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Abstract

This paper concerns the mathematical modelling of the motion of a crowd in a non connected bounded domain,

based on kinetic and stochastic game theories. The proposed model is a mesoscopic probabilistic approach that

retains features obtained from both micro- and macro- scale representations; pedestrian interactions with various

obstacles being managed from a probabilistic perspective. A proof of the existence and uniqueness of the proposed

mathematical model’s solution is given for large times. A numerical resolution scheme based on the splitting method

is implemented and then applied to crowd evacuation in a non connected bounded domain with one rectangular

obstacle. The evacuation time of the room is then calculated by our technique, according to the dimensions and

position of a square-shaped obstacle, and finally compared to the time obtained by a deterministic approach by

means of randomly varying some of its parameters.

Keywords: Discrete kinetic theory, Complex system, Evacuation, Crowd dynamics, Splitting

scheme

1. Introduction

The dynamic modelling of crowd motion has recently aroused a great interest in the scientific community and

is used in numerous applications, such as engineering and social science [1]. It has become increasingly important

to avoid or control panic situations and to ensure the safety of people in congested areas.

Mathematical representations of crowd motion from the microscopic to macroscopic scale have been an active5

field of study for the last two decades, with a rich scientific literature [2, 3, 4, 5, 6]. The aim of this paper is not to

present an exhaustive list of references. Only some of the most frequently used will be mentioned: the microscopic

approach based on the social forces model, proposed by Helbing [4, 5], where the movement of the crowd is char-

acterized by the position and velocity of each individual, and the macroscopic models, given by Hughes [6], that

consider the crowd as a fluid.10
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Recently, an intermediate mesoscopic representation based on the kinetic approach appeared and its application

to crowd representation gave promising results for the description of pedestrians’ strategy. Very few references of

the mesoscopic representation can be found in the literature [7, 8, 9, 10, 11].
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The kinetic theory is a mathematical description of a volume of material containing a large number of particles

interacting with each other, for example, a volume of gas particles [12]. This approach allows us to connect both

the macroscopic and microscopic properties. Monte Carlo particle methods have a relevant role in the numerical

resolution of kinetic equations [13, 14]. Moreover, this theory has been applied in many areas, namely, modelling

of vehicular traffic [15, 16], and crowd dynamics [7, 8, 9, 10, 11, 17, 18], which is the subject of this study.20

The modelling of a crowd by a kinetic approach started with Bellomo’s and Bellouquid’s work [9], in which the

set of main governing equations are introduced. In this approach, the crowd is seen as a complex system in which

the interactions between people (particles) are managed from a probabilistic point of view and the microscopic

state of each pedestrian (particle) is characterized by his/her position and speed. In addition, the general form of

the system is represented by a distribution function in a microscopic state and the dynamic of this distribution25

function is given by the study of particles balance in a unit volume element of the phase plane. Then Bellomo

et al. [8] developed this approach and handled the movement of a crowd moving in different directions, in an

unbounded domain and where the objective of each particle is to reach a fixed target. Afterwards, Agnelli et al.[7]

studied the case of people moving in a connected bounded domain, without obstacles. Then Bellomo and Gibelli

treated the density-velocity diagram in steady flow conditions and studied some collective emerging behaviors that30

are experimentally observed, namely the self-organized behaviors leading to the creation of lanes in streets and the

increasing of evacuation time in stressful conditions [17].

Most of the studies that were previously mentioned, concerned connected areas [7, 8, 9, 17], while the question

of non connected areas is still open. In this paper, the kinetic theory applied to crowd dynamics is extended to

its motion in a non-connected bounded domain, with the presence of fixed obstacles. To model interactions, it is35

assumed that pedestrians can change their direction for various reasons, such as: the wish to reach a target, the

avoidance of the edges of the domain and / or fixed obstacles in the field. In a future step, pedestrians will be

considered as ”active particles” by taking into account their heterogeneity and their capacity to develop a strategy

of displacement.

This paper is organized as follows: Section 2 provides the mathematical model for the crowd evacuation in an40

area including walls and obstacles. Then, probabilistic tools are used to describe pedestrian-pedestrian interactions

as well as pedestrians interactions along with the geometry of the area. Section 3 presents a mathematical framework

to obtain proofs of the existence and of the uniqueness of the proposed model’s solution. Section 4 is devoted to

numerical simulations to check the ability of the proposed model to describe the main features of the pedestrian

dynamics, particularly the avoidance of fixed obstacles on their walk towards the exit. The influence of the position45

of a fixed square obstacle in the vicinity of the exit is finally studied with respect to the evacuation time for a

group of 50 persons.
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2. Position of the problem under study. Mathematical modelling

Let us consider a system composed of N particles (the pedestrians) distributed randomly in a two-dimensional

bounded domain Ω ⊂ R2.50

This group of N pedestrians present in the room at initial time t0, wish to evacuate the room by the exit of size

S. At initial time t = t0, pedestrians are distributed within a disk D0 of radius r and of center M0(x0, y0). The

initial global density is then: ρ0 = N
π r2 (ped/m2).

Kinetic type equations derivation requires a detailed analysis of the interactions at a micro-scale, namely at the

pedestrian scale related to the statistical representation of the overall system; this requires a suitable probability55

distribution over the micro-state.

This particle distribution function is given by: f = f(t,x,v) for all t ≥ t0, x ∈ Ω, v ∈ Dv, where Dv represents

the domain of velocities.

If f(t,x,v) is locally integrable in x, then f(t,x,v)dxdv represents the number of individuals, located at time t

in an infinitesimal rectangle [x, x + dx] × [y, y + dy] with the velocity belonging to [vx, vx + dvx] × [vy, vy + dvy],60

where: x = (x, y) and v = (vx, vy).

If f(t,x,v) is locally integrable in v, the local density (the number of people per square meter) at the point x and

time t can be introduced:

ρ (t,x) =

∫
Dv

f(t,x,v)dv. (1)

At initial time t0, it can be written that: ρ (t0,x) = ρ0 1D0
(x) where 1D0

(x) is the indicator function of the

subset D0.

The impact of crowd density for a standing crowd and a moving crowd is important to understand for crowd safety.

In the UK Guides produced to advise on crowd safety issues (cf. [19]), the safety limit for crowd density is stated65

as 4 pedestrians per square meter for a moving crowd and 4.7 for standing areas. To be closer to reality, the

individual dimensions of pedestrians must be taken into account in the density analysis. For a totally packed metro

train (French RATP), the density is between 6 and 8 pedestrians /m2. In conclusion, a maximum value ρmax for

local crowd density, ρmax ≤ 8 pedestrians /m2, is introduced, and a maximum number of pedestrians Nmax is then

deduced: Nmax = π r2 ρmax.70

In our model, dimensionless quantities are preferred. To do that, from the following reference variables:

• L: a characteristic length of the domain Ω, for example its diagonal when Ω is rectangle shaped,

• Vm: the maximum speed of the pedestrian walking unobstructed in the environment,

• Tm: a reference value for the evacuation time is given by: T = L/Vm,

• ρmax: the maximum local crowd density,75

the following unit-less variables are then defined:

• the position variable: x̃ = x
L .

• the time: t̃ = t
T .
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• the velocity modulus: ṽ = v
Vm
,

• The distribution function: f̃ = f
ρmax

, leading to ρ̃ = ρ
ρmax

.80

In the following, for the sake of simplicity, the tildes are omitted.

2.1. Representation of the pedestrian environment

The bounded domain Ω ⊂ R2, in which pedestrians move, is a room of rectangular shape of length Lx and

width Ly. Its external border is made of walls and is noted W .

A single obstacle noted by Or with ∂Or being its boundary is added within Ω. In the following, the obstacle85

is rectangle-shaped with sides of length Lobs and width lobs. A reference frame (O, ex, ey) is defined and polar

coordinates are preferred. For the sake of simplicity, this study is limited to the case of a single obstacle cf. Fig.1,

but the geometry of the domain can be further modified by inserting several obstacles of different shapes.

Figure 1: Illustration of the walking domain. W : wall, Or: rectangular obstacle, S: exit, ∂Ω = W ∪ S ∪ ∂Or (with ∂Or is

the obstacle’s border).

Two parameters already present in [17] are finally introduced α ∈ [0, 1] and ξ ∈ [0, 1], respectively.

α is related to the quality of the domain : when α = 0, the domain is of poor quality, that means that pedestrians90

are forced to stop walking, while when α = 1, the quality of the domain is maximum, allowing a pedestrian to

walk with the highest speed. ξ characterizes the strength of the pedestrian’s preference for areas of low pedestrian

density and it is supposed to give indication of the level of pedestrians’ anxiety.

2.2. modelling the velocity vector

The approach developed in the present work refers to the hybrid approach reviewed in [7, 8], where the discrete

variable for the individual velocity states θ, defined by the angle of the selected velocity v direction with ex, is

used. The velocity vector can then be expressed as

v[ρ] = v[ρ](t,x) cos(θ) ex + v[ρ](t,x) sin(θ) ey,
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where v[ρ] is the speed; square brackets are used to denote that v can depend on ρ in a functional way, for instance

on ρ and on its gradient ∂ρ
∂x .

The speed variation depends on the interactions between pedestrians. Specifically, pedestrians adjust their velocity

modulus according to the level of congestion around them and on the environmental conditions. In this paper,

the dependence of the velocity on the local density is motivated by the fundamental diagram developed in [17].

The main idea is that the velocity of the pedestrian decreases monotonically with the density from the maximal

value v[ρ = 0] = 1 of ρ = 0 to v[ρ = 1] = 0 where ρ = 1, corresponding to the maximal density. Moreover, the

maximal velocity observed at very low density increases with the quality of the environmental conditions and / or

the pedestrian’s anxiety.

From the density speed diagram developed in [17], the following density speed is deduced:

v[ρ](t,x) =
σ3 (1− ρ(t,x))

2

σ2 (1− ρ(t,x))
2

+ (1− σ) ρ2(t,x)
, (2)

where σ = α ξ; the parameters α and ξ, previously introduced, characterize respectively the quality of the domain,95

and the trend of pedestrians to adapt their walk to their surroundings instead of searching for less crowded areas.

2.3. Mathematical model equations

The number of pedestrians N is limited by the maximum number Nmax and generally not large enough to justify

the continuity assumption of the particle distribution function with respect to the velocity. Indeed, it is assumed

that the velocity directions θi take discrete values in the following set:

Sθ =

§
θi =

i− 1

n
2π : i = 1, ..., n

ª
.

Therefore, due to the deterministic nature of the variable v, the distribution function can be expressed as :

f (t,x, θ) =
n∑
i=1

fi (t,x) δ (θ − θi) , (3)

where δ is the Dirac distribution; fi (t,x) = f (t,x, θi), represents pedestrians, viewed as active particles, moving

in direction θi, at time t and position x, per unit area.

The local density ρ (t,x) previously defined in Eq. (1), becomes the sum of fi (t,x) for 1 ≤ i ≤ n:

ρ (t,x) =
n∑
i=1

fi (t,x) . (4)

The derivation of the mathematical structure used in the present paper refers to the theory developed in [8], where

the mathematical model is obtained by a balance of particles in a unit volume of the micro state space. Indeed,

the motion of a particles group (pedestrians) is governed by the partial derivative equation (PDE) of transport

applied to fi with a second member Γi characterizing the different interactions between pedestrians with their

environment:

∂tfi (t,x) + vi[ρ] (t,x) .∂xfi (t,x) = Γi (t,x) i = 1, ..., n, (5)

where: vi[ρ] (t,x) = v[ρ] (t,x) (cos(θi), sin(θi))
T

and ∂x = (∂x, ∂y)
T

. This Γi (t,x) term also allows us to take into

account boundary conditions (walls W and the obstacle’s borders ∂Or).
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2.4. Modelling of interactions100

By referring to [7, 11, 17], modelling the interactions is a decision process in which each particle moves along

with the others as well as within the geometry of the domain. The interaction involves three types of particles:

• The test particle with micro-state (x, θi) and distribution function fi (t,x) = f (t,x, θi).

• The field particle with micro-state (x∗, θk) and distribution function fk (t,x) = f (t,x∗, θk).

• The candidate particle with micro-state (x, θh) and distribution function fh (t,x) = f (t,x, θh).105

The candidate particle can acquire, in probability, the micro-state of the test particle after interaction with the

field particles, while the test particle loses its state in the interaction with the field particles.

Two types of interactions are considered, those between candidate and field particles and those between candidate

particle and obstacle (either within the domain or the border walls themselves).110

In this way the right hand side of eq.(5) can be decomposed in two terms as: Γi = ΓPi + ΓDi ,

where ΓPi refers to interactions between pedestrians and ΓDi to interactions between pedestrians and obstacles

(either present within the domain or against the border walls). Both terms are detailed in the following sub-

paragraphs.

2.4.1. The ΓPi term115

The term ΓPi of interactions between pedestrians (particles) is defined in a probabilistic sense, since pedestrians

will not react in the same way when facing a particular situation. Interactions of test and candidate particle with

field particle can be modeled by the following quantities:

• Interaction domain (visibility zone) : it represents the area where the trajectory of each candidate pedestrian

can be influenced by those of other field pedestrians, which can be defined as circular sector with radius V

symmetric with respect to the velocity direction defined by the visibility angle φ (see fig.2):

V (x, ed, RV , φ) =

§
y ∈ Ω/ ||x− y||2 ≤ RV ,

y − x

||y − x||2
.ed ≥ cos(φ)

ª
.

Figure 2: Vision field V for a pedestrian located at the point x with unit velocity direction ed .
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This visibility zone is introduced just when a pedestrian located at the point x, interacts with the other120

pedestrians, but it not introduced in the case of interaction with obstacles and walls.

• The interaction rate η[ρ(t,x)] characterizes the contact frequency that a candidate h-pedestrian (or test) in

x develops with a field k-pedestrian in the visibility zone V . The use of the same idea developed in [7] is

proposed, by treating the interaction rate with increasing local density η[ρ(t,x)] = η0ρ(t,x), where η0 is a

constant.125

• The transition probability density Bhk(i), characterizes the fact that the candidate pedestrian changes his/her

direction θh to the test pedestrian’s direction θi, due to the interaction with field pedestrians of a direction

θk. This probability is assumed to be dependent on the density of pedestrians ρ(t,x).

The probabilities Bhk(i) of each i-th pedestrian satisfy the following relationship:

n∑
i=1

Bhk[ρ(x)](i) = 1 for k, h = 1, ..., n. (6)

The probability transition definition depends on the desired direction more precisely on the preferred angle

of motion θpd, that will be defined in the next paragraph.

It is referred to [10, 17] for the definition of the preferred angle of motion. Indeed, due to the assumption of

the deterministic nature of the speed v, interactions between particles are assumed to modify their dynamics

by changing the direction of motion. The assumed walking direction modified by two types of stimuli: (1) the

tendency to follow the stream and (2) the attempt to avoid overcrowded areas. These are represented by two

unit vectors e(v) ,e(s), respectively. It is expected that at high density pedestrians move in the direction e(v).

Conversely at low density they tend to follow the stream in the direction e(s). Indeed, the desired direction

is defined as follows:

epd =
σe(v) + (1− σ)e(s)

||σe(v) + (1− σ)e(s)||2
, (7)

where,

• e(v) = (cos(θm), sin(θm)) with m = arg minj=1,...,n ∂jρ, ∂j is the derivative of ρ in the direction θj .

• e(s) = (cos(θk), sin(θk)) defines the direction of the particle.

• The preferred angle θpd which allows pedestrians to follow the stream and to avoid overcrowded areas obtained

from (7), through the relation: epd = (cos(θpd), sin(θpd))
T

.130

It is assumed that each pedestrian can rest in her/his initial state or change his/her direction, in the clockwise

direction or in the opposite clockwise direction in the set Sθ. This means that a pedestrian is located either in the

states, h+ 1, h− 1 or remains in state h. Three cases defined and illustrated in Table 1 are considered according

to the position of θpd from θh.

135
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Case 1 : θpd < θh Bhk[ρ](i) =


σ ρ if i = h− 1

1− σ ρ if i = h

Case 2 : θh < θpd Bhk[ρ](i) =


1− σ ρ if i = h

σ ρ if i = h+ 1

Case 3 : θh = θpd Bhk[ρ](i) =


1 if i = h

0 else

Table 1: Definition and illustration of the probability term Bhk[ρ](i).

The interaction term between pedestrians ΓPi is defined as the difference between the gain and the loss of pedestrians

moving in the direction θi due to the interactions with other pedestrians:

ΓPi (t,x) =
n∑
h=1

n∑
k=1

∫
V

η[ρ(t,x∗)]Bhk(i)[ρ(t,x∗)]fh (t,x) fk (t,x∗) dx∗ − fi (t,x)
n∑
h=1

∫
V

η[ρ(t,x∗)]fh (t,x∗) dx∗. (8)

2.4.2. The ΓDi term

This term is introduced to account for boundary conditions, more precisely to model interactions with walls

and obstacles. In this sense, we refer to [7]. The assumptions used in the following are summarized below:140

• A pedestrian can change his/her direction, due to

1. his/her willingness to reach the exit.

2. the presence of walls or fixed obstacles in front of him/her.

The ΓDi term characterizes the interactions between pedestrians and obstacles within the walking area during the

evacuation phase. In a similar way as for the ΓPi term, the ΓDi is modeled by means of the following two interaction145

terms:

• Ph(i) the probability of the event that the pedestrian changes its direction θh into the direction θi, due to

the presence of walls W , to the obstacle Or and to the exit S, is then introduced. This probability satisfies

the following relation:
n∑
i=1

Ph(i) = 1 for h = 1, ..., n, (9)

and its definition depends on the desired direction ed(x) for each pedestrian at position x, and more precisely

on the angle θd that ed(x) makes with ex.

In the same way, three cases defined and illustrated in Table 2 are considered according to the position of θd

from θh.150
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Case 1 : θd < θh Ph (i) =


α if i = h− 1

1− α if i = h

Case 2 : θh < θd Ph (i) =


1− α if i = h

α if i = h+ 1

Case 3 : θh = θd Ph (i) =


1 if i = h

0 else

Table 2: Definition and illustration of probability’s term Ph(i), where α ∈ [0, 1] sets the quality of the domain.

• µ[ρ(t,x)] is an interaction rate, 0 < µ[ρ(t,x)] ≤ 1, that characterizes the frequency of interactions between

the pedestrians and the field. It is a decreasing function of the local density.

The interaction term ΓDi between pedestrians and the area characterizes the difference between the gain and the

loss of the particles moving in the direction θi and is given by:

ΓDi (t,x) = µ[ρ(t,x)]

(
n∑
h=1

Ph(i)fh (t,x)− fi (t,x)

)
. (10)

2.4.3. Determination of the desired direction unit vector ed155

It is then proposed to represent the desired direction unit vector ed for each pedestrian by a sum of three vectors:

the γ (x) vector models the direction which allows the pedestrian to avoid the obstacle, the τ (x) vector models

the pedestrian direction to avoid the walls and finally ν (x) models the direction which allows the pedestrian to go

toward the exit:

ed (x) =
γ (x) + τ (x) + ν (x)

||γ (x) + τ (x) + ν (x) ||2
. (11)

The directions contribute to the desired direction defined by the previous linear combination defined in eq.(11).

This assumption is a simplification of reality.

To define these three vectors, the domain Ω is decomposed into three zones: the obstacle’s influence zone Z,

the security zone Zs to ensure the non collision between pedestrians and the walls, and finally a neutral zone Zn160

where pedestrians have only the wish to go toward the exit. These three zones are illustrated in Fig.3.
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Figure 3: Representation of the three zones: Z = Z+ ∪Z− ∪Z++ ∪Z−−, the obstacle’s influence zone for pedestrians, Zn

the neutral zone, and Zs the security zone.

The vector field γ(x) which models the direction that allows pedestrians to avoid the obstacle, is defined by:

γ(x) =



β1(x) + β2(x) x ∈ Z−,

β3(x) + β4(x) x ∈ Z+,

ex x ∈ Z++ ∪ Z−−,

0 x ∈ Zn ∪ Zs,

(12)

where:

βi(x) =
xi − x

||xi − x||2
i = 1, 2, 3, 4.

• x2,x3 are two vertices of the obstacle on the opposite side to the exit.

• x1,x4 are respectively the intersection points between the straight line (x2x3) and two straight lines ∆1,∆2

defining the influence area Z, (see fig. 4).

ν(x) is the vector field, which models the direction that allows pedestrians to go toward the exit (see fig.5), and is

given by the following expression:

ν(x) =


b1(x) + b2(x) if x ∈ Zn,

0 else,
(13)

where:

bi(x) =
xsi − x

||xsi − x||2
i = 1, 2,

xs1,xs2 are coordinates of the nodes that define the exit.165
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Figure 4: (a) Illustration of the construction of the γ(x) vector which models the direction allowing each pedestrian to

avoid the obstacle Or, and (b) the γ vector at any point x of the domain Ω.
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(b)

Figure 5: (a) Illustration of the construction of the ν(x) vector which models the direction allowing the pedestrian to go

to the exit, and (b) the ν vector in any point x of the domain Ω.

Finally the field vector τ (x) which models the direction to avoid collisions between individual pedestrians and the

walls is defined as follows:

τ (x) =



ex x ∈ ZS1,

−ey x ∈ ZS2,

ey x ∈ ZS3,

0 else,

(14)

where the security zone is divided in 3 areas: ZS1, ZS2 and ZS3 (see fig.6).
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Figure 6: Illustration of τ (x) vector which models the direction allowing the pedestrian to avoid the walls.
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(b) τ (x)
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(c) ν (x)
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(d) ed (x)

Figure 7: Illustration of vectors modelling the direction allowing pedestrians to avoid walls, the obstacle and to go toward

the exit, (a): γ (x), (b): τ (x), (c): ν (x) and (d): ed (x).
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The governing equation

The interaction terms, ΓPi defined in equation (8) and ΓDi defined in equation (10) respectively are replaced by

their respective expression, and the model partial derivative equation (PDE) (5) becomes:

∂tfi (t,x) + vi.∂xfi (t,x) = µ[ρ(t,x)]

(
n∑
h=1

Ph(i)fh (t,x)− fi (t,x)

)

+
n∑
h=1

n∑
k=1

∫
V

η[ρ(t,x∗)]Bhk(i)[ρ(t,x∗)]fh (t,x) fk (t,x∗) dx∗ − fi (t,x)
n∑
h=1

∫
V

η[ρ(t,x∗)]fh (t,x∗) dx∗.

(15)

The initial conditions expressed as:

fi (t = t0,x) = φi (x) i = 1, ..., n, x ∈ Ω, (16)

are finally added to the previous PDE (15). After introducing security zones for pedestrians (”pedestrian-wall”),

the boundary conditions come from the interactions between pedestrians and the area; therefore, they are included

in the management of the interactions.170

2.5. Method of characteristics

The method of characteristics is particularly well adapted for solving linear hyperbolic problems and more precisely

the transport PDE. Thus we propose to transform the system of equations (15) and (16) from partial differential

equations (PDE) to ordinary differential equations (ODE), using the characteristics concept. Indeed, let us consider

the characteristic curves associated to the problem defined by equations (15) and (16):

X(t) = (X1(t),X2(t))
T

= (x+ t v cos(θi), y + t v sin(θi))
T
,

which is a solution of the following system: 
dX(t)

dt
= Vi,

X(0) = (x, y)T ,

(17)

where: Vi = (v cos(θi), v sin(θi))
T

.

Along these curves, the solution of the system defined by equations (15) and (16) satisfies the following system of

ODEs : 
df̂i (t,x)

dt
= Γ̂i[f, f ] (t,x) ,

f̂i (0,x) = φi (x) x ∈ Ω,

for i = 1, ..., n, (18)

where:

f̂i (t,x) = fi (t,X(t)) = fi (t, x+ v cos(θi)t, y + v sin(θi)t) is the value of f along the characteristics, and

Γ̂i[f, f ] (t,x) = Λ̂i[f ] (t,x)− µ[ρ(t,x)]f̂i (t,x) +ÒΨi[f, f ] (t,x)−ÒΥi[f ] (t,x) f̂i (t,x) ,

where the operators ÒΛ,ÒΨ and ÒΥ are defined for i = 1, ..., n by:175

Λ̂i[f ] (t,x) = µ[ρ(t,x)]
n∑
h=1

Ph(i)fh (t, x+ v (cos(θi)− cos(θh)) t, y + v (sin(θi)− sin(θh)) t) ,
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ÒΨi[f, f ] (t,x) =
n∑
h=1

n∑
k=1

∫
V

η[ρ(t,x∗)]Bhk(i)[ρ(t,x∗)]fh (t, x+ v (cos(θi)− cos(θh)) t, y + v (sin(θi)− sin(θh)) t)

× fk (t, x∗ − v cos(θk)t, y∗ − v sin(θk)t) dx∗,

and finally,

ÒΥi[f ] (t,x) =
n∑
h=1

∫
V

η[ρ(t,x∗)]fh (t, x∗ − v cos(θh)t, y∗ − v sin(θh)t) dx∗.

3. Existence and uniqueness of the model solution

This section is devoted to demonstrating proof of the existence and uniqueness of the model solution (18). A first

proof of existence and uniqueness was done in [8, 15], in a connected domain without obstacles and border walls.

Here, an explicit mathematical proof of the model (18) is proposed expressing the crowd’s motion in a bounded

domain containing obstacles (the same model as in [8], but with a different second member).180

To demonstrate the existence and uniqueness of the solution to problems (18), we relied on the proof given in [8].

Indeed it will be proceeded as follows:

1. Introducing the “mild” solution of the new system of ODE (18).

2. Using the Banach fixed point theorem, the existence and the uniqueness of a “mild” solution is then proven.

First step:185

We introduce the “mild” form of the system (18) obtained by integration along the characteristics, for i = 1, ..., n,

f̂i (t,x) = φi (x) +

∫ t

0

Λ̂i[f ] (s,x)− µ[ρ(s,x)]f̂i (s,x) +ÒΨi[f, f ] (s,x)−ÒΥi[f ] (s,x) f̂i (s,x) ds. (19)

Second step, choice of the Banach space:

For a given time t, the functional space defined by:

L1
n (Ω) =

{
f(t) = (f1(t), ..., fi(t), ..., fn(t))

T
, ||f(t)||1 =

n∑
i=1

∫
Ω

|fi(t,x)|dx <∞

}
,

is considered.

For a time T > 0, let us note the Banach space XT = C
(
[0, T ],L1

n (Ω)
)
, with the norm: ||f ||XT

= supt∈[0,T ]||f(t)||1.

The following assumptions are then considered :

(A.1.): for all positive real R > 0 satisfying 0 < ρ < R, there exist two constants cµ > 0 and cη > 0 such that:

0 < µ(ρ) < cµ,

0 < η(ρ) < cη.
(20)
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(A.2.): µ(ρ), η(ρ) and Bhk(ρ) are Lipschitz functions with respect to the density ρ; namely there are constants Lµ,

Lη, LB such that: 
|µ[ρ1]− µ[ρ2]| ≤ Lµ|ρ1 − ρ2|, 0 < ρ1 < R, 0 < ρ2 < R,

|η[ρ1]− η[ρ2]| ≤ Lη|ρ1 − ρ2|, 0 < ρ1 < R, 0 < ρ2 < R,

|Bhk(i)[ρ1]−Bhk(i)[ρ2]| ≤ LB |ρ1 − ρ2|, i, h, k = 1, ..., n.

(21)

The main two theorems for the local and global existence, respectively are given in the following:

Theorem 1. (Local existence)

Let φ = (φ1, ..., φi, ..., φn)
T ∈ L∞n (Ω) with φ ≥ 0, there exists ϕ0, a time T > 0 and two constants a0, R, such that

if ||φ||1 ≤ ϕ0, the problem (18) has a unique positive solution f = (f1, ..., fi, ..., fn)
T ∈ XT , satisfying:

||f ||XT
≤ a0||φ||1,

ρ (t,x) ≤ R, ∀ t ∈ [0, T ], ∀ x ∈ Ω.

Moreover, if
n∑
i=1

||φi||∞ ≤ 1, (22)

we have:

ρ (t,x) ≤ 1, ∀ t ∈ [0, T ], ∀ x ∈ Ω. (23)

Theorem 2. (Global existence)

Considering the same assumptions as in Theorem 1, there exists ϕp, (p = 1, ...,m− 1,m ∈ N) , ap, (p = 1, ...,m− 1,m ∈ N),

such that if ||φ||1 ≤ ϕp, the problem (18) has a unique maximum positive solution f ∈ C
(
[0, (m− 1)T ],L1

n (Ω)
)
,

satisfying for any p ≤ m− 1,

supt||f (t+ (p− 1)T ) ||1 ≤ ap−1||φ||1, t ∈ [0, T ],

ρ (t+ (p− 1)T,x) ≤ R, ∀ t ∈ [0, T ], ∀ x ∈ Ω.

In addition, if φ satisfies (22), we have:

ρ (t+ (p− 1)T,x) ≤ 1, ∀ t ∈ [0, T ], ∀ x ∈ Ω.

Proof of Theorem 1

The following function:

ψi(t,x) = fi (t,x) exp (λt) for i = 1, ..., n, λ > 0,

is first introduced. The system (18) is equivalent to the following system:
dψ̂i (t,x)

dt
= λψ̂i (t,x) + Λ̂i[ψ] (t,x)− ψ̂iµ[ρ(t,x] + exp (−λt)

�ÒΨi[ψ,ψ] (t,x)−ÒΥi[ψ] (t,x) ψ̂i
�
,

ψ̂i (0,x) = φi (x) x ∈ Ω for i = 1, ..., n.

(24)
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For all t ∈ [0, T ], we integrate (24). Then, the following “mild” formulation, is deduced:

ψ̂i (t,x) = φi (x) +

∫ t

0

�
exp(−λs)ÒΨi[ψ,ψ] (s,x) + Λ̂i[ψ] (s,x) +

�
λ− µ[ρ(s,x]−ÒΥi[ψ] (s,x) exp(−λs)

�
ψ̂i(s,x)

�
ds.

(25)

Let us consider the operator A =
(ÕA(ψ))1, ...,ÕA(ψ))i, ...,ÕA(ψ))n

)T
, and its i-th component defined by:

ÕA(ψ)i (t,x) = φi (x)+

∫ t

0

�
exp(−λs)ÒΨi[ψ,ψ] (s,x) + Λ̂i[ψ] (s,x) +

�
λ− µ[ρ(s,x]−ÒΥi[ψ] (s,x) exp(−λs)

�
ψ̂i (s,x)

�
ds.

(26)

To show that the system (24) has a solution, it is sufficient to show that the operator A has a unique fixed point

in the Banach space XT . Indeed, let us introduce the set defined by:

BT,a0,λ,R =

{
ψ = (ψ1, ..., ψi, ..., ψn)

T ∈ XT : ψi ≥ 0, ||ψ||XT
≤ a0||φ||1,

n∑
i=1

ψi (t, x− v cos(θi)t, y − v sin(θi)t) ≤ Rexp(λt), t ∈ [0, T ], x ∈ Ω

}
.

The operator A has a unique fixed point if the following two properties are satisfied:

• (P.1) Let ψ ∈ BT,a0,λ,R then, Aψ ∈ BT,a0,λ,R.

• (P.2) The application A : BT,a0,λ,R → BT,a0,λ,R is a contraction.190

In what follows, the constants T, a0, λ,R, must be chosen carefully in order to obtain properties (P.1) and (P.2).

The proof of both properties (P.1) and (P.2) is based on the following Lemma:

Lemma 1. Let T > 0 , λ > 0, ψ1 =
(
ψ1

1 , ..., ψ
1
i , ..., ψ

1
n

)T ∈ XT and ψ2 =
(
ψ2

1 , ..., ψ
2
i , ..., ψ

2
n

)T ∈ XT such that :

n∑
i=1

ψji (t, x− v cos(θi)t, y − v sin(θi)t) ≤ Rexp(λt) t ∈ [0, T ], x ∈ Ω for j = 1, 2, λ > 0, R > 0. (27)

Then,

1. There are C1 > 0, C2 > 0 such that,

||Aψ1 −Aψ2||XT
≤
�
C1

λ

(
||ψ1||XT

+ ||ψ2||XT

)
+ (λ+ C2)T

�
||ψ1 −ψ2||XT

, (28)

where:

C1 = 2cη +R (ncηLB + (n+ 1)Lη) ,

C2 = 2cµ + (n+ 1)RLµ.
(29)

2. If ψi(t,x) ≥ 0 and φi(x) ≥ 0 then, there exists λ0 such that:
�ÓAψ�

i
(t,x) ≥ 0 for all t ∈ [0, T ], x ∈ Ω

and λ ≥ λ0, i = 1, ..., n,

where:

λ0 = Rcη|V |+ cµ,

|V |: is the measure of visibility zone V, |V | =
∫
V

dx.
(30)
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3. There exist R1 and T such that, for all R ≥ R1 and t ≤ T , we get:

n∑
i=1

(Aψ)i (t, x− v cos(θi)t, y − v sin(θi)t) ≤ Rexp(λt) t ∈ [0, T0], x ∈ Ω. (31)

where:

R1 =
n∑
i=1

||φi||∞, (32)

T =
1

λ
ln

(
1 +

λ

nR (cηR|V |+ cµ)

(
R−

n∑
i=1

||φi||∞

))
:= T0. (33)

4.

||Aψ||XT
≤ ||φ||1 +

C1

λ
||ψ||2XT

+ (λ+ C2)T ||ψ||XT
. (34)

The proof of this Lemma is given in Appendix A.

Let ψ1, ψ2 ∈ BT,a0,λ,R, and T be defined by:

T =
1

C2 + λ
T0 ≤ T0, (35)

where T0 is the expression of time defined in equation (33), and C2 is defined in equation (29).

According to the inequality (34),

||Aψ||XT
≤ ||φ||1 +

C1

λ
||ψ||2XT

+ (λ+ C2)T ||ψ||XT
, (36)

since ψ ∈ BT,a0,λ,R; we have ||ψ||XT
≤ a0||φ||1, moreover,

||Aψ||XT
≤ ||φ||1 +

1

λ
C1a

2
0||φ||21 + (C2 + λ)Ta0||φ||1. (37)

Then, ||Aψ||XT
≤ a0||φ||1, if a0 satisfies the following equation:

(E0) : ||φ||1 +
1

λ
C1a

2
0||φ||21 + (C2 + λ)Ta0||φ||1 = a0||φ||1.

Indeed, the constant a0 exists if:

||φ||1 ≤ min
§

(n− 1)2cµ
8n2cη

,
(n− 1)2cη|V |

(4n2 (ncηLB + (n+ 1)Lη))

ª
:= ϕ0, (for the proof see Appendix B).

which leads to the existence of a0 if ||φ||1 is ”small”.

In addition, from Lemma 1 for all ||φ||1 ≤ ϕ0, R ≥ R1, λ = λ0, t ≤ T ≤ T0 and a0 the smallest solution among

the two positive solutions of equation(E0), where R1, λ0, and T , are given by (32), (30), (35), respectively, we get:

if ψ ∈ BT,a0,λ,R then Aψ ∈ BT,a0,λ,R ∀t ∈ [0, T ].

This ends the proof of property (P.1).

On the other hand, from Lemma 1, we have:

||Aψ1 −Aψ2||XT
≤
�

2C1

λ
a0||φ||1 + (C2 + λ)T

�
||ψ1 −ψ2||XT

. (38)
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Let a0, the small positive solution of equation (E0) be defined by:

a0 = λ
(1− (λ+ C2)T )−

√
∆0

2C1||φ||1
, (39)

where ∆0 is the discriminant of equation (E0)

∆0 = ((C2 + λ)T − 1)
2 − 4

C1

λ
||φ||1. (40)

Hence,

0 ≤
�

2C1

λ
a0||φ||1 + (C2 + λ)T

�
= 1−

√
∆0 < 1.

From there, the operator A : BT,a0,λ,R → BT,a0,λ,R is a contraction. This ends the proof of property (P.2).195

The fixed point theorem ends the proof of Theorem 1, which refers to local existence.

From the foregoing, there exist ϕ0, λ0, T , a0 and R, such that the problem (18) has a unique positive solution

f = (f1, ..., fi, ..., fn)
T ∈ XT , satisfying:

ρ (t,x) ≤ R, ∀ t ∈ [0, T ], ∀ x ∈ Ω. ∀ R ≥ R1,

where

R1 =
n∑
i=1

||φi||∞.

Moreover if φ satisfies (22) (R1 ≤ 1), then one can choose R such that (23) can be obtained; for example, the R

can be chosen as:

R =
1 +

∑n
i=1 ||φi||∞

2
> R1. (41)

This completes the proof.

Proof of Theorem 2

To prove the existence for large times of the problem’s solution (18), it is equivalent to show that the solution

obtained by Theorem 1 admits an extension on each interval [0, pT ] for p ∈ N.

Let φ satisfying the conditions of Theorem 1. R, λ = λ0 and T are given by (41), (30), (35), respectively, and are

fixed and depending on initial data φ.

Consequently, there exists ϕ1 such that if ||φ||1 ≤ ϕ1, there exists a1 such that the solution to (18) obtained by

Theorem 1 can be extended in the interval [T, 2T ] and satisfies the estimates

||ψ(t+ T )||XT
≤ a1||φ||1, ∀ t ∈ [0, T ], (42)

ρ (t+ T,x) ≤ R, ∀ t ∈ [0, T ], ∀ x ∈ Ω. (43)

Indeed, the problem (24) on [T, 2T ] with a given initial condition defined by ψ(T,x) can be solved, more precisely

∀t ∈ [0, T ] we have :

ψ̂i (t+ T,x) = ψi (T,x) +

∫ t

0

�
exp(−λ(s+ T ))ÒΨi[ψ,ψ] (s+ T,x) + Λ̂i[ψ] (s+ T,x)

+
�
λ− µ[ρ(s+ T,x]−ÒΥi[ψ] (s+ T,x) exp(−λ(s+ T ))

�
ψ̂i (s+ T,x)

�
ds, for i = 1, ..., n.
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Let us consider the set defined by:

BT,a1,λ,R =

§
ψ(t+ T ) = (ψ1(t+ T ), ..., ψi(t+ T ), ..., ψn(t+ T ))

T ∈ XT : ψi ≥ 0, ||ψ(t+ T )||XT
≤ a1||φ||1,

n∑
i=1

ψi (t+ T, x− v cos(θi)(t+ T ), y − v sin(θi)(t+ T )) ≤ Rexp(λ(t+ T )) t ∈ [0, T ],x ∈ Ω

ª
.

where R, λ, T, a0 are fixed and depending on initial data φ.

In the same way as in the case of local existence, it can be shown that, for ψ(t + T ) ≥ 0, t ∈ [0, T ], R given by

(41), λ = λ0, and T given by (35), we get :

�ÓAψ�
i
(t+ T,x) ≥ 0, i = 1, ..., n, t ∈ [0, T ], x ∈ Ω,

and

n∑
i=1

(Aψ)i (t+ T, x− v cos(θi)(t+ T ), y − v sin(θi)) ≤ Rexp(λ(t+ T )) i = 1, ..., n, t ∈ [0, T ], x ∈ Ω.

In addition, it can be shown that:

||Aψ(t+ T )||XT
≤ a0||φ||1 +

1

λ
C1a

2
1||φ||21 + (C2 + λ)Ta1||φ||1. (44)

Then, ||Aψ(t+ T )||XT
≤ a1||φ||1, if a1 satisfies the following equation:

(E1) : a0||φ||1 +
1

λ
C1a

2
1||φ||21 + (C2 + λ)Ta1||φ||1 = a1||φ||1.

Moreover, there exists a solution of equation (E1) in a1 if its discriminant ∆1 = ((C2 + λ)T − 1)
2 − 4C1

λ a0||φ||1 is

positive.

With a choice of φ such that: ||φ||1 ≤ min
(
ϕ0, λ ((C2+λ)T−1)2

4C1a0

)
:= ϕ1, we have: ∆1 ≥ 0.

From there, for ||φ||1 ≤ ϕ1, t ∈ [0, T ] with T is given by (35), R given by (41), a1 is a positive solution of equation

(E1), we have:

if ψ(t+ T ) ∈ BT,a1,λ,R then Aψ(t+ T ) ∈ BT,a1,λ,R ∀t ∈ [0, T ].

In addition, let ψ1(t+ T ),ψ2(t+ T ) ∈ BT,a1,λ,R, then:

||Aψ1(t+ T )−Aψ2(t+ T )||XT
≤
�

2C1

λ
a1||φ||1 + (C2 + λ)T

�
||ψ1(t+ T )−ψ2(t+ T )||XT

. (45)

Let us consider a1 the smallest solution among the two positive solutions of the equation (E1), given by: a1 =

λ (1−(λ+C2)T )−
√

∆1

2C1||φ||1 ≥ 0,

since

0 ≤
�

2C1

λ
a1||φ||1 + (C2 + λ)T

�
= 1−

√
∆1 < 1.

By applying the fixed point theorem which gives the existence and uniqueness of solution ψ(t + T ) ∈ XT , more

precisely existence of a solution in [T, 2T ]. This solution is continuous in [T, 2T ] and, in particular, it satisfies (42)

and (43). Moreover, if φ satisfies (22) (
∑n
i=1 ||φi||∞ ≤ 1), for R given by (41), we have,

ρ (t,x) ≤ 1, ∀ t ∈ [T, 2T ], ∀ x ∈ Ω.
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The iteration process can be applied to prove the existence for large times. Suppose that the solution exists and is

continuous in [0, (m− 1)T ] and satisfies: ||ψ(t+ (p− 1)T )||XT
≤ ap−1||φ||1, for p = 1, ...,m, t ∈ [0, T ],

||ψ(pT )||XT
≤ ap−1||φ||1, for p = 1, ...,m, and ρ (t+ (p− 1)T,x) ≤ R, for p = 1, ...,m, t ∈ [0, T ] x ∈ Ω.

where, a0, ∆0, R, λ, T are given by (39), (40), (41), (30), (35) respectively.

ap and ∆p for p = 1, ...,m− 1 are given by:

ap = λ
(1− (λ+ C2)T )−

√
∆p

2C1||φ||1
,

∆p = ((C2 + λ)T − 1)
2 − 4

C1

λ
ap−1||φ||1.

It can now be proved that we can extend the solution in [(m− 1)T,mT ], satisfying the following inequality:

||ψ (t+ (m− 1)T ) ||1 ≤ am−1||φ||1, t ∈ [0, T ], (46)

||ψ (mT ) ||1 ≤ am−1||φ||1, (47)

ρ (t+ (m− 1)T,x) ≤ R, t ∈ [0, T ] x ∈ Ω. (48)

Let ψ = (ψi)i=1,...,n be the solution of the following problem, for i = 1, ..., n

ψ̂i (t+ (m− 1)T,x) = ψ̂i ((m− 1)T,x) +

∫ t+(m−1)T

(m−1)T

�
exp(−λ(s))ÒΨi[ψ,ψ] (s,x) + Λ̂i[ψ] (s,x)

+
�
λ− µ[ρ(s,x]−ÒΥi[ψ] (s,x) exp(−λ(s))

�
ψ̂i (s,x)

�
ds.

In the same way as in the case of local existence, it can be shown that:

||Aψ (t+ (m− 1)T ) ||XT
≤ am−2||φ||1 +

1

λ
C1a

2
m−1||φ||21 + (C2 + λ)Tam−1||φ||1,

||Aψ1 (t+ (m− 1)T )−Aψ2 (t+ (m− 1)T ) ||XT
≤
�

2C1

λ
am−1||φ||1 + (C2 + λ)T

�
||ψ1 (t+ (m− 1))−ψ2 (t+ (m− 1)T ) ||XT

.

If we choose am−1 so that,

am−1 = λ
(1− (λ+ C2)T )−

√
∆m−1

2C1||φ||1
, (49)

where,

∆m−1 = ((C2 + λ)T − 1)
2 − 4

C1

λ
am−2||φ||1. (50)

Then am−1 is a solution of

(Em−1) : ||φ||1 +
1

λ
C1a

2
m−1||φ||21 + (C2 + λ)Tam−1||φ||1 = am−1||φ||1.

Moreover

0 ≤
�

2C1

λ
am−1||φ||1 + (C2 + λ)T

�
= 1−

√
∆m−1 < 1,

which gives the solution in [(m − 1)T,mT ], satisfying (46)-(48). Moreover, if φ satisfies (22) (
∑n
i=1 ||φi||∞ ≤ 1),

for R given by (41), we have:

ρ (t,x) ≤ 1, ∀ t ∈ [(m− 1)T,mT ], ∀ x ∈ Ω.

This completes the proof of Theorem 2.200
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4. Simulations

4.1. Numerical method

The numerical method used in this work is the same numerical scheme described in [7, 8], is based on the so called

splitting method [20] to solve the proposed mathematical model defined by: ∂tfi (t,x) + vi.∂xfi (t,x) = Γi[f ] (t,x) i = 1, ..., n, t ∈ [0, T ],

fi (0,x) = φi(x) i = 1, ..., n, x ∈ Ω,
(51)

on an interval of time [0, T ] . The principle of the method consists in introducing a subdivision [tk]k=0,...,T of the

interval [0, T ], and solving on each subdivision [tk, tk+1] the two following systems: ∂t ófi (t,x) + vi.∂x ófi (t,x) = 0 i = 1, ..., n, t ∈ [tk, tk+ 1
2
],

ófi (0,x) = φi(x) i = 1, ..., n, x ∈ Ω,
(52)

where φi(x) is the initial distribution of pedestrians, and ∂tfi (t,x) = Γi[f ] (t,x) i = 1, .., n, t ∈ [tk+ 1
2
, tk+1],

fi (0,x) = ófi(x) i = 1, ..., n, x ∈ Ω,
(53)

where ófi(x) is the solution of system (52).

For the resolution of the transport equation (52), the upwind scheme of order 1 [21, 22] is used, and for the ordinary

differential equation (53), Euler’s method of order 1 is preferred.205

4.2. Numerical results and application to the evacuation of a room

Several authors [1] reported that an obstacle can either facilitate or obstruct pedestrian evacuation of a room with

an exit, depending on its position, size and shape. In particular it has been shown that an obstacle may have a

strong influence on pedestrians if it is located close to the exit.

In order to show the performance of the proposed mathematical model, it has been applied to the evacuation of210

a room with and without an obstacle and our study is restricted to the mathematical model without taking into

account the internal interactions between the pedestrians. This choice is motivated by considering a small number

of pedestrians (N ≤ 50 pedestrians). Our goal is to study the influence of an obstacle on evacuation time and

describe some characteristics of the dynamics of a crowd in a bounded domain (with walls, size of the exit and

dimensions of the obstacle) namely, avoidance and evacuation.215

Therefore the mathematical model (51) becomes: ∂tfi (t,x) + vi.∂xfi (t,x) = ΓDi [f ] (t,x) i = 1, ..., n, t ∈ [0, T ],

fi (0,x) = φi(x) i = 1, ..., n, x ∈ Ω.
(54)

It is assumed here that σ = 1 and the velocity has a constant modulus. Moreover pedestrians can take nine

directions, and 9 densities: fi (t,x) = f(t,x, θi), i = 1, ..., 9 (see fig. 8), are taken into account.
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2

Figure 8: Illustration of the nine directions defined by: θk = k−4
8
π : k = 0, ..., 8, that each pedestrian can take.

For all the simulations, the following parameters are chosen:

• dimensions of the domain: length Lx = 11m, and width Ly = 11m.

• size of exit: S = 1.5m.

• quality of domain: α = 1.

• 9 different directions of velocity on the set Sθ,

Sθ =

§
θi =

i− 4

8
π : i = 0, ..., 8

ª
.

• rate of interactions: µ = 1− ρ, with 0 < µ < 1.

The dimensionless quantities are obtained with reference to the following reference variables: L = 11
√

2 m,220

Vm = 2 m.s−1, Tm = 7.78 s.

A value of ρmax = 7 pedestrians /m2 is chosen to normalize the local density, which is a high value.

The first application deals with the evacuation of N = 50 people of a room, first without obstacle and then with225

an obstacle. This group of 50 pedestrians at initial time is gathered in a circular area of radius r = 1.91m . The

maximum number of pedestrians Nmax = 7π r2 = 80. The normalized local density at the initial time (within

a circular area) is: ρ0 = 50
πr2ρmax

= 0.62. Three cases are considered: first without any obstacle, second with a

fixed square-shaped obstacle located between the center of the disk D0 and the exit and last with a fixed square-

shaped obstacle just in front of the exit. For the two last cases, the dimensions of the obstacle are identical :230

Lobs = lobs = 1.5m.

The second application concerns the comparison of the evacuation time obtained by our technique and that obtained

by a deterministic discrete method in the simple case of the evacuation of a room without obstacle. The evacuation

time is defined as the time when the last pedestrian has left the room. Finally, an obstacle is introduced in the room

and the last application examines the effect of the dimensions and location of an obstacle on the time evacuation.235
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4.2.1. Evacuation of a room without obstacle and with a fixed obstacle

In the first case of the room without obstacle, the coordinates of the center of the disk D0 at t = 0 are M0 = (2.3; 3);

and the results of our model, obtained at four successive times are illustrated in Figures 9a, b, c and d.

(a) t=0s

(b) t = 3.64s

(c) t = 7.44s

(d) t = 11.92s

Figure 9: Time evolution of the local pedestrians density at different times: (a): t = 0s, (b): t = 3.64s, (c): t = 7.44s, and

(d): t = 11.92s .

In the second case, the room contains a fixed square-shaped obstacle (1) whose lower left corner has the coordinates

(6.; 2.2), and the center of the initial disk is: D0 is: M0 = (2.3; 2.5). The results obtained by our model at four240

different times are then illustrated in Figures 10 a, b, c and d.
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(a) t = 0s

(b) t = 4.56s

(c) t = 9.6s

(d) t = 12.36s

Figure 10: Time evolution of the local pedestrians density at 4 different times:, (a): t = 0s, (b): t = 4.56s, (c): t = 9.6s,

and (d): t = 12.36s .

In the last case, the obstacle (2) whose lower left corner located at the left bottom has the coordinates (6.25; 4.75),

is located in front of the exit at a distance of 3.5m. The center of the initial disk D0 is: M0 = (2.3; 5.5). The

results obtained from the proposed procedure at six different times are illustrated in Figures 11 a, b, c, d, e and f.

The group of pedestrians splits into two subgroups when in front of the obstacle to avoid it and with the obstacle245

bypassed, the group reforms when it leaves the room.
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(a) t = 0s (b) t = 2.24s (c) t = 3.48s

(d) t = 6.88s (e) t = 9.88s (f) t = 11.32s

Figure 11: Time evolution of the local pedestrians density, (a): t = 0s, (b): t = 2.24s, (c): t = 3.48s, (d): t = 6.88s, (e):

t = 9.88s and (f): t = 11.32s.

Finally, the evacuation time is collected for the three cases in Tab. (3). It can be noted that the evacuation time

is slightly improved when the obstacle (2) is located in front of the exit.

without obstacle with obstacle (1) with obstacle (2)
12.6 s 13.41 s 12.59 s

Table 3: Evacuation time (s).

4.2.2. Comparison of the proposed method with deterministic approach250

In order to check the validity of the proposed kinetic model, the evacuation time for a room without obstacle

calculated with our kinetic model is compared with a mean evacuation time obtained by a discrete deterministic

model: CAPFlow developed by Argoul et al. [3]. In CAPFlow simulations, the pedestrians are randomly distributed

in a circular area of radius r = 1.91m. Let the density ρ be in [1.3 4.3]pedestrians/m2. To examine the sensitivity

of the deterministic model to changes in the value of model parameters, the value of some parameters are changed255

in a random manner (normal law): the radii of the disks representing the pedestrians, the relaxation time after

a collision to recover the desired direction etc [1]. 150 simulations with the CAPFlow model are performed. The

evacuation time taken by the pedestrians to reach the exit is calculated by both the kinetic and discrete models

and the results for four local pedestrians densities are shown in Table 4.
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Initial density

Normalized

local density

Number of

pedestrians Kinetic model Discrete model
(pedestrian/m2) ρ0 N Evacuation time (s) Mean evacuation time (s)

1.3 0.18 15 11.12 11.10
2.6 0.37 30 11.46 11.51
3.4 0.49 40 11.62 11.67
4.3 0.62 50 11.78 11.80

260

Table 4: Evacuation time calculated by the kinetic and discrete models for four initial densities.

According to the results in the previous table, the evacuation times obtained by the kinetic and discrete models,

respectively, for each case are very similar.

4.2.3. Influence of the obstacle’s position and dimensions on the evacuation time

A fixed obstacle in a room is now located in front of the exit (see fig.12). As previously a group of N = 50265

pedestrians evacuates the room. Our goal is to study the influence of the obstacle on the evacuation time of the

group.

Group of
pedestrians

Ω

W

lobs

Lobs

dobs

Figure 12: Illustration of the obstacle characteristics : Lobs, lobs are its dimensions, and dobs the distance between the exit

and the obstacle.

The group of N = 50 pedestrians is distributed in a circular area of radius r = 1.91m in an empty room (without

obstacle). The normed local density at the initial circular area is as previously: ρ = 50
πr2ρm

= 0.62. The evacuation

time computed by our technique, to leave the room without any obstacle is: 11.78s.270

Then, the obstacle is located in the room, and the obstacle’s dimensions and their distance to the exit are changed.

Then, the evacuation time is performed, and its values are collected in Table 5.
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dobs Lobs × lobs Evacuation time
(m) (m×m) (s)

0.5× 0.5 12.36
0.75× 0.75 12.48

1.5 1× 1 12.20
1.25× 1.25 12.00
1.5× 1.5 12.62
0.5× 0.5 12.32

0.75× 0.75 12.42
1.75 1× 1 11.86

1.25× 1.25 11.42
1.5× 1.5 11.48
0.5× 0.5 12.28

0.75× 0.75 12.38
2 1× 1 11.78

1.25× 1.25 11.38
1.5× 1.5 11.26
0.5× 0.5 12.24

0.75× 0.75 12.32
2.25 1× 1 12.28

1.25× 1.25 11.50
1.5× 1.5 11.30
0.5× 0.5 12.20

0.75× 0.75 12.28
2.5 1× 1 12.38

1.25× 1.25 11.82
1.5× 1.5 11.48
0.5× 0.5 12.16

0.75× 0.75 12.24
2.75 1× 1 12.32

1.25× 1.25 12.42
1.5× 1.5 11.90
0.5× 0.5 12.14

0.75× 0.75 12.20
3 1× 1 12.28

1.25× 1.25 12.38
1.5× 1.5 12.50

Table 5: Influence of the distance dobs between the obstacle and the exit and of the dimensions Lobs and lobs on the

evacuation time in the presence of an obstacle.

According to the results in Table 5, with an accurate choice of obstacle parameters (dimensions, position) the time275

of the pedestrian evacuation could be improved by putting an obstacle in the room.

The square-shaped obstacle that allows to get a smaller evacuation time is that with dimensions 1.5m× 1.5m and

located at 1m from the exit.

Our study confirms that a strategically placed obstacle near an exit can speed evacuations. Several simulations

varying its size, shape and orientation have to be performed and tailored to the space and to the width of the exit280

itself. The proposed technique is interesting for engineers and designers to improve and secure the evacuation of

rooms as it executes faster than discrete deterministic model using a random change of some of its parameters.

5. Conclusions

This paper presents the development of a new approach to model crowd dynamics based on the kinetic theory

of active particles. The existence and uniqueness of the solution of the proposed mathematical model have been285

proven for large times thanks to the Banach fixed-point theorem, assuming that the internal interactions between
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pedestrians are negligible. Numerical simulations using a scheme based on a splitting method have been performed.

The proposed model is able to describe some characteristics of the dynamics of a crowd in a bounded domain (with

walls, an exit and an obstacle) namely, avoidance and evacuation. Indeed, several cases were studied to show

the ability of this model to reproduce pedestrian behavior, and the results were compared to those obtained with290

a deterministic approach. Finally, the influence of a square-shaped obstacle on the evacuation time is studied.

Indeed, with a suitable choice of obstacle parameters (dimensions and position), it has been shown that the time

of the pedestrian evacuation may become much shorter than without any obstacle.
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Appendix A:300

Proof of Lemma

1. It is assumed that:

|ρ1(t, x)− ρ2(t, x)| ≤exp(−λt)...

×
� n∑
h=1

n∑
k=1

|ψ1
h (t, x− v cos(θh)t, y − v sin(θh)t)− ψ2

k (t, x− v cos(θk)t, y − v sin(θk)t) |
�
,

from the equation (27) and the hypothesis (A.1), (A.2.), let us note Bhk(i)[ρ(t,x)] ≤ 1, the following estimates

are then deduced:

||ÒΨ[ψ1,ψ1](t)− ÒΨ[ψ2,ψ2](t)||1 ≤ (cη + nR (cηLB + Lη))
(
||ψ1(t)||1 + ||ψ2(t)||1

)
||ψ1(t)−ψ2(t)||1, (.1)

||ÒΥ[ψ1]Óψ1(t)− ÒΥ[ψ2]Óψ2(t)||1 ≤ (cη + LηR)
(
||ψ1(t)||1 + ||ψ2(t)||1

)
||ψ1(t)−ψ2(t)||1, (.2)

||ÒΛ[ψ1](t)− ÒΛ[ψ2](t)||1 ≤ (cµ + nRLµ) ||ψ1(t)−ψ2(t)||1. (.3)

According to estimates (.1)-(.3), the estimate (28) is obtained with

C1 = 2cη +R (ncηLB + (n+ 1)Lη) ,

C2 = 2cµ + (n+ 1)RLµ.

2. Since ÒΨi[ψ,ψ](t,x) ≥ 0 and Λ̂i[ψ](t,x) ≥ 0 because ψi(x) ≥ 0, then (Âψ)i(t,x) ≥ 0 if λ − µ[ρ] −
ÒΥi[ψ](t,x)exp(−λt) ≥ 0 ,

from (A.1) and the equation (27), it is deduced that:

Υi[ψ](t,x) ≤ Rexp(λt)cη|V |, i = 1...n,

so for that Â(ψ)i(t,x) ≥ 0, it is enough to choose λ ≥ λ0 = Rcη|V |+ cµ.
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3. Let us note that if Ph(i) ≤ 1, from (A.1) and equation (27), it can deduced that, for i = 1, ..., n,

ÒΨi[ψ,ψ](t,x) ≤ cη|V |R2exp(2λt),

Λ̂i[ψ](t,x) ≤ cµRexp(λt),

hence for a choice of R such that:

R ≥
n∑
i=1

||φi||∞ = R1,

and a time: t such that

t ≤ T =
1

λ
ln

(
1 +

λ

nR (cηR|V |+ cµ)

(
R−

n∑
i=1

||φi||∞

))
:= T0, (.4)

we obtain the relation (31).

4. Let ψ ∈ XT , T ≥ 0, according to the equation (9), (6) for Ph(i), Bhk(i), the hypothesis (A.1.), and using the

following variable changes:305

(z1, z2)← (x+ v (cos(θi)− cos(θh)) t, y + v (sin(θi)− sin(θh)) t) ,

(w1, w2)← (x− v cos(θi)t, y − v sin(θi)t) .

We show that:

||ÒΨ[ψ,ψ](t)||1 ≤ cη||ψ(t)||21, (.5)

||ÒΥ[ψ]Òψ(t)||1 ≤ cη||ψ(t)||21, (.6)

||Λ̂[ψ](t)||1 ≤ cµ||ψ(t)||1. (.7)

From the relations (.5) - (.7) it can be found:

||Aψ(t)||1 ≤ ||φ||1 +
2

λ
cη (1− exp(−λt)) ||ψ||2XT

+ (λ+ 2cµ) t||ψ||XT
, (.8)

since 2cµ ≤ C1 and 2cη ≤ C2, hence the estimate (34) becomes:

||Aψ||XT
≤ ||φ||1 +

C1

λ
||ψ||2XT

+ (λ+ C2)T ||ψ||XT
. (.9)

This ends the proof of the Lemma.

Appendix B:

The following equation

(E) : ||φ||1 +
1

λ
C1a

2
0||φ||21 + (C2 + λ)Ta0||φ||1 = a0||φ||1

has a solution a0 if,

||φ||1 ≤ min
§

(n− 1)2cµ
8n2cη

,
(n− 1)2cη|V |

(4n2 (ncηLB + (n+ 1)Lη))

ª
.

Indeed, the discriminant of the equation (E) is given by,

∆0 = ((C2 + λ)T − 1)
2 − 4

C1

λ
||φ||1.
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∆0 ≥ 0 if ((C2 + λ)T − 1)
2 ≥ 4C1

λ ||φ||1.

According to equation (35) and for R ≥ R1, λ = λ0 = cηR|V |+ cµ,310

T =
1

λ+ C2
ln

(
1 +

λ

nR (cηR|V |+ cµ)

(
R−

n∑
i=1

||φi||∞

))
,

by using the following inequality ln(1 + x) ≤ x, for x ≥ 0

(λ+ C2)T ≤ 1

n
,

which implies,

(λ+ C2)T − 1 ≤ 1− n
n

,

then,

[(λ+ C2)T − 1]
2 ≥ (1− n)2

n2
.

Hence, if we have

4
C1

λ
||φ||1 ≤

(1− n)2

n2

then we get: 4C1

λ ||φ||1 ≤ ((C2 + λ)T − 1)
2
, by taking

||φ||1 ≤
(1− n)2

n2

λ

4C1
,

hence,

||φ||1 ≤
(1− n)2

4n2

Rcη|V |+ cµ
(2cη +R (ncηLB + (n+ 1)Lη))

:= ϕ∗(R).

Moreover,

||φ||1 ≤ argmin
R≥0

{ϕ∗(R)} .

By studying the following function :

ϕ∗ : R→ ϕ∗(R), with R ∈ [0,+∞[,

we have :

argmin
R≥0

{ϕ∗(R)} = min

§
(n− 1)2cµ

8n2cη
,

(n− 1)2cη|V |
(4n2 (ncηLB + (n+ 1)Lη))

ª

in particular for R > R1, we have:

argmin
R>R1

{ϕ∗(R)} = min

§
(n− 1)2cµ

8n2cη
,

(n− 1)2cη|V |
(4n2 (ncηLB + (n+ 1)Lη))

ª
:= ϕ0.
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