Keywords: Complexity Classes, Completeness, Theory of Numbers, Polynomial Time, Certificate Mathematics Subject Classification (2000) 68Q15, 68Q17, 68R01 CR Subject Classification F.1.3, F.1.3.2, G.1

come

Introduction

The P versus N P problem is a major unsolved problem in computer science [START_REF] Cook | Available at Millennium Prize Problems web site[END_REF]. This is considered by many to be the most important open problem in the field [START_REF] Cook | Available at Millennium Prize Problems web site[END_REF]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [START_REF] Cook | Available at Millennium Prize Problems web site[END_REF]. It was essentially mentioned in 1955 and 1956 in letters written by John Nash and Kurt Gödel respectively [START_REF] Nash | Letter to the united states national security agency[END_REF], [START_REF] Hartmanis | Gödel, von neumann, and the p = np problem[END_REF]. However, the precise statement of the P=NP problem was introduced in 1971 by Stephen Cook in a seminal paper [START_REF] Cook | Available at Millennium Prize Problems web site[END_REF].

In 1936, Turing developed his theoretical computational model [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [START_REF] Sipser | Introduction to the Theory of Computation[END_REF].

Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Cormen | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Cormen | Introduction to Algorithms[END_REF].

The set of languages decided by deterministic Turing machines within time f is an important complexity class denoted T IM E(f (n)) [START_REF] Papadimitriou | Computational complexity[END_REF]. In addition, the complexity class N T IM E(f (n)) consists in those languages that can be decided within time f by nondeterministic Turing machines [START_REF] Papadimitriou | Computational complexity[END_REF]. The most important complexity classes are P and N P . The class P is the union of all languages in T IM E(n k) for every possible positive constant k [START_REF] Papadimitriou | Computational complexity[END_REF]. At the same time, N P consists in all languages in N T IM E(n k) for every possible positive constant k [START_REF] Papadimitriou | Computational complexity[END_REF].

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [START_REF] Arora | Computational complexity: a modern approach[END_REF]. A Turing machine M has an associated input alphabet Σ [START_REF] Arora | Computational complexity: a modern approach[END_REF]. For each string w in Σ * there is a computation associated with M on input w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. We say that M accepts w if this computation terminates in the accepting state, that is M (w) = "yes" [START_REF] Arora | Computational complexity: a modern approach[END_REF]. Note that M fails to accept w either if this computation ends in the rejecting state, that is M (w) = "no", or if the computation fails to terminate [START_REF] Arora | Computational complexity: a modern approach[END_REF].

The language accepted by a Turing machine M , denoted L(M), has an associated alphabet Σ and is defined by

L(M) = {w ∈ Σ * : M (w) = "yes"}.
We denote by t M (w) the number of steps in the computation of M on input w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. For n ∈ N we denote by T M (n) the worst case run time of M ; that is

T M (n) = max{t M (w) : w ∈ Σ n }
where Σ n is the set of all strings over Σ of length n [START_REF] Arora | Computational complexity: a modern approach[END_REF]. The notations we use to describe the asymptotic running time of an algorithm are defined in terms of functions whose domains are the set of natural numbers [START_REF] Cormen | Introduction to Algorithms[END_REF]. Such notations are convenient for describing the worst case running time function T M (n), which is usually defined only on integer input sizes [START_REF] Cormen | Introduction to Algorithms[END_REF]. For a given function g(n), we denote by Θ(g(n)) the set of functions

Θ(g(n)) = {a(n) : ∃c 1 > 0, c 2 > 0 and n 0 > 0 such that 0 ≤ c 1 × g(n) ≤ a(n) ≤ c 2 × g(n) ∀n ≥ n 0 }.
The Θ-notation asymptotically bounds a function from above and below. When we have only an asymptotic upper bound, we use O-notation. For a given function g(n), we denote by O(g(n)) the set of functions

O(g(n)) = {a(n) : ∃c > 0 and n 0 > 0 such that 0 ≤ a(n) ≤ c × g(n) ∀n ≥ n 0 }.
We say that M runs in polynomial time if there is a constant k such that for all n, T M (n) ≤ n k + k [START_REF] Arora | Computational complexity: a modern approach[END_REF]. This would be equivalent to say there is a constant k such that M runs in time O(n k). In other words, this means the language L(M) can be accepted by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be accepted in polynomial time by deterministic Turing machines [START_REF] Cormen | Introduction to Algorithms[END_REF]. A verifier for a language L is a deterministic Turing machine M , where L = {w : M (w, c) = "yes" for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate. N P is also the complexity class of languages defined by polynomial time verifiers [START_REF] Papadimitriou | Computational complexity[END_REF].

A function f : Σ * → Σ * is a polynomial time computable function if some deterministic Turing machine M , on every input w, halts in polynomial time with just f (w) on its tape [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. Let {0, 1} * be the infinite set of binary strings, we say that a language

L 1 ⊆ {0, 1} * is polynomial time reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ p L 2 , if there is a polynomial time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * , x ∈ L 1 if and only if f (x) ∈ L 2 .
An important complexity class is NP-complete [START_REF] Goldreich | NP-Completeness: The basics of computational complexity[END_REF]. A language L ⊆ {0, 1} * is NP-complete if -L ∈ N P , and -L ≤ p L for every L ∈ N P .

If L is a language such that L ≤ p L for some L ∈ NP-complete, then L is NP-hard [START_REF] Cormen | Introduction to Algorithms[END_REF]. Moreover, if L ∈ N P , then L ∈ NP-complete [START_REF] Cormen | Introduction to Algorithms[END_REF]. If any single NP-complete problem can be solved in polynomial time, then every N P problem has a polynomial time algorithm [START_REF] Cormen | Introduction to Algorithms[END_REF]. No polynomial time algorithm has yet been discovered for any NP-complete problem [START_REF] Fortnow | The status of the p versus np problem[END_REF]. The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to N P ? In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5%) said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [START_REF] Gasarch | Guest column: The second p=? np poll[END_REF]. It is fully expected that P = N P [START_REF] Papadimitriou | Computational complexity[END_REF]. Indeed, if P = N P then there are stunning practical consequences [START_REF] Papadimitriou | Computational complexity[END_REF]. For that reason, P = N P is considered as a very unlikely event [START_REF] Papadimitriou | Computational complexity[END_REF]. We prove an interesting result regarding the NP-complete class. The Quadratic Congruences is a known NP-complete problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. We show this problem can be solved in polynomial time for the average case. QUESTION: Is there a positive integer x such that Q(a, b, c, x) = true?

We denote this problem as QC. QC ∈ NP-complete [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

The distinct prime factors of a positive integer n >= 2 are defined as the ω(n) numbers p 1 , . . . , p ω(n) in the prime factorization Proof QC is solvable in polynomial time if c = ∞ when the prime factorization of b is given [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. We say this can be solved in O(|a, b| α) for a positive constant α. Since we can have a candidate solution x in polynomial time which is not upper bounded by c [14], then we can find another positive integer i such that i < x and Q(a, b, c, i) = true. Hence, we obtain x 2 ≡ i 2 (mod b). If the congruence x 2 ≡ i 2 (mod b) has a solution, then the solution is necessarily a solution for the prime power congruences x 2 ≡ i 2 (mod p ij j) when p ij j divides b [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. For every prime p r , a necessary condition for x 2 ≡ i 2 (mod p ir r) to have a solution is for x 2 ≡ i 2 (mod p r) to have a solution (to see this, note that if x 2 -i 2 is divisible by p ir r then it is certainly divisible by p r). Now, suppose x 2 ≡ i 2 (mod p ir r) where p ir r is a prime power which divides b. Then x 2 -i 2 ≡ (x -i) × (x + i) ≡ 0(mod p ir r). Thus p ir r divides the product (x -i) × (x + i) and so p r divides the product as well. If p r = 2 and p r divides (x -i) × (x + i), then this is because x ≡ i(mod p r) since the sum and subtraction of two integers is even when both are even or odd at the same time. If p r is an odd prime and divides both (x -i) and (x + i), then p r would divide both their sum and their difference, that is the numbers (x-i)+(x+i) = 2×x and (x -i) -(x + i) = -2 × i. Since p r is an odd prime, p r does not divide 2 and so p r would divide both x and i which can be translated to x ≡ i(mod p r). It follows that p r either divides (x -i) or (x + i) but not both. Since p r divides (x -i) × (x + i), it only divides one of (x -i) and (x + i). Therefore, either x ≡ i(mod p r) or x ≡ -i(mod p r).

n = p i1 1 × p i2 2 × . . . × p i ω(n) ω(n) .
In this way, we prove that for every prime p r that divides b we have either x ≡ i(mod p r) or x ≡ -i(mod p r). Conversely, if we find all the possible solutions for each of these prime congruences, then we can use the Chinese Remainder Theorem to produce a solution for the problem of finding the minimum value of i which complies with Q(a, b, c, i) = true [START_REF] Cormen | Introduction to Algorithms[END_REF]. Since the Chinese Remainder Theorem can be solved in polynomial time (O(ln β b) for a positive constant β) [START_REF] Séroul | Programming for mathematicians[END_REF], then the running time depends mostly on the computation of all possible solutions. Since we have at most two possible choices for each prime factor (x ≡ i(mod p r) or x ≡ -i(mod p r)), then the running time is affected directly by O(2 ω(b)) in many cases. Therefore, we can verify whether there is any positive integer i within all the analyzed solutions which complies with Q(a, b, c, i) = true or not in O(|a, b| α + ln β b × 2 ω(b)) for the positive constants α and β.

In computational complexity theory, the average case complexity of an algorithm is the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs [START_REF] Arora | Computational complexity: a modern approach[END_REF]. It is frequently contrasted with worst case complexity which considers the maximal complexity of the algorithm over all possible inputs [START_REF] Arora | Computational complexity: a modern approach[END_REF]. The average case performance of algorithms has been studied since modern notions of computational efficiency were developed in the middle of the last century [START_REF] Cormen | Introduction to Algorithms[END_REF]. From the beginning the initial work was focused on problems for which worst case polynomial time algorithms were already known [START_REF] Knuth | The Art of Computer Programming[END_REF]. In 1973, Donald Knuth published an extensively surveys average case performance of algorithms for problems solvable in worst case polynomial time, such as sorting and median-finding [START_REF] Knuth | The Art of Computer Programming[END_REF]. For example Quicksort, have a worst case running time of O(n 2), but an average case running time of O(n × log n), where n is the length of the input to be sorted [START_REF] Cormen | Introduction to Algorithms[END_REF].

Definition 3

We shall say, roughly, that a function f (n) has the Normal Order F (n) if f (n) is approximately F (N) for almost all values of n [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. More precisely, suppose that F (n) complies with

(1 -) × F (n) < f (n) < (1 +) × F (n)
for every positive and almost all values of n [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. There may be an exceptional infinitesimal set of n for which this inequality is false, and this exceptional set will naturally depend upon [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. Proof The worst case for the value of ω(b) is when b is a primorial [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. For the j th prime number p j , the primorial p j # is defined as the product of the first j primes [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. If a number n is primorial, then ω(n) ∼ ln n ln ln n [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. Consequently, for the worst case we will have 2 Proof This is a consequence of the Definition 3 in which the average case is proved [START_REF] Hardy | An introduction to the theory of numbers[END_REF].

Lemma 2

The assumption of the Extended Riemann Hypothesis is not negated with this result.

Proof Assuming the Extended Riemann Hypothesis [START_REF] Wells | Prime numbers: the most mysterious figures in math[END_REF], the problem QC is solvable in polynomial time when b is prime [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Each prime number p r complies with ω(p r) = 1 and thus ω(p r) ≤ k × ln ln p r , except for p r = 2 (for p r ≥ 3 is enough to take k = 11). We can decide when (a, 2, c) ∈ QC in polynomial time, due to x 2 is an odd number when x is odd respectively [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. Hence, the Theorem 2 corroborates in some way the Extended Riemann Hypothesis (even though this might still be false), because this shows QC is always solvable in polynomial time when b is prime.

Conclusion

An efficient algorithm for NP-complete problems is generally characterized as one which runs in polynomial time for all inputs: This means requiring efficient worst case complexity. However, an algorithm which is inefficient on a "small" number of inputs may still be efficient for "most" inputs that occur in practice [START_REF] Arora | Computational complexity: a modern approach[END_REF]. Thus, it is desirable to study the properties of these algorithms where the average case complexity may differ from the worst case complexity and find methods to relate the two [START_REF] Arora | Computational complexity: a modern approach[END_REF].

The fundamental notions of average case complexity were developed by Leonid Levin in 1986 [START_REF] Levin | Average case complete problems[END_REF]. He defined the average case complexity and completeness while giving an example of a complete problem for distN P , the average case analogue of NP [START_REF] Levin | Average case complete problems[END_REF]. The equivalent average case analogue for P is called distP [START_REF] Arora | Computational complexity: a modern approach[END_REF]. There are several results regarding this topic [START_REF] Arora | Computational complexity: a modern approach[END_REF]. However, our result shows there is another NP-complete which is "easy on average" and therefore, we think we open another path in the analysis on the expected complexity field [START_REF] Cormen | Introduction to Algorithms[END_REF].

2 ResultsDefinition 1

 21 Given four positive integers a, b, c and x, the following Boolean function Q(a, b, c, x) is true if and only if x 2 ≡ a(mod b) and x < c. Definition 2 QUADRATIC CONGRUENCES INSTANCE: Positive integers a, b and c, such that we have the prime factorization of b.

Theorem 1

 1 Given an instance (a, b, c) of QC, this can be decided in time O(|a, b| α + ln β b × 2 ω(b)) for positive constants α and β where | . . . | denotes the bit-length function.

Theorem 2 Theorem 3

 23 Based on Theorem 1, QC can be solved in Θ(|a, b| α + ln β+1 b) for the average case. Proof The Normal Order of ω(n) is ln ln n [8]. Consequently, for the average case we will have 2 ω(b) = Θ(2 ln ln b) = Θ(ln b) and thus we can guarantee this Theorem. Based on Theorem 1, QC can be solved in Θ(|a, b| α + ln β b × ln ln b √ b) for the worst case.

Lemma 1

 1 ω(b) = Θ(2 ln b ln ln b) = Θ(ln ln b √b) and thus we can guarantee this Theorem. The infinite set of elements in QC that cannot be solved in polynomial time is infinitesimal.