

Update of reference population in real data sets: The initial reference
population (A1) was used to predict GEBVs of the individuals in the
candidates’ population (A2). Using these GEBVs and the relationships
between individuals in A1 and A2, we selected subgroups of individuals
to build updated reference populations (A1+2) For all strategies (Random,
Sel, and SelDiv), the initial reference population (A1) of 5969 individ-
uals was updated with 100, 200, 500, 1000, or 2000 new individuals,
which represented adding�1.5, 3, 8, 15, and 30% to the initial reference
population, respectively. The updated reference populations (A1+2)
were used to predict GEBVs of the candidates’ groupV. Based on their

GEBVs, the top 100 individuals from V were selected as breeding pop-
ulations, Vsel. A detailed review of all results is available in Table S1
in File S2.

Update of reference population in simulated data sets: The initial
reference population (A1) consisted of 1000 males from the ancestral
individuals and was updated every generation by adding 150 indi-
viduals, males and/or females, selected based on one of the proposed
strategies (Random, Sel, and SelDiv). The size of the reference pop-
ulation therefore rose from 1000 in the first generation to 2350 in-
dividuals in the 10th generation. In each generation, the reference
population was updated based on GEBVs from the candidates’ popu-
lation, and subsequently used for prediction of GEBVs of the simulated
offspring. Therefore, individuals in the reference population could
be included as part of the breeding population provided that they
had been selected for breeding based on their GEBVs. The whole
simulation and updating process was replicated 50 times for each
strategy.

Evaluation of updating strategies
To compare the different updating strategies, several parameters
were evaluated for the selected candidates’ population (Vsel, top
100 individuals) in the real data set and for the breeding population
in the simulated data set. Those parameters included: (i) the re-
sponse to selection, (ii) the genetic diversity, (iii) prediction bias,
and (iv) the effective population size of the reference population.
Response to selection was measured as the change in average
BV. Genetic diversity was measured as: (i) observed heterozygosity
and (ii) the inbreeding coefficient obtained from pedigree follow-
ing the Sargolzaei et al. (2005) algorithm. The bias of GEBV was
measured by the absolute standardized prediction errors for the
BV as follows:

Biask¼
����GEBVk 2BVk

sGi

����;
where GEBVk is the GEBV of the individual k, BVk is the BV (based
on multiple records in the real data set or given by the simulations in
the form of a true BV) of the individual k, and sG is the true BV SD of
the population under scrutiny i. The effective population size of the
reference population, Ne, was also estimated following the classical
formula derived from the inbreeding coefficient definition (Falconer
and Mackay 1996):

Ne¼ 1
2 � ft ;

with ft representing the mean inbreeding coefficient of the population
in the tth generation.

The effects of the differentupdating strategies onBV,heterozygosity,
inbreeding, and prediction bias were tested using linear models imple-
mented in R and the lme4 package (Bates et al. 2015; R Core Team
2016), considering the random strategy as the null hypothesis distri-
bution. When dealing with heterozygosity or inbreeding, an arcsine-
square root transformation was applied to ensure the applicability of
linear models. The effects of strategy and the size of the update were
tested using a type II ANOVA [R package car (Fox and Weisberg
2011)]. Coefficients of change throughout generations were compared
using least square means for qualitative variables and least square
trends to compare regression slopes for quantitative variables [R pack-
age lsmeans (Lenth 2016)].
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For the real data set, linear models were applied on the candidates’
populations as follows,

Yijk ¼mþ strategyi þ update sizej

þ ðstrategy · update sizeÞij
þ b1

�
Ne

N

�
ij
þeijk;

where Yijk is the variable measured on individual k, for strategy
i (Random, Sel, or SelDiv), when adding update sizej; number of
individuals added to the reference population, fitted here as a quali-
tative effect (100, 200, 500, 1000, or 2000). b1 is the regression co-
efficient on the ratio Ne=N of the reference population (with N the
census population size) and eijkis the Gaussian residual. For simulated
data sets, we focused on the breeding and offspring populations using
the following mixed effects models,

Yilk¼mþstrategyiþ b2;i

�
generationl

�
þ ai

�
generationl

���strategyi�

þ b1

�
Ne

N

�
il
þSimlþ eilk;

Siml� Nðm¼0;s2
simÞ;

where Yilk is the variable measured on individual k, for the strategy i,
in generation l of simulation, b2;i the regression coefficient on the
generation number for strategy i, ai is the interaction effect of method
with generation, and Siml was the random effect of the simulation
where s2

sim represented the data variability among simulation repli-
cates and eijk the gaussian residuals. The ratio Ne=N of the reference
population was used in the model to account for the effect of the
change in reference population size through time while accounting for
a parallel growth of census population size. This allows one to distinguish

between the increases in size over time from the cumulative effect due to
consecutive population changes over the 10 generations.

Data availability
Genetic information (in the form of a G-matrix), pedigree (for the
individuals under scrutiny), and BV for the trait of interest are available
for the real data set, as well as the script allowing the production of the
simulated data sets and documents describing each file for real and
simulated data sets on the following depository: doi.org/10.5281/
zenodo.1066566.

RESULTS

Effect of updating strategy on selected candidates (real
data sets)

Genetic merit of the selected candidates: Individual BVs in Vsel

exhibited large variability and ranged from 461 to 5674. Average BV
of Vsel populations, across all combinations of strategies and the size of
updates, ranged from 3153.56 to 3185.63 (6 5.21), thus revealing lim-
ited variation in genetic gain between different strategies to update the
reference population. Even though none of these differences were sig-
nificant, genetic merit tended to increase when increasing the size of the
group used to update the reference population.

Genetic diversity of the selected candidates: Individuals’ inbreeding
ranged from 0.02 to 0.11. Over all combinations of strategies and
size of updates, per Vsel, the inbreeding coefficients were all on average
0.05 (6 1.14 · 1024) and not significantly different from each other.
Individuals’ heterozygosity ranged from 0.28 to 0.33, and average
populations’ heterozygosities were all close to the mean value of 0.31
(6 5.65 · 1025) and not significantly different across scenarios.

Precision of GEBV prediction procedure: The prediction bias of
GEBVs of the full candidates’ population, V, ranged from 0.00 to 7.73,

Figure 1 Simulation design. This figure represents the
scheme used for simulations. The highlighted boxes
represent the population under consideration. The green
arrows inform on the selection decision. G, genotype;
GEBV, genomic estimated breeding value; P, phenotype;
Pred. P, predicted phenotype.
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indicating substantial disparity in how well individuals’ GEBVs are pre-
dicted. Across all combinations of strategies and size of updates, average
absolute bias of GEBV ranged from 1.05 to 1.08 (6 0.01) without any
significant difference among them (Table 1).

Overall, no significant differences could be observed between the
three tested strategies when considering the top 100 candidates for
selection.

Long-term effect of updating strategy on breeding
population (simulated data sets)

Genetic merit of the breeding population: The average BV of the
breeding population always increased from one generation to the next.
Despite the fact that strategy significantly affected the realized genetic
merit (all p-values , 1025, Table S3 in File S2), the actual differences
between the Sel, SelDiv, and Random strategies were very modest (Fig-
ure 2, Table S2 in File S2, and Table 2).

Genetic diversity of the breeding population: Whatever the strategy,
the inbreeding coefficient increased from one generation to the next.
Despite large SE (Figure 2), the increase in inbreeding coefficients
throughout the 10 generations appeared to be significantly slower for
SelDiv than for the two other strategies (Table 2). Inbreeding level
was significantly associated with both generation number and Ne=N
(p-values , 10216, Table S3 in File S2). Both an increase in gener-
ation number and a decrease in Ne=N was associated with an in-
crease of the average population inbreeding. After the fourth
generation, the SelDiv strategy resulted in higher heterozygosity than
the Sel or Random strategies (Figure 2) due to a slower decrease over
generations (Table 2). All the parameters—strategy (p-value = 1.12 · 1022),
Ne=N (p-value = 1.26 · 1026), generation number, and the interac-
tion between strategy and generation (both with p-values , 10216)—
significantly affected the heterozygosity (Table S3 in File S2). The effect
ofNe=N was positive; an increase inNe=N caused an increase in average
heterozygosity of the population. Average heterozygosity decreased
from one generation to the next faster for the Random and Sel strategies
than for SelDiv.

Precision of GEBV prediction procedure: For all generations, on
average the Sel strategy, and even more the SelDiv strategy, resulted
in lower prediction bias of the offspring’s GEBVs than the Random
strategy (Table S2 in File S2). The parameters strategy, generation
number, interaction between strategy and generation, and Ne=N
significantly affected prediction bias, with p-values , 10210 (Table
S3 in File S2). The Random, Sel, and SelDiv strategies were signif-
icantly different from each other (Table 2). A shift was observed at
the fourth generation, with the Random strategy having the largest
bias, whereas the SelDiv strategy had the lowest bias (Figure 2).
Despite the apparently chaotic behavior of this variable, prediction
bias tended to increase over time faster for the Random and Sel
strategies than SelDiv. The small effect of Ne=N on the prediction
bias is presumably due to the decline in relationships between ref-
erence and candidate populations through time, as a result of the
constant addition of new individuals without the removal of older
ones.

To summarize, the results above show that different strategies to
update the reference population have a significant, but small, impact
on the breeding population. The SelDiv strategy resulted in slightly
higher genetic diversity in the breeding population accompanied by
a minor impact on the genetic gain and lower long-term prediction
bias. n
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DISCUSSION
In this study,wecomparedthe impactofdifferent strategies toupdate the
reference population in a GS framework on the genetic merit and
diversity of the resulting breeding population. Optimizing the updating
strategy is especially important in artificial selection based on the
genotypes of individuals at an early age. This is because phenotyping
is the limiting factor due to the time and money investment for the
rearing of the individuals (Colleau et al. 2009; Konig et al. 2009). It is
also relevant when both phenotypes and genotypes are available, but
only a fraction can be included in the reference population, for example,
when designing a core collection in plant breeding (Rincent et al. 2012;
Isidro et al. 2015). In GS, reference population design and breeding
decisions are linked through GEBVs of selection candidates. Our hypoth-
esis was that the choice of individuals in building the reference population

might impact the GEBVs of selection candidates and, consequently, the
breeding population, both in terms of genetic gain and diversity.

Long-term impact of updating strategy on the
breeding population
Analysis based on a single generation in the real data set did not show
significant differences between the three proposed updating strategies;
however, analysis based on simulated data sets over 10 generations
did show significant effects of the updating strategy on the breeding
populations over time. A small beneficial response of the truncation
strategywasobserved for geneticmerit,while theOCstrategyperformed
best at conserving genetic diversity.

A recent study by De Beukelaer et al. (2017) focused on the similar
question of how to balance genetic gain and genetic diversity conser-
vation in populations under selection. The authors used simulations to

Figure 2 Evolution of genetic merit, performance of genomic selection, and genetic diversity over 10 generations of simulations for different
update strategies. The four plots represent the average genetic merit of the breeding populations (top left), average prediction bias of genomic
estimated breeding values of the offspring populations (top right), the average inbreeding (bottom left), and the average heterozygosity (bottom
right) of the breeding populations over 10 generations of selection. For the three update strategies Random (gray circle), Sel (magenta triangles),
and SelDiv (blue squares), the average values and SE are represented. Random, selection at random repeated 100 independent times; Sel,
truncation selection based on the highest genomic estimated breeding values; SelDiv, selection to simultaneously maximize the genetic diversity
and the genetic merit of the group of selected individuals using the optimal contribution strategy and the Gencont program.
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compare established selection strategies: GS including OC (GOCS) and
GS weighting for rare alleles (GSW) for long-term genetic diversity
conservation in plant breeding. Even though both GOCS and GSW
outperformed GS for long-term genetic gain, they were not successful
in controlling inbreeding rate and loss of rare variants in the breeding
population. These authors proposed two new strategies combining an
index-basedmethod and expected heterozygosity or rare allele frequen-
cies as alternatives outperforming GS, GOCS, and GSW in balancing
genetic gain and diversity. These methods require further investigation
to confirm their benefits in practice but could be of potential interest to
answer the questions we raised in this study.

Approaches proposed in plant breeding to design reference pop-
ulations representing population structure and diversity (Laloe 1993;
Rincent et al. 2012; Isidro et al. 2015; Bartholomé et al. 2016) could also
be alternatives in the context of animal breeding. In fact, the current
concerns of how to best design reference populations by targeting only
relevant individuals is also now of interest in animal breeding due to the
increasing availability of individual information both for phenotypes
and genotypes. The data on livestock reference populations are now far
more comprehensive and should enable choices regarding which indi-
viduals should be present in reference populations to take place. There-
fore, methods used in plant breeding, mostly to design core collections,
may be of interest to animal breeders.

Potential implications for animal breeding
In practice, breeding decisions are mainly based on the genetic merit of
individuals. This is because breeders’ incomes come from production.
This phenomenon is putting small breeds in a difficult situation, in a
market mostly dominated by mainstream breeds, because of their lim-
ited population size, high inbreeding rates, and lower fitness potential
(Toro et al. 2009; Allendorf et al. 2010; Pryce and Daetwyler 2012).
Livestock breeding has to balance the conservation of genetic diversity
against genetic gain. Within GS, the adoption of alternative selection
strategies, such as OC, is not common in practice. Acting on the ref-
erence population to directly mitigate the loss of genetic diversity of the
breeding population, while only marginally affecting the genetic gain
over generations, is a promising way to incorporate genetic diversity
into breeding programs. Indeed, current methods to cope with the loss

of genetic diversity mainly deal with the choice of which individuals to
keep in the breeding population according to their estimated perfor-
mances. On the one hand, direct selection of breeding individuals has
the advantage of having a strong impact on both the level of genetic
diversity and genetic gain, depending on themethod used. On the other
hand, it relies on the choice of the breeders and is thus not systematic.
Here, we propose an integrated method to cope with genetic diversity
at the genetic evaluation level, making it systematically incorporated.
Thus, even if its impact on the conservation of genetic diversity is
weaker than direct choices in the short-term, it potentially has a more
consistent impact on a long-term basis. We expect that in the ideal case
of operating on both the reference and breeding population, the effect
observed would be further amplified and thus have an important im-
pact on genetic diversity conservation.

Limitations and perspectives of the study
The 50K SNP chip is routinely used inGSbecause of its low cost and fair
performance for genetic gain. Several studies cautioned that the accuracy
of prediction in GS when using whole-genome sequencing (WGS) was,
at best, marginally higher than of the SNP chips (van Binsbergen et al.
2015; Calus et al. 2016; Lund et al. 2016; van den Berg et al. 2016; Ni
et al. 2017). Still, we can hypothesize that using WGS or genotypes of
higher density could favor larger differences in genetic diversity con-
served between the described scenarios. This may be especially true in
the case of rare variant sites, since they are underrepresented in the SNP
chip compared to WGS (Eynard et al. 2015, 2016). Using WGS could
enable the OC strategy to better conserve rare variants during updates
of the reference population.

Prediction bias appeared to be smaller in the case of the OC strategy
compared to the other two strategies. Increasing the genetic diversity of
the reference population increased our representation of the overall
population diversity and seemed to lead to slightlymore accurate overall
prediction. This is potentially thanks to an improved prediction of
“outsider” variants. Additionally, particular attention should be paid to
how many and which individuals should be removed. In fact, bias was
first reduced by the addition of specifically selected individuals
(Pszczola et al. 2012b). However, after some generations, adding indi-
viduals elevated the prediction bias. This is probably due to the lack of a

n Table 2 Trends of changes throughout the 10 generations of simulation for each of the three updating strategies and four variables

Generation Trend SE 95% C.I.

Breeding value
Sel 173.77 7.07 · 1021 172.38 to 175.15
SelDiv 167.69 7.05 · 1021 166.30 to 169.07
Random 167.93 7.07 · 1021 166.55 to 169.32

Prediction bias
Sel 4.03 · 1022 1.30 · 1023 3.77 · 1022 to 4.28 · 1022

SelDiv 3.40 · 1022 1.29 · 1023 3.14 · 1022 to 3.65 · 1022

Random 6.57 · 1022 1.30 · 1023 6.31 · 1022 to 6.82 · 1022

Inbreeding
Sel 1.19 · 1023 2.96 · 1025 1.13 · 1023 to 1.24 · 1023

SelDiv 1.14 · 1023 2.96 · 1025 1.08 · 1023 to 1.20 · 1023

Random 1.16 · 1023 2.96 · 1025 1.10 · 1023 to 1.22 · 1023

Observed
heterozygosity

Sel 22.10 · 1023 2.17 · 1025 22.14 · 1023 to 22.06 · 1023

SelDiv 22.02 · 1023 2.16 · 1025 22.06 · 1023 to 21.97 · 1023

Random 22.33 · 1023 2.17 · 1025 22.38 · 1023 to 22.29 · 1023

Random, selection at random repeated 100 independent times; Sel, truncation selection based on the highest genomic estimated breeding values; SelDiv, selection
to simultaneously maximize the genetic diversity and the genetic merit of the group of selected individuals using the optimal contribution strategy and the Gencont
program.
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relationship between the old individuals of the reference population
and the candidates for selection. There is a need for further investiga-
tion in order to give recommendations as to the best updating strategy
for reference populations, accounting for the addition and removal of
individuals. Finally, our study is based on milk production, a trait of
major interest in current livestock, with moderate heritability (0.3) that
is similar to the those of composite index traits that represent the entire
breeding goal. An important question is how results would change
when the heritability is lower, because GS is especially appealing for
low-heritability traits. Using a lower heritability, while leaving the ref-
erence population size unchanged, would have yielded lower prediction
accuracies and also smaller differences between scenarios. A lower
accuracy means that more emphasis is put on information from rela-
tives, such that the EBV of relatives becomes more correlated and thus
selected individuals are more likely to be related. This would result in
conserving less genetic diversity and more inbreeding depression. In-
creasing the size of the reference population could counteract these
effects of a low-heritability trait, because it would increase the accuracy
(Daetwyler et al. 2010). This is provided that increasing the refer-
ence population is possible given, for example, the size of the actual
population.

Conclusions
The aim of this study was to investigate ways to reduce the loss of
genetic diversity in GS breeding programs. The choice of individuals
to be phenotyped and/or added to the reference population appeared
to modestly impact the genetic gain and genetic diversity of the
breeding population. The use of the OC strategy, taking into account
both the relationships and performances of the individuals, to up-
date the reference population: (i) allowed for better conservation of
genetic diversity in the breeding population, (ii) predicted more
accurate BV, and (iii) had only minor repercussions on the genetic
gain. The results of this study support the use of the OC strategy as a
way to update the reference population, especially for breeds in need
of diversity conservation wanting to implement long-term GS pro-
grams. Making changes in the composition of the reference pop-
ulation impacted the breedingpopulation characteristics and enabled
the incorporation of genetic diversity in GS without revising farmers’
practices.
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