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Résumé – Dans cet article, nous nous concentrons sur de nouveaux schémas de population Monte Carlo présentant une flexibilité et des
performance supérieures par rapport à l’approche standard. Ces nouveaux schémas combinent différentes stratégies de pondération et de
rééchantillonnage afin d’obtenir des performances plus efficaces au prix d’un incrément de complexité de calcul raisonnable. Les simula-
tions numeriques comparent les différentes alternatives lorsqu’elles sont appliquées au problème d’estimation de fréquence pour des sinusoı̈des
superposées.

Abstract – In this paper we focus on novel population Monte Carlo schemes that present added flexibility and superior performance compared
to the standard approach. The new schemes combine different weighting and resampling strategies to achieve more efficient performance at the
cost of a reasonable computational complexity increment. Computer simulations compare the different alternatives when applied to the problem
of frequency estimation in superimposed sinusoids.

1 Introduction

Many practical statistical signal processing problems demand
the use of Monte Carlo (MC) techniques for drawing random
samples from probability distributions with non-standard forms
in order to approximate intractable integrals [1, 2]. Among the
MC methodologies, importance sampling (IS) and Markov chain
Monte Carlo (MCMC) algorithms are two of the most popular
approaches [3, 4, 5]. The MC methods generate samples from
a proposal probability density function (pdf) and use them in
order to approximate the target pdf (e.g. in Bayesian inference
the target is the posterior distribution). The performance of the
MC methods typically depends on the discrepancy between the
proposal and target pdfs. The key problem is that good propo-
sal functions are very hard to choose in advance, and adaptive
procedures must be performed [6, 7, 8].

Adaptive importance sampling (AIS) algorithms have recei-
ved a particular attention in recent years [9, 10, 11, ?, 12]. The
reason is that, with these algorithms, the proposal pdf is adap-
ted online in order to reduce the mismatch (according to some
discrepancy measure) with the target density. Moreover, the
consistency of AIS schemes is easily guaranteed under weak IS
conditions [1, 2, 6, 8], unlike adaptive MCMC (A-MCMC) al-
gorithms where a careful theoretical study must be considered
[13, 7, 14, 15]. Additionally, with AIS methods, it is possible to
easily estimate the normalizing constant of the posterior target

distribution (also called Bayesian evidence or marginal likeli-
hood) [1, 2, 6]. This quantity is particularly useful, for instance,
in model selection problems [16, 17].

The population Monte Carlo (PMC) methods are a speci-
fic family of AIS algorithms [18, 19, 20] used in a variety of
problems such as missing data, tracking, or biological applica-
tions, among others [21, 16]. One important feature of the PMC
algorithms is the use of the resampling step for adapting the
proposal pdfs. The resampling is a fast, often dimensionality-
free, procedure. However, the resampling schemes present some
important drawbacks, such as the sample impoverishment.

In this work, we describe a generic and novel framework for
PMC methodologies that generalizes the standard scheme [18].
Moreover, the new framework is presented under a flexible
structure that can result in novel PMC algorithms with alterna-
tive weighting and resampling strategies [22]. Here we provide
novel PMC algorithms, while some others will be discussed in
future works.

The paper is structured as follows. Next section introduces
the problem statement and Section 3 an overview of the stan-
dard PMC method. Section 4 discusses the proposed method
with alternative novel weighting and resampling schemes. Fi-
nally, Section 5 presents some numerical results that show the
validity of the new approach and the last section concludes the
paper with closing remarks and a discussion about possible im-
provements of the method.



2 Problem formulation
In many applications, the goal consists of computing some

moment of the r.v. X, that is distributed according to a possibly
complicated pdf, π̃(x). The moment of interest is

I =

∫
X
f(x)π̃(x)dx =

1

Z

∫
X
f(x)π(x)dx, (1)

where f can be any integrable function w.r.t. π(x). In many
scenarios, Eq. (1) cannot be computed or the target pdf can be
evaluated only up to a constant. In that case, the target pdf can
be expressed as π̃(x) = π(x)

Z , where π(x) is the unnormalized
target function that can be evaluated and Z is the unknown par-
tition function. Due to the aforementioned difficulties, Eq. (1)
cannot be generally computed and Monte Carlo methods are
used to approximate the moment of interest, I .

3 Standard population Monte Carlo
The PMC algorithm was proposed in [18] and constitutes a

possible implementation of the AIS methodology. For sake of
conciseness, we introduce a generic PMC algorithm in Table
1 that allows us to present first the standard PMC of [18], and
later the novel modifications proposed in this paper.

In the standard PMC, the parameters ofN proposal densities
are initialized. In particular, location parameters {µ(1)

i }Ni=1 will
be adapted, while the parameters {Ci}Ni=1 are static (e.g., with
Gaussian proposal densities, the location and the static parame-
ters are the mean vectors and the covariance matrices, respec-
tively). The standard PMC works as follows. At each iteration,
in Eq. (2), exactly K = 1 sample is drawn from each proposal,
and its weight is computed in Eq. (3). In the standard PMC,

this weight is w(t)
i =

π(x
(t)
i )

q
(t)
i (x

(t)
i |µ(t)

i ,Ci)
, i = 1, . . . , N . The N

location parameters for the next iteration are i.i.d. drawn from
the random measure π̂Nt (x) =

∑N
i=1 w̄

(t)
i δ(x− x

(t)
i ).

The standard PMC algorithm presents some drawbacks. For
instance, the aforementioned standard IS weights have been
shown to be suboptimal in terms of variance of the IS estimator
[23]. Moreover, the standard PMC suffers from sample degene-
racy problems, which can seriously affect the diversity [20, 22].

4 Alternative population Monte Carlo
Table 1 describes the novel framework, and here we sum-

marize the differences w.r.t. the standard PMC. First, note that
more than one sample per proposal can be drawn in Eq. (2).
The advantage of this strategy is that proposals in good areas
have several opportunities to draw samples with larger weights,
which increases the survival chances of those proposals. Se-
cond, different IS weights can be used in Eq. (3). Finally, note
in steps 2(c)-(e) of Table 1, different resampling schemes can
be performed for adapting the parameters. In particular, the
NK samples at each iteration are clustered into Mt disjoint

TABLE 1 – Generic Population Monte Carlo.

1. [Initialization] : Select the adaptiveP(1) = {µ(1)
1 , ...,µ

(1)
N } and

the static parameters, {Ci}Ni=1 of the N proposals.

2. [For t = 1 to T ] :

(a) Draw K samples from each proposal pdf,

x
(t)
i,k ∼ q

(t)
i (x|µ(t)

i ,Ci), (2)

with i = 1, . . . , N and k = 1, . . . ,K.

(b) Compute the importance weights,

w
(t)
i,k =

π(x
(t)
i,k)

Φ
(t)
i,k(x

(t)
i,k)

, (3)

where Φ
(t)
i,k is a suitable function (see Section 4).

(c) Choose a partition of the bidimensional set {1, . . . , N} ×
{1, . . . ,K}, formed byMt disjoint subsets of pairs of indices
Sm = {im,r, km,r}Rm

r=1 of samples, i.e.,

S1 ∪ S2 ∪ . . . ∪ SMt = {1, . . . , N} × {1, . . . ,K},

and clearly
∑Mt

m=1Rm = NK (note that |Sm| = Rm).

(d) Compute the normalized weights in each subset, i.e.,

w̄
(t)
i,k =

w
(t)
i,k∑

{j,h}∈Sm

w
(t)
j,h

, {i, k} ∈ Sm, (4)

and m = 1, . . . ,Mt.

(e) Considering the subset of particles Xm = {x(t)
i,k} with

{i, k} ∈ Sm, generate N new parameters µ(t+1)
i drawing

i.i.d. samples within each set Xm according to the normalized
weights w̄(t)

i,k , for each {i, k} ∈ Sm and m = 1, . . . ,Mt.

3. [Output, t = T ] : Return the pairs {x(t)
i,k, w

(t)
i,k}, for i =

1, . . . , N , k = 1, . . . ,K and t = 1, . . . , T .

sets, and the resampling step is performed at each subset. Be-
low, we present alternative IS weighting schemes and two spe-
cific ways of performing the partition. Note the parallelism
with the static partial multiple IS approach proposed in [24].

4.1 Alternative weighting schemes
Note that the IS weights of the standard PMC imply that

Φi,k = qi in Eq. (3). However, when multiple proposals are
available, many choices of Φi,k can be used (see [23, Section
4] for a detailed explanation). In particular, the so-called deter-
ministic mixture (DM) weights present the best performance in
terms of the variance of the estimators [23, Theorem 1, Theo-
rem 2]. Therefore, we propose to use the weights

w
(t)
i,k =

π(x
(t)
i,k)

1
N

∑N
j=1 q

(t)
j (x

(t)
i,k|µ

(t)
j ,Cj)

, (5)

i.e., Φi,k(x) = 1
N

∑N
j=1 q

(t)
j (x|µ(t)

j ,Cj) is the mixture of the
N proposals. WithK = 1 and the trivial partition of all samples
in the same set, the method is called deterministic mixture PMC
(DM-PMC).



4.2 Alternative resampling schemes

While the description of the generic framework of Table 1 is
very flexible, here we provide specific examples where all sub-
sets have the same number of elements. Figure 1 illustrates two
different resampling schemes. For each scheme, we indicate
with a box the elements that participate in the corresponding
resampling strategy.

4.2.1 Global resampling (GR-PMC)

The location parameters of next iteration are i.i.d. sampled
from the the set of all KN samples given by

X (t) = {x(t)
1,1, ...,x

(t)
1,K , ...,x

(t)
N,1, ...,x

(t)
N,K}

with probabilities corresponding to the associated normalized
weights

w̄
(t)
i,k =

w
(t)
i,k∑N

j=1

∑K
`=1 w

(t)
j,`

(6)

for i = 1, ..., N and k = 1, ...,K.

4.2.2 Local resampling (LR-PMC)

Under this scheme, the µ(t+1)
i is resampled from the set of

K samples generated by the proposal located at µ(t)
i , i.e., from

the set
X (t)
i = {x(t)

i,1, ...,x
(t)
i,K} (7)

using the multinomial probability mass function with probabi-
lities

w̄
(t)
i,k =

w
(t)
i,k∑N

`=1 w
(t)
i,`

, k = 1, . . . ,K. (8)

wherew(t)
i,k denote the unnormalized weights. Therefore, in this

case there is no loss of diversity since exactly one sample per
proposal survives at each iteration.

q
(t)
N (x)

q
(t)
i (x)

q
(t)
1 (x)

x
(t)
N,1 . . . x

(t)
N,k . . . x

(t)
N,K

x
(t)
i,1 . . . x

(t)
i,k . . . x

(t)
i,K

x
(t)
1,1 . . . x

(t)
1,k . . . x

(t)
1,K

Local resampling

Global resampling

FIGURE 1 – Sketch of the global and local resampling schemes
withN proposals at the t-th iteration, q(t)i for i = 1, . . . , N and
t = 1, . . . , T , and K samples per proposal.

Method P = 5 obs. P = 10 obs. P = 50 obs.

standard PMC 0.00275 0.0057 0.0218

GR-PMC
K = 5 0.00022 0.0219 0.0235
K = 10 0.00008 0.0234 0.0246
K = 50 0.00006 0.0173 0.0517

LR-PMC
K = 5 0.00004 0.0008 0.0265
K = 10 0.00006 0.0003 0.0238
K = 50 0.00009 0.0009 0.0183

TABLE 2 – Relative MSE in the estimation of the mean of π̃.

5 Numerical Results
In order to show the advantages of the proposed methodolo-

gies, we consider the problem of estimating the frequencies of
a weighted sum of sinusoids. The observation is given by

yc(τ) = A0 +

S∑
i=1

Ai cos(2πfiτ + φi) + r(τ), τ ∈ R,

where S is the number of sinusoids, A0 is a constant term,
{Ai}Si=1 is the set of amplitudes of the sinusoids, {fi}Si=1 re-
presents the set of frequencies, {φi}Si=1 are the phases, and
r(τ) are i.i.d. Gaussian samples. Here we focus on the infe-
rence of the set of frequencies {fi}Si=1, which can be a pro-
blem of interest in many applications in different fields such
as signal processing , control, or digital communications (see
[25] and the references therein). Let us assume that we have
P equally spaced data obtained discretizing yc(τ) with period
Ts <

π
max1≤i≤S 2πfi

fulfilling the sampling theorem [26],

y[p] = A0 +

S∑
i=1

Ai cos(Ωik + φi) + r[p], p = 1, . . . , P,

where y[p] = yc(pTs) for p = 0, 1, . . . , P − 1, Ωi = 2πfiTs
for i = 1, . . . , S, and r[p] ∼ N (0, σ2

w). Therefore, considering
the hypercube D =

[
0, 12
]S

as domain of the target (note that
is periodic outside D), and a uniform prior on D, the posterior
given the data is π̄(x) ∝ exp (−V (x)), where

V (x) =
1

2σ2
w

K∑
k=1

(
y[k]−A0 −

S∑
i=1

Ai cos(xik + φi)

)2

ID(x).

We tackle a bi-dimensional problem with S = 2 sinusoids
where we consider that the values of the frequencies {fi}2i=1 =
[0.27 0.43] are unknown. We set A0 = A1 = A2 = 1 and
φ1 = φ2 = 0. The problem consists on characterizing the pos-
terior pdf of the frequencies {fi}2i=1 given the data. To that end,
we run the different algorithms presented above. In all cases,
we use isotropic Gaussian distributions with Ci = σ2I2 for
i = 1, ..., N where σ = 0.05. The means of the proposals are
initialized randomly and uniformly in D. For the proposed al-
gorithms we set K ∈ {5, 10, 50}, and we always set N = 10.
In all cases, we select T in such a way the number of target
evaluations is fixed to E = NKT = 2 · 104. Table 1 shows the
relative mean square error (MSE) in the estimation of the mean
of the target. Note that the proposed algorithms outpeform the
standard PMC. Finally, note that the relative MSE increases for
large P since the target pdf is sharper, and hence the adaptive
problem is more challenging.



6 Conclusions
In this paper, we have presented a flexible framework of

PMC algorithms that includes several methods in the litera-
ture and opens the door for new methods. We have discussed
alternative weighting and resampling schemes, giving speci-
fic examples of PMC algorithms. Finally, we have tested the
PMC algorithms in a problem of frequency estimation in super-
imposed sinusoids embedded in Gaussian noise. Future work
includes the study of novel parallelizable PMC methods wi-
thin the proposed framework and numerical results in high-
dimensional examples with real data.
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