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Abstract: INS-GPS integration is a fundamental task used to enhance the accuracy of an inertial navigation system
alone. However, its implementation complexity has been a challenge to most embedded systems. This paper proposes
a low-cost FPGA-based INS-GPS integration system, which consists of a Kalman filter and a soft processor. Moreover,
we also evaluate the navigation algorithm on a low-cost ARM processor. Processing times and localization accuracy are
compared in both cases for single and double precision floating-point format. Experimental results show the advantages
of the FPGA-based approach over the ARM-based approach. The proposed architecture can operate at 100 Hz and
demonstrates the advantage of using FPGAs to design low-cost INS-GPS localization systems.
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1. Introduction
Navigation systems for land vehicles remain an interesting field for research and industrial development [1,2]. A
navigation system should be able to provide reliable solutions. Its accuracy varies depending on the envisaged
application. To increase the navigation system’s accuracy, engineers use a high accuracy inertial measurement
unit (IMU). However, the high cost and weight of a standard inertial navigation system limits its application
in general areas, such as land vehicle navigation [2,3]. With the development of microelectromechanical system
(MEMS) devices, MEMS-based IMUs have become low-cost systems and have proved to be a part of vehicle
navigation systems [3—6]. Generally, this category of sensors accumulates errors during time. Therefore,
they must be periodically reset using external information [1]. INS-GPS (inertial navigation system-Global
Positioning System) integration could offer a reliable solution for precise localization application [1,2].

The basic navigation system loop [2] (see Figure 1) optimally combines the INS and GPS data to obtain
a navigation solution with a higher updating rate and a smaller position error when compared to a navigation
system that uses stand-alone sensors. An integration method is necessary to correct the localization given by
the inertial navigation system (INS) by the GPS position [3].

The integration method can be achieved using a Kalman filter (KF) [4,5]. The critical time constraint of
land navigation systems requires that processing of the INS data and the KF algorithm should be completed
between two sensors’ data-updating tasks. This imposes many constraints on the software integration, processing

speed, and system architecture. Only a few papers are available on this topic [6 —9] and they are related to the
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hardware development of such systems. Different methods of INS-GPS integration have been implemented to
calculate the navigation solution. A loosely coupled integrated approach [3,10], implementing a GPS receiver

and a low-cost strapdown INS, is used to overcome the sensors’ errors.

Dead Reckoning . Navigation Solution
Sensors — ) Integration Method (Position, Velocity,

(IMU, Odometer..) Attitude )

External Sensors
(GPS receiver, Compass..)

Figure 1. An integrated navigation system loop.

Recent studies [6,11—13] have been conducted to implement the INS-GPS integrated system using
platforms such as the FPGA (field-programmable gate array). The authors of [9,14] presented an INS-GPS
integration on an FPGA for mobiles robotics. In [9] the implementation was achieved on an embedded processor,
a Xilinx Power PC440. However, an NIOS II softcore processor was used in [14]. Other works like [12] proposed
a multisensor navigation system for a 2D mobile robot using an FPGA. In this work, the authors realized a 2D
navigation system using an FPGA-based embedded processor; they used a Xilinx softcore processor (Microblaze)
and studied the impact of precision format on navigation system implementation. They evaluated the maximum
error between single precision (SP) and double precision implementation in latitude and longitude. Islam et al.
[15] proposed a design methodology for embedded navigation system design and showed the advantage of KF
implementation with single precision on an embedded processor compared to those obtained from a standard
desktop computer.

In this work, the INS-GPS integration algorithm is implemented on a reconfigurable architecture. To
evaluate performances of the navigation system, the FPGA implementation is compared to those of a low-cost
RISC processor (ARMT). The INS-GPS navigation system is decomposed into two functional blocks: the INS
algorithm block and the KF block. The evaluation methodology is based on the identification of the processing
tasks requiring significant computing time. It consists of several steps: we first analyze the execution time
of tasks and their dependencies on the algorithm parameters. The algorithm is then partitioned in order to
have functional blocks (FBs) performing defined calculations. Each block is then evaluated to determine its
processing time. Functional blocks that require the most execution time are then optimized to reduce the global
processing time.

This paper proposes a solution for an efficient integrated low-cost INS-GPS system for vehicle navigation.
The algorithm is implemented on a reconfigurable architecture compared to a RISC processor.

The paper makes the following contributions:

Proposition of a low-cost INS-GPS navigation system.

A practical and efficient solution for applying the KF to real-time embedded applications.

Flexible codesign that can be applied to other signal processing problems besides the KF.

e Comparison between FPGA implementation and ARM processor implementation in both cases of single

and double precision floating-point data processing.
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The paper is organized as follows: Section 2 provides the design of an integrated INS-GPS system; we rely
on loosely coupled mode. We describe the navigation algorithm, namely the inertial navigation calculations, and
the KF state model. Section 2 details the software implementation on a reconfigurable architecture compared
to a low-cost RISC architecture. Section 3 presents the instrumented vehicle used to evaluate the navigation
loop and the experimental results. Finally, conclusions and perspectives are provided.

1.1. Design of an integrated INS-GPS system

The design of a real-time navigation system is a complex task [6,15], which is brought back to adopt a data
fusion approach. This system should be validated by the databases, IMU data, and GPS positions, giving the
vehicle’s trajectory. The navigation algorithm was decomposed into FBs to facilitate the implementation and
the testing of each block [4]. We define two functional blocks: the INS block and data fusion block (Figure 2).

INS
Algorithm

IMU data » —> Data Fusion Navigation Solution

(Kalman Filter) §

GPS Data [

Figure 2. Architecture of the INS-GPS integrated system.

2. INS-GPS integration methods

The complexity degree of the INS-GPS integration approach should reflect the application requirements [3,16].
Integration methods can be simple or relatively complex. In our application, the navigation system integrates
a public GPS receiver and a low-cost inertial sensor, which are loosely coupled (Figure 3). This mode enables

a reduction of both design and implementation costs [10,17].

Sensor Errors

PVA Corrections
Y T 1 | (PVA)
| izati | INS
| IMU - Mecham‘zatlon

Equations |
: | Navigation
———————————————————— + Navigation Kalman Solgtion
INS _ Filter
GPS
(PV)aps

Aiding System

PVA: Position, Velocity and Attitude

Figure 3. Loosely coupled integration approach (closed-loop).

In the loosely coupled mode an external sensor (GPS receiver) is used to correct the INS errors (Figure
3), and the GPS positions and velocities are combined with INS positions to compute the residual error, which
can be exploited by the KF algorithm.

This algorithm corrects the INS state using the feedback loop, bias effects, and drifts, as well as
misalignment errors. This is especially important for medium to low accuracy IMU systems [3]. According
to different applications, a loosely coupled scheme can be implemented in a variety of configurations. The

configurations most commonly used are open-loop and closed-loop implementations [18,19].
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2.1. INS algorithm

The INS algorithm is used to achieve the INS-GPS integration. In this case we need the INS computation
equations and the INS error model to define the Kalman filter model [19].

2.1.1. INS mechanization equations

In the inertial navigation system, an IMU is mounted directly within the vehicle chassis. Hence, three compo-
nents of the specific force vector and three components of the angular velocity vector in the body frame denoted
by f° and wf respectively can be measured. The actual vehicle’s position P is described by the latitude ¢

and longitude A in the geographic frame and the height h of the vehicle relative to the earth ellipsoid. The

equation in the navigation frame is as follows [1]:

P N
N = | RpfO - (2wl +wl,) 0N + g7 (1)
Ry Ry (4, — %)

where:
p: Position vector in the navigation frame, p = [p,A, h]

N

vN': Velocity vector in the navigation frame, vV = |

’Unave7 Ud]
R} : Transformation matrix from body frame to navigation frame

n
e

wi . Earth rotation rate vector expressed in the navigation frame

n

wen

: Orientation rate vector of the navigation frame
Qb Skew-symmetric matrix of the body rotation rate
: Skew-symmetric matrix of the rotation rate vector

: Rate of earth rotation expressed in the body frame

g™ Gravity vector expressed in the navigation frame

2.1.2. INS error model
In order to navigate over large distances around the earth, navigation information is most commonly required
in the local geographic frame [1,18]. The derivation of vehicle position P = [p, A, h] is given by Eq. (2) [18]:

Un

p= = | w@iTh (2)

—vyg

where Rj;, Ry are respectively the meridian and the normal earth radius.

Inertial navigation systems are affected by many kinds of errors; most of them are caused by initial condi-
tion errors, nonorthogonal properties of gyrometers and accelerometers, and the accumulation of instrumentation
errors through the integration process [10,17]. The INS error model is developed from the mechanization ap-
proach (Egs. (1) and (2)). Most errors are attributed to the inertial sensors (gyrometers and accelerometers).

The dominant error sources are bias, scale factor error, nonorthogonality, and random noise [10,18]. In this
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case, the accelerometer and gyrometer measurements can be assumed as [1]:

Afr=f - (3)

Aw?b = wi')b - d}gb (4)
where fb and ﬁ)f?b are respectively the measured values of f’and wfb
Afband Awé’b represent specific force and relative angular rate measurement errors.
Similarly, the estimated values of the specific force error (A fo ) and the relative angular rate error (Aw})
can be expressed by the same form [1].

Since we are trying to correct the errors in a navigation system, working in terms of error states (dx) is

convenient [19].The INS model will have the following form [1]:

op )
w1 TET
v | = F v | +@ 5
) 6w§’b (5)
p p
Fop Fpo Fpp 0 0
with F = va Fyy va and G = —Rg 0
Fop Fpw Fp 0 Ry

The error vector is defined by dz = [dp,dv,p]” , where dp = p — p = [6¢, 6\, k], dv = v — " =
(00, 0ve, 0va)" ,p = [En,€m,€p]" ,0f0 = Af — AfY, and dwly = Awly — Al .

In [16] several forms of the matrix F that takes place in Eq. (5) are proposed. In our case a simplified error
model is used based on a first-order approximation form defined by Mohinder and Andrews [5, pp. 449-452].

In this case, the subcomponents of matrix F are given by:

0 0 O 1 0 0 0 0 O
Fp=|000| F,=l010]|,F,=|[000 (6)(7)(8)
0 0 O 0 0 1 0 0 O
0 0 0 —2w;esing 0
F,, - 0 0 Fyy = | 2wiesing 0 2Wje COS @ (9)(10)
0 752 0 —2w;ecosp 0
0 Ip+29 —fn 000
F,—| ~fp—29 0 fe |, F,=]000 (11)(12)
I —fB 0 0 0 0
0 Re_1 0 0 —Wiesing 0
Fo=|—R!' 0 0 |,F,=| wiesing 0 Wie COS P (13)(14)
0 0 0 0 —wiecosy 0
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where:

¢ is the latitude and Tp ~ R/Qg =520 (s)

R, = VRy Ry =~ 6372795.5m is the earth average radius
Wie & 7.292115 x 10~° rad/, is the earth rotate rate

fn, fe, fp are north, east, and downward INS specific force, respectively

2.2. Kalman filtering

In the INS-GPS loosely coupled integration, the KF involves the combination of two variable estimates (INS and
GPS data) to form the PVA (position, velocity, and attitude) solutions [17,19]. In our case, the first estimate is
provided directly by the inertial navigation system, which constitutes the process model. The second estimate,
i.e. the measurement, is provided by GPS.

For a navigation system, the state of the system (vehicle) is naturally described by position, velocity,
and attitude (PVA solutions) [19]. Given a plant (dynamic system) described by linear system equations in
continuous state space [5]:

z(t) = F(t)z(t) + G(t)u(t) (15)

where F () is the dynamic matrix (obtained by partial derivatives), x (t) is the state vector, G (t) is the design
matrix, and u (t) is the forcing function. The elements of u (t) = [0, 6w§’b]T are white noise whose covariance

matrix is given by Q = diag (ng’ o2 02 o2 g2 g2 )

ay’ Oaz) Owaes Jwyv Owz) -

The measurement model is given by:
z(t) = H(t)x(t) + v(t) (16)

where z(t) is the measurement at time ¢, H is the observation matrix, and v(t) is the white noise with
v (t) ~ N (0,R).

However, for the implementation of INS, because the sampling time interval At = t; —t;_1 is very small
(update rate of INS = 100 Hz), the plant (vehicle’s movement: PVA variation vector) and the measurement
model take the form summarized in Table 1 [17,18].

Table 2 summarizes the discrete-time KF equations [1,5].

2.2.1. Kalman filter implementation

One of the implicit assumptions in the KF computation is that the arithmetic algorithm uses infinite precision
numbers [1]. However, the hardware implementation needs finite precision data (especially floating-point).
Moreover, the KF performances can be affected by computer round-off and the unchecked error propagation
in inverse matrix calculation [20]. After analysis of KF equations, it seems that computational complexity is
summarized in the gain calculation (see Table 2), since it implements matrix inversion. The error covariance
matrix P is by its definition positive semidefinite. Computed values of P can lose the positive semidefinite
property due to finite precision of computer and round-off errors. When this occurs, the KF gains for the
corresponding states may temporarily diverge [1,20]. Explicit inversion of a full matrix needs intensive arithmetic
operations. A solution to reduce this complexity is to convert this problem into an easy decomposition problem,

which will result in analytic simplicity and computational convenience [21]. The numerical instability of the
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inverse matrix calculation can be solved by factorization methods. Resulting KF implementations are called

square-root filtering [5].

Table 1. Plant and measurement models.

Plant model
xp = Pp_12Tp—1 + wp—1 , wi ~ N (0,Qy)

where xp = [Ax, Ay, Az, AVN,AVE, AVp, €N, €R, ED]T
Oy, =exp (FAt) = I + FAt : State transition matriz
F: Matrix defined in Eq. (5)

At =t} — tp._1: difference between the time interval

Measurement model

2 = Hypxp + vy,

(Re + 1) (p1ns — paps)
Zr = | (Re+h)cosp(Ains — Agps) | + vk
hins — haps

(Re+h) 0 0
H;, = < 0 (Re + h) cose 0 03x3 03x3 > , and R = diag (037U§7U}2L)
0 0 1

Where zj: Measurment vector at time instant k and v ~ N (0, Ry)
@, A, h: latitude, longitude and height.
0,0, 0p:Standard deviations of the GPSmeasurements.

R.: Earth average radius.

In the literature, there are several matrix inversion methods based on factors decomposition. The most
used methods are Cholesky decomposition, LU, and QR decomposition. In the first two methods (Cholesky
and LU decomposition), the matrix to be inverted must be positive definite. On the other hand, no condition
is imposed for the QR method [21].

2.2.2. QR decomposition method

The QR decomposition method allows the factorization of the matrix to be inverted into a product of two
matrices: a triangular and an orthogonal matrix. Primarily, the triangular matrix inversion requires fewer
calculations compared to a full matrix inversion. Secondly, the orthogonal matrix inversion is evaluated by the

transpose operation [21]. Given a matrix A € £"*™ QR factorization exists as:
A=QxR (17)
where @ € R™"*™ is an orthogonal matrix and R € R™*" is an upper triangular matrix.
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Table 2. Discrete-time KF equations.

Initialization &y = E[zo], Py =var (z7)

Gain calculation Ki =P, H! (R, + Hk»Pk_Hka1

Measurement update far =T + Ky Uk — 9x)

Covariance matrix update P,j' =[I - Ky Hy| P,

JA?];rl = ‘I)kfﬁ]; + Gruy
Time propagation _
& Py = Pk PO + Qi

(Qar = GrQrGEAT)

where 7,2 7: a Prior and a Posterior state vector,

0 0
G=| -Rr 0 and Q = diag (07,04, 04,0,
0 Ry

P~, P*: a Prior and a Posterior error covariance matrix.

wx?

2 2
wz

g g

wy?

are respectively,the standard deviations of the accelerometers and gyroscopes.

) with o, and oy,

The inversion of the matrix A is described as follows:

AT =R QT

(18)

The matrix inversion is calculated by the QR decomposition in three parts: QR decomposition, matrix inversion

for R matrix, and matrix multiplication (Table 3). QR decomposition can be divided into three different

methods: Gram-Schmidt orthonormalization (classical or modified), Givens rotations (GR), and Householder

reflections. The MGS (modified Gram—Schmidt) method is numerically more accurate and more stable than

the other QR decomposition methods [21].

Table 3. QR decomposition algorithm (QRD-MGS).

an

an

Ry

1for i=1:n ReSUl’Eing matrices
2 X, =4 Q11

3 fori=1:n @=

4 Ra=|X| | Qu

5 Q; = Xi/Rn‘ Ry,

6 for j=i+1l:n R— 0

7 Rij = (Qi, Xj)

8 Xj=X;—-RiQi | 0

Rln

R2n
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3. System implementation on low-cost architectures

The research community has developed numerous navigation systems in the last years. Several studies pre-
sented optimizations with different approaches. However, they did not explore a global optimization from the
algorithmic development level to the system hardware level. In some applications, such as outdoor navigation,
we would benefit from low-cost sensor technology and localization implementations on compact architectures.

In this study, we present a solution for the localization algorithm implementation taking into account
these constraints. The localization system is based on a codesign approach of the INS-GPS integration [4,15].
We have conducted experiments with an instrumented vehicle. We obtained the results to demonstrate that
our approach, based on low-cost sensors, a reconfigurable architecture, and an optimized algorithm, is suitable
to design embedded systems for real-time navigation applications.

The reconfigurable hardware provides a system design with lower risk and allows maximum flexibility
[4]. The development cycle must be guided by a design methodology that consists of adopting a modular
and distributed architecture. A key aspect to achieve a high-performance circuit implementation is to ensure
an efficient mapping of the algorithm onto the FPGA circuit [15]. This may involve developing a hardware
architecture in which we separate the communication parts and computing parts. The latter will be decomposed
into FBs, where the independent operations are performed in parallel.

3.1. INS implementation

We have chosen a reconfigurable architecture based on an FPGA implementing a soft-processor (NIOS II) [22],
and we compared this to a RISC architecture based on an ARM processor (ARM7). The INS algorithm is
implemented on both architectures.

Table 4 shows the acquisition time of inertial data and PVA calculations. The two architectures are

running at the same frequency (100 MHz).

Table 4. Execution times of data acquisition and PVA calculations.

Execution times (ms)

NIOS II processor

ARMY processor

Data acquisition

3.793

3.756

PVA calculations

0.067

0.149

Total

3.860

3.905

According to the results of Table 4, the IMU data acquisition time is considerable (around 3.8 ms) due
to the serial transmission of the IMU messages (in our case: 43 bytes at 115,200 bauds). On the other hand,
the time of PVA calculations in both cases (NIOS II and ARM7) does not exceed 0.15 ms.

The NIOS II could process the PVA calculations at 14.9 K/s, two times faster than the ARM?7 processor.
The two platforms were running at 100 MHz (Figure 4).

The resource usage of the INS data processing in the FPGA represents 58% of 1/0, 43% of logic elements,
and 16% of multipliers. We use a Cyclone II 35K Logic Elements ALTERA circuit. These resources include the
NIOS II processor implementation [22].

3.2. Kalman filter implementation

We have implemented the KF on the ARM7-based architecture and FPGA architecture using a NIOS II
processor. We have evaluated the processing time of each functional block of the KF. Table 5 presents results
of this evaluation at 100 MHz.
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Throughput
18000 [ s
16000 |+ Il ARM7 149 K/s
14000 |+ ENIOS I

12000 -
10000 -
8000 |

6000

4000

2000 -

0

Figure 4. PVA data-flow on both NIOS IT and ARM 7 processors.

According to the results of Tables 5 and 6, the hardware implementation using a soft-processor realizes
a better processing time compared to the ARMT7 processor. This performance is achieved by using the on-chip
FPU (floating-point unit) [22].

Table 5. Processing times of functional blocks of KF in SP implementation.

Processing times (ms)

NIOS II processor | ARMT processor
Gain calculation 0.88 1.838
Measurement update 0.023 0.058
Covariance matrix update | 0.495 1.163
Time propagation 1.433 3.042
Total 2.832 6.104

Table 6. Processing times of functional blocks of KF in DP implementation.

Processing times (ms)

NIOS II processor | ARMTY processor
Gain calculation 0.942 2.887
Measurement update 0.025 0.089
Covariance matrix update | 0.552 2.069
Time propagation 1.885 4.158
Total 3.404 9.203

To compare these results with other works, we calculate and present results for single precision (SP) and
double precision (DP) floating-point implementation as well for both NIOS IT and ARM?7 (Figure 5). The NIOS
IT processor can process, in single precision, 0.16 K features/s of the KF cycle. This performance is better than
the results obtained in [9] where the KF epoch is 0.13 K feature/s. The filter is implemented on an ARM920T
operating at 200 MHz for mobile robot applications.

3.3. Navigation system implementation

The final step in the navigation system design is the integration of building blocks (soft COTS: component on
the shell): the INS implementation block and the data fusion block based on a KF. The integration must take

into account the synchronization and data flow problems.
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Figure 5. KF data-flow comparison between NIOS IT and ARM 7 processor in SP and DP floating-point implementation.

Initialization.

3.3.1. Proposed architecture

The software flow of the INS-GPS integration algorithm has several subtasks. The main program waits in

an infinite loop and is based on interrupts. Figure 6 shows the various stages of computation to obtain the

navigation solution (PVA vector).

Initialization

INS Data

Msg
Sensor 1 decoding

(IMU)

calculation )

Kalman Filter
(INS-GPS
integration )

GPS Data

@ Sensor 2

Coordinate
projection

Navigation
Solution (PVA)

(GPS receiver)

PVA : Position, Velocity and Attitude

Single -process or Architecture

Figure 6. Block diagram of the navigation algorithm.
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The INS-GPS integration algorithm is implemented in both the FPGA-based architecture (using a NIOS
IT soft-processor) and the ARMT7-based architecture. The main specifications of the INS-GPS integration system
implemented on the FPGA platform are listed in Table 7.

Table 7. Specification of INS-GPS navigation system.

INS MTji of Xsens, other IMU devices are available
GPS UBIlox 4, other receivers are available
Power 12 VDC

Interface | Two 9-pin RS232 ports

Hardware | Altera DE2 Board

Software | Processor NIOS II, customized C modules including device initialization and
control, message decoding, INS calculation, KF calculation, etc.

The hardware architecture of the real-time embedded navigation system is shown in Figure 7a. A test-
bench platform implementing an FPGA is shown in Figure 7b.

JTAG < V Reset Clock

¢ connexion

to software JTAG L l

debuggerf] Debu,
atf ) —» TxD
UART <= RxD

Time2

i
J

‘Interface

2
—
=
SDRAM SDRAM -
g ks LCD Display
M 11 -
emory| | Controller % " Driver M i
o
i "
: On-Chi g Ceneral ,
: ROMp 1 £ [*| Purpose 10 [ . . el :
: = UART2 |4 2 18.07.2011
:| Flash £ Ethernet : receiver
| Memory} Tristate & Interface :
: N bridge to

. (>
| SRAM offchip Compact \_board
‘| Memory memory > Flash w
: L Interface
(). Block diagram of the navigation system (b). Hardware evaluation system

Figure 7. INS-GPS evaluation system based on NIOS II processor: a) block diagram of the navigation system,b)
hardware evaluation system.

The ARMT7-implementation uses the mbed board based on the NXP-LPC1768 module, with a 32-bit
ARM Cortex-M3 RISC processor (Figure 8) [23].

4. Experimental results

The sensors are embedded on an experimental vehicle called “PICAR” (Figure 9) used to validate data fusion
methods for autonomous vehicle applications [24]. The IMU is mounted at the center of the car and the GPS

receiver is placed at the top of the car. During the experiment, we set the measurement frequency at 100 Hz
for the IMU and 1 Hz for the GPS.
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Flash 512 KB IMU (Xsens )

RAM 32 KB GPS module u
2 x SPI
ARM 7
Processor
( LPC 1768 )
CAN
6 x PWM <» GPIO
(a). Block diagram of the naviga (b). Hardware evaluation system

Figure 8. INS-GPS evaluation system based on ARMTY processor: a) block diagram of the navigation system, b)
hardware evaluation system.

Figure 9. PICAR vehicle.

4.1. System evaluation

Two types of data collection and processing tests were performed: static and kinematic tests. These tests
were carried out in order to evaluate the computation performances. The first one is the static INS test; the

geographic frame [10] has been used to plot the vehicle’s trajectory.

4.1.1. Static test

All types of IMU exhibit biases, scale factor, and cross-coupling errors and random noise to a certain extent [10].

The main error sources contributing to the accelerometer and gyrometer outputs are described in the following
equations [10]:

fi=bo + (Is + M) f5 + wa (19)

ﬂ)fb = by + (Is + Mg) w?b + wy (20)

where ﬁ’b and @, are the IMU output-specific force and angular rate vectors, fb and wfb are the true
counterparts, and I3 is the identity matrix. M, and M, are the scale factor and cross-coupling error matrix,

b, and b, are bias, and w, and w, are random noise.
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In our application, the used IMU (MTi: motion trackers’ inertial) is already factory calibrated and it
was delivered with an MT test and calibration certificate. Therefore, it remains to estimate the bias and noise
variance for the accelerometer and the gyrometer by the static test.

The INS static test is carried out at a fixed GPS position of 48°41’ 53.78 N, 2°10’1.32E and altitude of
142 m. Inertial measurements records of 15 min were achieved with a fixed vehicle position (reference position).
The estimated biases of accelerometer and gyrometer are given in Table 8.

After the elimination of static bias, by subtracting IMU measurements, we estimated the noises (wq , wg)
of accelerometers and gyrometers. Table 9 shows the variances of noise measurements.

Table 8. Accelerometer and gyrometer bias estimates.

Axis X y V7

Bi 2 rad Accelerometer | 0.0254 | 0.0403 | 9.8056
fas (/5% rad/s) "G Gmeter | 0.0017 | 00082 | 00044

Table 9. Variances of IMU random noises.

Axis X y 7
Variance Accelerometer | 3.999 x 10~% | 0.0010 6.717 x 10~ %
((m/s?)?, (rad/s)?) | Gyrometer 9.177 x 107° | 5.465 x 10~° | 3.781 x 107°

4.1.2. Prefiltering IMU data

Data produced by the IMU are extremely noisy. Two filters were thus designed and tested: a moving average
filter [25] and a scalar filter (also called scalar gain interpretation) [26]. The choice of the prefilter has an
apparent effect on the vehicle localization.

According to Figures 10a and 10b, the best performances are achieved by using the scalar filter. This
filter reduces both sensor noises and vehicle vibration effects. In Figure 10, we note that the experimentation

takes 43 s on a circular trajectory; however, the INS positioning (in blue in Figure 10b) gives satisfactory results
until 24 s. The position and the orientation of the INS diverge after 24 s.

Trajectory INS GPS o Trajectory INS GPS
60 T
T INS
50 60 + GPSH
kI F K] \
40 ¢ M % ¥
* * * | ¥
— * M — —
E % . — E : N
i * " k7 30 *
m * = - *|
20 + f‘* > M * j
* b 20 + -
* 4 * 4
10 * * A
* 10 *
* *
0 e 0 * *‘*’j
FF
~10 -10
-30 -25 -20 -15 -10 -5 0 5 10 =20 -15 -10 -5 0 5 10
XNorth (m) X North (m)
(a) Moving average filter (b) Scalar filter

Figure 10. Comparison of two INS prefilters: a) moving average filter, b) scalar filter.
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4.1.3. Kinematic test
The second test is carried out in an urban area to check the efficiency of the INS-GPS integration algorithm in

real navigation conditions (Figure 11).

80
3 T
100 65 — \ INS-GPS Integration
N T
30 55 3 100 150 v \ m INS-GPS
N + GPS
60 N MMM "
’é‘ 40 f Mﬁ
e 20 f 4
S
~ 0
]

_ M
N e~

v

0 100 200 300 400 500
East (m)

Figure 11. Trajectory of the experimental vehicle: a) real trajectory, b) estimated trajectory using INS-GPS integration.

The KF adjustment is made by the two covariance matrices, Q and R, with:

. 2 2 2 2 2 2
Q = dzag (Uaz7 Uayﬂ Oaz) Owa> Uwya Uwz) (21)

o, and o, are respectively the standard deviations of the accelerometers and gyrometers calculated in the

static test.
R depends on various factors including receiver technology, antenna technology, and the user environment

[17] . In our experiment, the matrix R is given by [16] :

_ PDOP? x UERE?
N 3

R I (22)

where UERE is the user equivalent range error, representing the GPS mean error (in our case UERE = 3)
[16]; I is the identity matrix with the appropriate dimension; and PDOP is the position dilution of precision,
from the GPS message.
The navigation system is tested kinematically in an urban area (Paris-Sud University) with an experiment
lasting 7 min. The KF adjustment is made by the two covariance matrices Q and R (Egs. (21) and (22)).
Figure 11a presents the trajectory of the experimental vehicle in the kinematic test, and Figure 11b

presents the estimated trajectory of the vehicle.
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Another test was carried out to evaluate the impact of data floating-point format on the trajectory
precision. We achieved this evaluation on the NIOS II soft-processor (Figure 12). We reconstructed the vehicle’s

trajectories based on single precision (SP) and double precision (DP) floating-point format in the processing
phase of the navigation algorithm.

—SimpleprocsonINS-GPS rlegraton

50 — precision INS-GPSintegration
[ — N +  GPSpositions

40— I
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o
.

he s _oit N A
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North (m)
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(=]
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&
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_1—018 -16 -14 -12 -10 -8 -6 -4 -2 0 2
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Figure 12. SP and DP calculated trajectories by NIOS II processor.

As can be seen in Figure 12, DP implementation gives a more accurate position than SP implementation.

Table 10 evaluates the error of the trajectory reconstruction relatively to the SP or DP floating-point
format in the algorithm processing. Table 10 shows that double precision INS-GPS algorithm implementation
increases the localization position error by 0.197 m using the NIOS II soft-processor and by 0.25 m using the
ARMYT [27] processor architecture.

Table 10. Error position between SP and DP implementations.

NIOS II processor | ARMY processor
Min error (m) 0.003 0.006
Max error (m) 0.398 0.500
Root mean-square (m) | 0.197 0.251

The proposed navigation system is able to perform the calculations at a frequency higher than the faster
sensor (IMU at 100 Hz). We represent the cycle computation in a period of 10 ms (equivalent at 100%). The

executed tasks (in single and double precision) during this cycle are shown in Figure 13.

Computation cycle in SP Computation cycle in DP
implementation implementation

B 1 IMUdata acquisition B 1 [MUdata acquisition

m2 PVA calculations m 2 PVA calculations

m 3 KEF calculation m3 KF calculation

m4 Free time Free time

m4

0
1% 1%

Figure 13. Executed tacks in NIOS II processor (at 100 MHz).
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In both cases (SP and DP implementation), the NIOS II processor has free time around 30% of the
computation cycle (10 ms).

To compare our navigation system with other works, the authors of [15] proposed a GPS/INS navigation
system on an embedded platform for automotive applications. The software was executed by the Microblaze
softcore processor of Xilinx. The sensor’s data come from the GPS unit and a tactical-grade TG6000 IMU,
which provides measurements at an update rate of 75 Hz. In this work, the Microblaze processor, at 100 MHz,
can support a data rate of 238 Hz; however, in our proposed system, at the same frequency (100 MHz), the

NIOS II processor can support a data rate of 345 Hz in SP implementation and 288 Hz in DP implementation.

5. Conclusions
This paper presented the implementation of a navigation algorithm by integrating data from two sensors, INS
and GPS, taking into account the real-time constraints. The navigation system developed is able to acquire IMU
and GPS receiver data flows and process the INS-GPS integration algorithm based on a KF. We studied the
relevant parameters influencing the total performances. We used an FPGA and ARM platform to implement
the same navigation system and compared the results.

We evaluated these systems on an instrumented vehicle. That gave us a database of relevant trajectories.
We compared the performances and the computation precision between various hardware architectures according
to the floating-point format of calculation (SP and DP). We demonstrated that the Altera NIOS II softcore
processor implemented on the FPGA has much better precision performance when using the on-chip FPU IP
than the ARM7’s RISC Processor in this navigation system application.
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