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This paper concerns the mathematical modelling of the motion of a crowd in a non connected bounded domain, based on kinetic and stochastic game theories. The proposed model is a mesoscopic probabilistic approach that retains features obtained from both micro-and macro-scale representations; pedestrian interactions with various obstacles being managed from a probabilistic perspective. A proof of the existence and uniqueness of the proposed mathematical model's solution is given for large times. A numerical resolution scheme based on the splitting method is implemented and then applied to crowd evacuation in a non connected bounded domain with one rectangular obstacle. The evacuation time of the room is then calculated by our technique, according to the dimensions and position of a square-shaped obstacle, and finally compared to the time obtained by a deterministic approach by means of randomly varying some of its parameters.

Introduction

The dynamic modelling of crowd motion has recently aroused a great interest in the scientific community and is used in numerous applications, such as engineering and social science [START_REF] Takashi | Effects of an obstacle position for pedestrian evacuation: SF model approach[END_REF]. It has become increasingly important to avoid or control panic situations and to ensure the safety of people in congested areas.

Mathematical representations of crowd motion from the microscopic to macroscopic scale have been an active 5 field of study for the last two decades, with a rich scientific literature [START_REF] Cristiani | Multiscale modeling of pedestrian dynamics[END_REF][START_REF] Argoul | Pedestrian trajectories and collisions in crowd motion[END_REF][START_REF] Helbing | Social force model for pedestrian dynamics[END_REF][START_REF] Helbing | Self-organizing pedestrian movement[END_REF][START_REF] Hughes | A continuum theory for the flow of pedestrians[END_REF]. The aim of this paper is not to present an exhaustive list of references. Only some of the most frequently used will be mentioned: the microscopic approach based on the social forces model, proposed by Helbing [START_REF] Helbing | Social force model for pedestrian dynamics[END_REF][START_REF] Helbing | Self-organizing pedestrian movement[END_REF], where the movement of the crowd is characterized by the position and velocity of each individual, and the macroscopic models, given by Hughes [START_REF] Hughes | A continuum theory for the flow of pedestrians[END_REF], that consider the crowd as a fluid.

Recently, an intermediate mesoscopic representation based on the kinetic approach appeared and its application to crowd representation gave promising results for the description of pedestrians' strategy. Very few references of the mesoscopic representation can be found in the literature [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF][START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF][START_REF] Bellomo | On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms[END_REF][START_REF] Bellomo | Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds[END_REF][START_REF] Bellomo | On multiscale models of pedestrian crowds from mesoscopic to macroscopic[END_REF].

The kinetic theory is a mathematical description of a volume of material containing a large number of particles interacting with each other, for example, a volume of gas particles [START_REF] Bellomo | Modeling complex living systems[END_REF]. This approach allows us to connect both the macroscopic and microscopic properties. Monte Carlo particle methods have a relevant role in the numerical resolution of kinetic equations [START_REF] Aristov | Direct methods for solving the Boltzmann equation and study of nonequilibrium flows[END_REF][START_REF] Barbante | A kinetic theory description of liquid menisci at the microscale[END_REF]. Moreover, this theory has been applied in many areas, namely, modelling of vehicular traffic [START_REF] Bellomo | Global solution to the cauchy problem for discrete velocity models of vehicular traffic[END_REF][START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach[END_REF], and crowd dynamics [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF][START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF][START_REF] Bellomo | On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms[END_REF][START_REF] Bellomo | Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds[END_REF][START_REF] Bellomo | On multiscale models of pedestrian crowds from mesoscopic to macroscopic[END_REF][START_REF] Bellomo | Behavioral crowds: Modeling and Monte Carlo simulations toward validation[END_REF][START_REF] Marsan | Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics[END_REF], which is the subject of this study.

The modelling of a crowd by a kinetic approach started with Bellomo's and Bellouquid's work [START_REF] Bellomo | On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms[END_REF], in which the set of main governing equations are introduced. In this approach, the crowd is seen as a complex system in which the interactions between people (particles) are managed from a probabilistic point of view and the microscopic state of each pedestrian (particle) is characterized by his/her position and speed. In addition, the general form of the system is represented by a distribution function in a microscopic state and the dynamic of this distribution function is given by the study of particles balance in a unit volume element of the phase plane. Then Bellomo et al. [START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF] developed this approach and handled the movement of a crowd moving in different directions, in an unbounded domain and where the objective of each particle is to reach a fixed target. Afterwards, Agnelli et al. [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF] studied the case of people moving in a connected bounded domain, without obstacles. Then Bellomo and Gibelli treated the density-velocity diagram in steady flow conditions and studied some collective emerging behaviors that are experimentally observed, namely the self-organized behaviors leading to the creation of lanes in streets and the increasing of evacuation time in stressful conditions [START_REF] Bellomo | Behavioral crowds: Modeling and Monte Carlo simulations toward validation[END_REF].

Most of the studies that were previously mentioned, concerned connected areas [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF][START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF][START_REF] Bellomo | On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms[END_REF][START_REF] Bellomo | Behavioral crowds: Modeling and Monte Carlo simulations toward validation[END_REF], while the question of non connected areas is still open. In this paper, the kinetic theory applied to crowd dynamics is extended to its motion in a non-connected bounded domain, with the presence of fixed obstacles. To model interactions, it is assumed that pedestrians can change their direction for various reasons, such as: the wish to reach a target, the avoidance of the edges of the domain and / or fixed obstacles in the field. In a future step, pedestrians will be considered as "active particles" by taking into account their heterogeneity and their capacity to develop a strategy of displacement. This paper is organized as follows: Section 2 provides the mathematical model for the crowd evacuation in an area including walls and obstacles. Then, probabilistic tools are used to describe pedestrian-pedestrian interactions as well as pedestrians interactions along with the geometry of the area. Section 3 presents a mathematical framework to obtain proofs of the existence and of the uniqueness of the proposed model's solution. Section 4 is devoted to numerical simulations to check the ability of the proposed model to describe the main features of the pedestrian dynamics, particularly the avoidance of fixed obstacles on their walk towards the exit. The influence of the position of a fixed square obstacle in the vicinity of the exit is finally studied with respect to the evacuation time for a group of 50 persons.

Position of the problem under study. Mathematical modelling

Let us consider a system composed of N particles (the pedestrians) distributed randomly in a two-dimensional bounded domain Ω ⊂ R 2 . This group of N pedestrians present in the room at initial time t 0 , wish to evacuate the room by the exit of size S. At initial time t = t 0 , pedestrians are distributed within a disk D 0 of radius r and of center M 0 (x 0 , y 0 ). The initial global density is then: ρ 0 = N π r 2 (ped/m 2 ). Kinetic type equations derivation requires a detailed analysis of the interactions at a micro-scale, namely at the pedestrian scale related to the statistical representation of the overall system; this requires a suitable probability distribution over the micro-state. This particle distribution function is given by: f

= f (t, x, v) for all t ≥ t 0 , x ∈ Ω, v ∈ D v , where D v represents the domain of velocities. If f (t, x, v) is locally integrable in x, then f (t, x, v)dxdv represents the number of individuals, located at time t in an infinitesimal rectangle [x, x + dx] × [y, y + dy] with the velocity belonging to [v x , v x + dv x ] × [v y , v y + dv y ],
where: x = (x, y) and v = (v x , v y ).

If f (t, x, v) is locally integrable in v, the local density (the number of people per square meter) at the point x and time t can be introduced:

ρ (t, x) = Dv f (t, x, v)dv. (1) 
At initial time t 0 , it can be written that:

ρ (t 0 , x) = ρ 0 1 D 0 (x) where 1 D 0 (x) is the indicator function of the subset D 0 .
The impact of crowd density for a standing crowd and a moving crowd is important to understand for crowd safety.

In the UK Guides produced to advise on crowd safety issues (cf. [START_REF] Still | Crowd dynamics[END_REF]), the safety limit for crowd density is stated as 4 pedestrians per square meter for a moving crowd and 4.7 for standing areas. To be closer to reality, the individual dimensions of pedestrians must be taken into account in the density analysis. For a totally packed metro train (French RATP), the density is between 6 and 8 pedestrians /m 2 . In conclusion, a maximum value ρ max for local crowd density, ρ max ≤ 8 pedestrians /m 2 , is introduced, and a maximum number of pedestrians N max is then deduced: N max = π r 2 ρ max .

In our model, dimensionless quantities are preferred. To do that, from the following reference variables:

• L: a characteristic length of the domain Ω, for example its diagonal when Ω is rectangle shaped,

• V m : the maximum speed of the pedestrian walking unobstructed in the environment,

• T m : a reference value for the evacuation time is given by: T = L/V m ,

• ρ max : the maximum local crowd density, the following unit-less variables are then defined:

• the position variable: x = x L .

• the time: t = t T .

• the velocity modulus: ṽ = v Vm ,

• The distribution function: f = f ρmax , leading to ρ = ρ ρmax .

In the following, for the sake of simplicity, the tildes are omitted.

Representation of the pedestrian environment

The bounded domain Ω ⊂ R 2 , in which pedestrians move, is a room of rectangular shape of length L x and width L y . Its external border is made of walls and is noted W .

A single obstacle noted by Or with ∂Or being its boundary is added within Ω. In the following, the obstacle is rectangle-shaped with sides of length L obs and width l obs . A reference frame (O, e x , e y ) is defined and polar coordinates are preferred. For the sake of simplicity, this study is limited to the case of a single obstacle cf. Fig. 1, but the geometry of the domain can be further modified by inserting several obstacles of different shapes. Two parameters already present in [START_REF] Bellomo | Behavioral crowds: Modeling and Monte Carlo simulations toward validation[END_REF] are finally introduced α ∈ [0, 1] and ξ ∈ [0, 1], respectively.

α is related to the quality of the domain : when α = 0, the domain is of poor quality, that means that pedestrians are forced to stop walking, while when α = 1, the quality of the domain is maximum, allowing a pedestrian to walk with the highest speed. ξ characterizes the strength of the pedestrian's preference for areas of low pedestrian density and it is supposed to give indication of the level of pedestrians' anxiety.

modelling the velocity vector

The approach developed in the present work refers to the hybrid approach reviewed in [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF][START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF], where the discrete variable for the individual velocity states θ, defined by the angle of the selected velocity v direction with e x , is used. The velocity vector can then be expressed as

v[ρ] = v[ρ](t, x) cos(θ) e x + v[ρ](t, x) sin(θ) e y ,
where v[ρ] is the speed; square brackets are used to denote that v can depend on ρ in a functional way, for instance on ρ and on its gradient ∂ρ ∂x . The speed variation depends on the interactions between pedestrians. Specifically, pedestrians adjust their velocity modulus according to the level of congestion around them and on the environmental conditions. In this paper, the dependence of the velocity on the local density is motivated by the fundamental diagram developed in [START_REF] Bellomo | Behavioral crowds: Modeling and Monte Carlo simulations toward validation[END_REF].

The main idea is that the velocity of the pedestrian decreases monotonically with the density from the maximal value v[ρ = 0] = 1 of ρ = 0 to v[ρ = 1] = 0 where ρ = 1, corresponding to the maximal density. Moreover, the maximal velocity observed at very low density increases with the quality of the environmental conditions and / or the pedestrian's anxiety.

From the density speed diagram developed in [START_REF] Bellomo | Behavioral crowds: Modeling and Monte Carlo simulations toward validation[END_REF], the following density speed is deduced:

v[ρ](t, x) = σ 3 (1 -ρ(t, x)) 2 σ 2 (1 -ρ(t, x)) 2 + (1 -σ) ρ 2 (t, x) , (2) 
where σ = α ξ; the parameters α and ξ, previously introduced, characterize respectively the quality of the domain,
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and the trend of pedestrians to adapt their walk to their surroundings instead of searching for less crowded areas.

Mathematical model equations

The number of pedestrians N is limited by the maximum number N max and generally not large enough to justify the continuity assumption of the particle distribution function with respect to the velocity. Indeed, it is assumed that the velocity directions θ i take discrete values in the following set:

S θ = § θ i = i -1 n 2π : i = 1, ..., n ª .
Therefore, due to the deterministic nature of the variable v, the distribution function can be expressed as :

f (t, x, θ) = n i=1 f i (t, x) δ (θ -θ i ) , (3) 
where δ is the Dirac distribution; f i (t, x) = f (t, x, θ i ), represents pedestrians, viewed as active particles, moving in direction θ i , at time t and position x, per unit area.

The local density ρ (t, x) previously defined in Eq. ( 1), becomes the sum of f i (t, x) for 1 ≤ i ≤ n:

ρ (t, x) = n i=1 f i (t, x) . ( 4 
)
The derivation of the mathematical structure used in the present paper refers to the theory developed in [START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF], where the mathematical model is obtained by a balance of particles in a unit volume of the micro state space. Indeed, the motion of a particles group (pedestrians) is governed by the partial derivative equation (PDE) of transport applied to f i with a second member Γ i characterizing the different interactions between pedestrians with their environment:

∂ t f i (t, x) + v i [ρ] (t, x) .∂ x f i (t, x) = Γ i (t, x) i = 1, ..., n, (5) 
where:

v i [ρ] (t, x) = v[ρ] (t, x) (cos(θ i ), sin(θ i )) T and ∂ x = (∂ x , ∂ y )
T . This Γ i (t, x) term also allows us to take into account boundary conditions (walls W and the obstacle's borders ∂Or).

Modelling of interactions

By referring to [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF][START_REF] Bellomo | On multiscale models of pedestrian crowds from mesoscopic to macroscopic[END_REF][START_REF] Bellomo | Behavioral crowds: Modeling and Monte Carlo simulations toward validation[END_REF], modelling the interactions is a decision process in which each particle moves along with the others as well as within the geometry of the domain. The interaction involves three types of particles:

• The test particle with micro-state (x, θ i ) and distribution function f i (t, x) = f (t, x, θ i ).

• The field particle with micro-state (x * , θ k ) and distribution function f k (t, x) = f (t, x * , θ k ).

• The candidate particle with micro-state (x, θ h ) and distribution function f h (t, x) = f (t, x, θ h ).

The candidate particle can acquire, in probability, the micro-state of the test particle after interaction with the field particles, while the test particle loses its state in the interaction with the field particles.

Two types of interactions are considered, those between candidate and field particles and those between candidate particle and obstacle (either within the domain or the border walls themselves).

In this way the right hand side of eq.( 5) can be decomposed in two terms as: Γ i = Γ P i + Γ D i , where Γ P i refers to interactions between pedestrians and Γ D i to interactions between pedestrians and obstacles (either present within the domain or against the border walls). Both terms are detailed in the following subparagraphs.

The Γ P i term

The term Γ P i of interactions between pedestrians (particles) is defined in a probabilistic sense, since pedestrians will not react in the same way when facing a particular situation. Interactions of test and candidate particle with field particle can be modeled by the following quantities:

• Interaction domain (visibility zone) : it represents the area where the trajectory of each candidate pedestrian can be influenced by those of other field pedestrians, which can be defined as circular sector with radius V symmetric with respect to the velocity direction defined by the visibility angle φ (see fig. 2): This visibility zone is introduced just when a pedestrian located at the point x, interacts with the other pedestrians, but it not introduced in the case of interaction with obstacles and walls.

V (x, e d , R V , φ) = § y ∈ Ω/ ||x -y|| 2 ≤ R V , y -x ||y -x|| 2 .e d ≥ cos(φ) ª .
• The interaction rate η[ρ(t, x)] characterizes the contact frequency that a candidate h-pedestrian (or test) in

x develops with a field k-pedestrian in the visibility zone V . The use of the same idea developed in [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF] is proposed, by treating the interaction rate with increasing local density η[ρ(t, x)] = η 0 ρ(t, x), where η 0 is a constant.

• The transition probability density B hk (i), characterizes the fact that the candidate pedestrian changes his/her direction θ h to the test pedestrian's direction θ i , due to the interaction with field pedestrians of a direction θ k . This probability is assumed to be dependent on the density of pedestrians ρ(t, x).

The probabilities B hk (i) of each i-th pedestrian satisfy the following relationship:

n i=1 B hk [ρ(x)](i) = 1 f or k, h = 1, ..., n. (6) 
The probability transition definition depends on the desired direction more precisely on the preferred angle of motion θ p d , that will be defined in the next paragraph. It is referred to [START_REF] Bellomo | Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds[END_REF][START_REF] Bellomo | Behavioral crowds: Modeling and Monte Carlo simulations toward validation[END_REF] for the definition of the preferred angle of motion. Indeed, due to the assumption of the deterministic nature of the speed v, interactions between particles are assumed to modify their dynamics by changing the direction of motion. The assumed walking direction modified by two types of stimuli: (1) the tendency to follow the stream and (2) the attempt to avoid overcrowded areas. These are represented by two unit vectors e (v) ,e (s) , respectively. It is expected that at high density pedestrians move in the direction e (v) .

Conversely at low density they tend to follow the stream in the direction e (s) . Indeed, the desired direction is defined as follows:

e p d = σe (v) + (1 -σ)e (s) ||σe (v) + (1 -σ)e (s) || 2 , (7) 
where,

• e (v) = (cos(θ m ), sin(θ m )) with m = arg min j=1,...,n ∂ j ρ, ∂ j is the derivative of ρ in the direction θ j .

• e (s) = (cos(θ k ), sin(θ k )) defines the direction of the particle.

• The preferred angle θ p d which allows pedestrians to follow the stream and to avoid overcrowded areas obtained from [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF], through the relation:

e p d = (cos(θ p d ), sin(θ p d )) T .
It is assumed that each pedestrian can rest in her/his initial state or change his/her direction, in the clockwise direction or in the opposite clockwise direction in the set S θ . This means that a pedestrian is located either in the states, h + 1, h -1 or remains in state h. Three cases defined and illustrated in Table 1 are considered according to the position of θ p d from θ h .

Case 1 : The interaction term between pedestrians Γ P i is defined as the difference between the gain and the loss of pedestrians moving in the direction θ i due to the interactions with other pedestrians:

θ p d < θ h B hk [ρ](i) =      σ ρ if i = h -1 1 -σ ρ if i = h Case 2 : θ h < θ p d B hk [ρ](i) =      1 -σ ρ if i = h σ ρ if i = h + 1 Case 3 : θ h = θ p d B hk [ρ](i) =      1 if i = h 0 else
Γ P i (t, x) = n h=1 n k=1 V η[ρ(t, x * )]B hk (i)[ρ(t, x * )]f h (t, x) f k (t, x * ) dx * -f i (t, x) n h=1 V η[ρ(t, x * )]f h (t, x * ) dx * . (8)
2.4.2. The Γ D i term This term is introduced to account for boundary conditions, more precisely to model interactions with walls and obstacles. In this sense, we refer to [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF]. The assumptions used in the following are summarized below:

• A pedestrian can change his/her direction, due to 1. his/her willingness to reach the exit.

2. the presence of walls or fixed obstacles in front of him/her. The Γ D i term characterizes the interactions between pedestrians and obstacles within the walking area during the evacuation phase. In a similar way as for the Γ P i term, the Γ D i is modeled by means of the following two interaction terms:

• P h (i) the probability of the event that the pedestrian changes its direction θ h into the direction θ i , due to the presence of walls W , to the obstacle Or and to the exit S, is then introduced. This probability satisfies the following relation:

n i=1 P h (i) = 1 f or h = 1, ..., n, (9) 
and its definition depends on the desired direction e d (x) for each pedestrian at position x, and more precisely on the angle θ d that e d (x) makes with e x .

In the same way, three cases defined and illustrated in Table 2 are considered according to the position of θ d from θ h .

Case 1 : • µ[ρ(t, x)] is an interaction rate, 0 < µ[ρ(t, x)] ≤ 1, that characterizes the frequency of interactions between the pedestrians and the field. It is a decreasing function of the local density.

θ d < θ h P h (i) =      α if i = h -1 1 -α if i = h Case 2 : θ h < θ d P h (i) =      1 -α if i = h α if i = h + 1 Case 3 : θ h = θ d P h (i) =      1 if i = h 0 else
The interaction term Γ D i between pedestrians and the area characterizes the difference between the gain and the loss of the particles moving in the direction θ i and is given by:

Γ D i (t, x) = µ[ρ(t, x)] n h=1 P h (i)f h (t, x) -f i (t, x) . (10) 
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It is then proposed to represent the desired direction unit vector e d for each pedestrian by a sum of three vectors: the γ (x) vector models the direction which allows the pedestrian to avoid the obstacle, the τ (x) vector models the pedestrian direction to avoid the walls and finally ν (x) models the direction which allows the pedestrian to go toward the exit:

e d (x) = γ (x) + τ (x) + ν (x) ||γ (x) + τ (x) + ν (x) || 2 . ( 11 
)
The directions contribute to the desired direction defined by the previous linear combination defined in eq.( 11).

This assumption is a simplification of reality.

To define these three vectors, the domain Ω is decomposed into three zones: the obstacle's influence zone Z, the security zone Z s to ensure the non collision between pedestrians and the walls, and finally a neutral zone Z n 160 where pedestrians have only the wish to go toward the exit. These three zones are illustrated in Fig. 3. The vector field γ(x) which models the direction that allows pedestrians to avoid the obstacle, is defined by:

γ(x) =                    β 1 (x) + β 2 (x) x ∈ Z -, β 3 (x) + β 4 (x) x ∈ Z + , e x x ∈ Z ++ ∪ Z --, 0 x ∈ Z n ∪ Z s , (12) 
where:

β i (x) = x i -x ||x i -x|| 2 i = 1, 2, 3, 4.
• x 2 , x 3 are two vertices of the obstacle on the opposite side to the exit.

• x 1 , x 4 are respectively the intersection points between the straight line (x 2 x 3 ) and two straight lines ∆ 1 , ∆ 2 defining the influence area Z, (see fig. 4).

ν(x) is the vector field, which models the direction that allows pedestrians to go toward the exit (see fig. 5), and is

given by the following expression:

ν(x) =      b 1 (x) + b 2 (x) if x ∈ Z n , 0 else, (13) 
where:

b i (x) = x si -x ||x si -x|| 2 i = 1, 2,
x s1 , x s2 are coordinates of the nodes that define the exit. Finally the field vector τ (x) which models the direction to avoid collisions between individual pedestrians and the walls is defined as follows:

τ (x) =                    e x x ∈ Z S1 , -e y x ∈ Z S2 , e y x ∈ Z S3 , 0 else, ( 14 
)
where the security zone is divided in 3 areas: Z S1 , Z S2 and Z S3 (see fig. 6). 

The governing equation

The interaction terms, Γ P i defined in equation ( 8) and Γ D i defined in equation [START_REF] Bellomo | Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds[END_REF] respectively are replaced by their respective expression, and the model partial derivative equation (PDE) (5) becomes:

∂ t f i (t, x) + v i .∂ x f i (t, x) = µ[ρ(t, x)] n h=1 P h (i)f h (t, x) -f i (t, x) + n h=1 n k=1 V η[ρ(t, x * )]B hk (i)[ρ(t, x * )]f h (t, x) f k (t, x * ) dx * -f i (t, x) n h=1 V η[ρ(t, x * )]f h (t, x * ) dx * . ( 15 
)
The initial conditions expressed as:

f i (t = t 0 , x) = φ i (x) i = 1, ..., n, x ∈ Ω, ( 16 
)
are finally added to the previous PDE [START_REF] Bellomo | Global solution to the cauchy problem for discrete velocity models of vehicular traffic[END_REF]. After introducing security zones for pedestrians ("pedestrian-wall"), the boundary conditions come from the interactions between pedestrians and the area; therefore, they are included in the management of the interactions. 

Method of characteristics

The method of characteristics is particularly well adapted for solving linear hyperbolic problems and more precisely the transport PDE. Thus we propose to transform the system of equations ( 15) and ( 16) from partial differential equations (PDE) to ordinary differential equations (ODE), using the characteristics concept. Indeed, let us consider the characteristic curves associated to the problem defined by equations ( 15) and ( 16):

X(t) = (X 1 (t), X 2 (t)) T = (x + t v cos(θ i ), y + t v sin(θ i )) T ,
which is a solution of the following system:

     dX(t) dt = V i , X(0) = (x, y) T , (17) 
where:

V i = (v cos(θ i ), v sin(θ i )) T .
Along these curves, the solution of the system defined by equations ( 15) and ( 16) satisfies the following system of ODEs :

       d f i (t, x) dt = Γ i [f, f ] (t, x) , f i (0, x) = φ i (x) x ∈ Ω, f or i = 1, ..., n, (18) 
where:

f i (t, x) = f i (t, X(t)) = f i (t, x + v cos(θ i )t, y + v sin(θ i )t
) is the value of f along the characteristics, and

Γ i [f, f ] (t, x) = Λ i [f ] (t, x) -µ[ρ(t, x)] f i (t, x) + Ò Ψ i [f, f ] (t, x) -Ò Υ i [f ] (t, x) f i (t, x) ,
where the operators Ò Λ, Ò Ψ and Ò

Υ are defined for i = 1, ..., n by:

175 Λ i [f ] (t, x) = µ[ρ(t, x)] n h=1 P h (i)f h (t, x + v (cos(θ i ) -cos(θ h )) t, y + v (sin(θ i ) -sin(θ h )) t) , Ò Ψ i [f, f ] (t, x) = n h=1 n k=1 V η[ρ(t, x * )]B hk (i)[ρ(t, x * )]f h (t, x + v (cos(θ i ) -cos(θ h )) t, y + v (sin(θ i ) -sin(θ h )) t) × f k (t, x * -v cos(θ k )t, y * -v sin(θ k )t) dx * ,
and finally,

Ò Υ i [f ] (t, x) = n h=1 V η[ρ(t, x * )]f h (t, x * -v cos(θ h )t, y * -v sin(θ h )t) dx * .

Existence and uniqueness of the model solution

This section is devoted to demonstrating proof of the existence and uniqueness of the model solution [START_REF] Marsan | Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics[END_REF]. A first proof of existence and uniqueness was done in [START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF][START_REF] Bellomo | Global solution to the cauchy problem for discrete velocity models of vehicular traffic[END_REF], in a connected domain without obstacles and border walls.

Here, an explicit mathematical proof of the model ( 18) is proposed expressing the crowd's motion in a bounded domain containing obstacles (the same model as in [START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF], but with a different second member).
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To demonstrate the existence and uniqueness of the solution to problems [START_REF] Marsan | Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics[END_REF], we relied on the proof given in [START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF].

Indeed it will be proceeded as follows:

1. Introducing the "mild" solution of the new system of ODE [START_REF] Marsan | Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics[END_REF].

2. Using the Banach fixed point theorem, the existence and the uniqueness of a "mild" solution is then proven.

First step:
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We introduce the "mild" form of the system (18) obtained by integration along the characteristics, for i = 1, ..., n,

f i (t, x) = φ i (x) + t 0 Λ i [f ] (s, x) -µ[ρ(s, x)] f i (s, x) + Ò Ψ i [f, f ] (s, x) -Ò Υ i [f ] (s, x) f i (s, x) ds. ( 19 
)
Second step, choice of the Banach space:

For a given time t, the functional space defined by:

L 1 n (Ω) = f (t) = (f 1 (t), ..., f i (t), ..., f n (t)) T , ||f (t)|| 1 = n i=1 Ω |f i (t, x)|dx < ∞ , is considered.
For a time T > 0, let us note the Banach space

X T = C [0, T ], L 1 n (Ω) , with the norm: ||f || X T = sup t∈[0,T ] ||f (t)|| 1 .
The following assumptions are then considered : (A.1.): for all positive real R > 0 satisfying 0 < ρ < R, there exist two constants c µ > 0 and c η > 0 such that:

0 < µ(ρ) < c µ , 0 < η(ρ) < c η . (20) 
(A.2.): µ(ρ), η(ρ) and B hk (ρ) are Lipschitz functions with respect to the density ρ; namely there are constants L µ ,

L η , L B such that:            |µ[ρ 1 ] -µ[ρ 2 ]| ≤ L µ |ρ 1 -ρ 2 |, 0 < ρ 1 < R, 0 < ρ 2 < R, |η[ρ 1 ] -η[ρ 2 ]| ≤ L η |ρ 1 -ρ 2 |, 0 < ρ 1 < R, 0 < ρ 2 < R, |B hk (i)[ρ 1 ] -B hk (i)[ρ 2 ]| ≤ L B |ρ 1 -ρ 2 |, i, h, k = 1, ..., n. (21) 
The main two theorems for the local and global existence, respectively are given in the following:

Theorem 1. (Local existence) Let φ = (φ 1 , ..., φ i , ..., φ n ) T ∈ L ∞ n (Ω)
with φ ≥ 0, there exists ϕ 0 , a time T > 0 and two constants a 0 , R, such that if ||φ|| 1 ≤ ϕ 0 , the problem (18) has a unique positive solution f = (f 1 , ..., f i , ..., f n )

T ∈ X T , satisfying:

||f || X T ≤ a 0 ||φ|| 1 , ρ (t, x) ≤ R, ∀ t ∈ [0, T ], ∀ x ∈ Ω. Moreover, if n i=1 ||φ i || ∞ ≤ 1, (22) 
we have: 

ρ (t, x) ≤ 1, ∀ t ∈ [0, T ], ∀ x ∈ Ω. ( 23 
sup t ||f (t + (p -1)T ) || 1 ≤ a p-1 ||φ|| 1 , t ∈ [0, T ], ρ (t + (p -1)T, x) ≤ R, ∀ t ∈ [0, T ], ∀ x ∈ Ω.
In addition, if φ satisfies (22), we have:

ρ (t + (p -1)T, x) ≤ 1, ∀ t ∈ [0, T ], ∀ x ∈ Ω.

Proof of Theorem 1

The following function:

ψ i (t, x) = f i (t, x) exp (λt) f or i = 1, ..., n, λ > 0,
is first introduced. The system (18) is equivalent to the following system:

       d ψ i (t, x) dt = λ ψ i (t, x) + Λ i [ψ] (t, x) -ψ i µ[ρ(t, x] + exp (-λt) Ò Ψ i [ψ, ψ] (t, x) -Ò Υ i [ψ] (t, x) ψ i , ψ i (0, x) = φ i (x) x ∈ Ω f or i = 1, ..., n. (24) 
For all t ∈ [0, T ], we integrate (24). Then, the following "mild" formulation, is deduced:

ψ i (t, x) = φ i (x) + t 0 exp(-λs) Ò Ψ i [ψ, ψ] (s, x) + Λ i [ψ] (s, x) + λ -µ[ρ(s, x] -Ò Υ i [ψ] (s, x) exp(-λs) ψ i (s, x)
ds.

(25)

Let us consider the operator A = Õ A(ψ)) 1 , ..., Õ A(ψ)) i , ..., Õ A(ψ)) n T , and its i-th component defined by:

Õ A(ψ) i (t, x) = φ i (x)+ t 0 exp(-λs) Ò Ψ i [ψ, ψ] (s, x) + Λ i [ψ] (s, x) + λ -µ[ρ(s, x] -Ò Υ i [ψ] (s, x) exp(-λs) ψ i (s, x) ds. (26) 
To show that the system (24) has a solution, it is sufficient to show that the operator A has a unique fixed point in the Banach space X T . Indeed, let us introduce the set defined by:

B T,a0,λ,R = ψ = (ψ 1 , ..., ψ i , ..., ψ n ) T ∈ X T : ψ i ≥ 0, ||ψ|| X T ≤ a 0 ||φ|| 1 , n i=1 ψ i (t, x -v cos(θ i )t, y -v sin(θ i )t) ≤ Rexp(λt), t ∈ [0, T ], x ∈ Ω .
The operator A has a unique fixed point if the following two properties are satisfied:

• (P.1) Let ψ ∈ B T,a0,λ,R then, Aψ ∈ B T,a0,λ,R .
• (P.

2) The application A : B T,a0,λ,R → B T,a0,λ,R is a contraction.
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In what follows, the constants T, a 0 , λ, R, must be chosen carefully in order to obtain properties (P.1) and (P.2).

The proof of both properties (P.1) and (P.2) is based on the following Lemma:

Lemma 1. Let T > 0 , λ > 0, ψ 1 = ψ 1 1 , ..., ψ 1 i , ..., ψ 1 n T ∈ X T and ψ 2 = ψ 2 1 , ..., ψ 2 i , ..., ψ 2 n T ∈ X T such that : n i=1 ψ j i (t, x -v cos(θ i )t, y -v sin(θ i )t) ≤ Rexp(λt) t ∈ [0, T ], x ∈ Ω f or j = 1, 2, λ > 0, R > 0. (27) 
Then,

1. There are C 1 > 0, C 2 > 0 such that,

||Aψ 1 -Aψ 2 || X T ≤ C 1 λ ||ψ 1 || X T + ||ψ 2 || X T + (λ + C 2 ) T ||ψ 1 -ψ 2 || X T , (28) 
where:

C 1 = 2c η + R (nc η L B + (n + 1)L η ) , C 2 = 2c µ + (n + 1)RL µ . (29) 
2. If ψ i (t, x) ≥ 0 and φ i (x) ≥ 0 then, there exists λ 0 such that:

Ó Aψ i (t, x) ≥ 0 for all t ∈ [0, T ], x ∈ Ω and λ ≥ λ 0 , i = 1, ..., n,
where:

λ 0 = Rc η |V | + c µ , |V |: is the measure of visibility zone V, |V | = V dx. (30) 
3. There exist R 1 and T such that, for all R ≥ R 1 and t ≤ T , we get:

n i=1 (Aψ) i (t, x -v cos(θ i )t, y -v sin(θ i )t) ≤ Rexp(λt) t ∈ [0, T 0 ], x ∈ Ω. ( 31 
)
where:

R 1 = n i=1 ||φ i || ∞ , (32) 
T = 1 λ ln 1 + λ nR (c η R|V | + c µ ) R - n i=1 ||φ i || ∞ := T 0 . (33) 4. 
||Aψ||

X T ≤ ||φ|| 1 + C 1 λ ||ψ|| 2 X T + (λ + C 2 ) T ||ψ|| X T . ( 34 
)
The proof of this Lemma is given in Appendix A.

Let ψ 1 , ψ 2 ∈ B T,a0,λ,R , and T be defined by:

T = 1 C 2 + λ T 0 ≤ T 0 , (35) 
where T 0 is the expression of time defined in equation (33), and C 2 is defined in equation ( 29).

According to the inequality (34),

||Aψ|| X T ≤ ||φ|| 1 + C 1 λ ||ψ|| 2 X T + (λ + C 2 ) T ||ψ|| X T , (36) 
since ψ ∈ B T,a0,λ,R ; we have ||ψ|| X T ≤ a 0 ||φ|| 1 , moreover,

||Aψ|| X T ≤ ||φ|| 1 + 1 λ C 1 a 2 0 ||φ|| 2 1 + (C 2 + λ) T a 0 ||φ|| 1 . (37) 
Then, ||Aψ|| X T ≤ a 0 ||φ|| 1 , if a 0 satisfies the following equation:

(E 0 ) : ||φ|| 1 + 1 λ C 1 a 2 0 ||φ|| 2 1 + (C 2 + λ) T a 0 ||φ|| 1 = a 0 ||φ|| 1 .
Indeed, the constant a 0 exists if:

||φ|| 1 ≤ min § (n -1) 2 c µ 8n 2 c η , (n -1) 2 c η |V | (4n 2 (nc η L B + (n + 1)L η )) ª := ϕ 0 , (for the proof see Appendix B).
which leads to the existence of a 0 if ||φ|| 1 is "small".

In addition, from Lemma 1 for all ||φ|| 1 ≤ ϕ 0 , R ≥ R 1 , λ = λ 0 , t ≤ T ≤ T 0 and a 0 the smallest solution among the two positive solutions of equation(E 0 ), where R 1 , λ 0 , and T , are given by (32), (30), (35), respectively, we get:

if ψ ∈ B T,a0,λ,R then Aψ ∈ B T,a0,λ,R ∀t ∈ [0, T ].
This ends the proof of property (P.1).

On the other hand, from Lemma 1, we have:

||Aψ 1 -Aψ 2 || X T ≤ 2C 1 λ a 0 ||φ|| 1 + (C 2 + λ) T ||ψ 1 -ψ 2 || X T . ( 38 
)
Let a 0 , the small positive solution of equation (E 0 ) be defined by:

a 0 = λ (1 -(λ + C 2 ) T ) - √ ∆ 0 2C 1 ||φ|| 1 , (39) 
where ∆ 0 is the discriminant of equation (E 0 )

∆ 0 = ((C 2 + λ) T -1) 2 -4 C 1 λ ||φ|| 1 . (40) Hence, 0 ≤ 2C 1 λ a 0 ||φ|| 1 + (C 2 + λ) T = 1 -∆ 0 < 1.
From there, the operator A : B T,a0,λ,R → B T,a0,λ,R is a contraction. This ends the proof of property (P.2).
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The fixed point theorem ends the proof of Theorem 1, which refers to local existence.

From the foregoing, there exist ϕ 0 , λ 0 , T , a 0 and R, such that the problem ( 18) has a unique positive solution

f = (f 1 , ..., f i , ..., f n ) T ∈ X T , satisfying: ρ (t, x) ≤ R, ∀ t ∈ [0, T ], ∀ x ∈ Ω. ∀ R ≥ R 1 ,
where

R 1 = n i=1 ||φ i || ∞ .
Moreover if φ satisfies ( 22) (R 1 ≤ 1), then one can choose R such that (23) can be obtained; for example, the R can be chosen as:

R = 1 + n i=1 ||φ i || ∞ 2 > R 1 . ( 41 
)
This completes the proof.

Proof of Theorem 2

To prove the existence for large times of the problem's solution [START_REF] Marsan | Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics[END_REF], it is equivalent to show that the solution obtained by Theorem 1 admits an extension on each interval [0, pT ] f or p ∈ N.

Let φ satisfying the conditions of Theorem 1. R, λ = λ 0 and T are given by ( 41), (30), (35), respectively, and are fixed and depending on initial data φ.

Consequently, there exists ϕ 1 such that if ||φ|| 1 ≤ ϕ 1 , there exists a 1 such that the solution to (18) obtained by Theorem 1 can be extended in the interval [T, 2T ] and satisfies the estimates

||ψ(t + T )|| X T ≤ a 1 ||φ|| 1 , ∀ t ∈ [0, T ], (42) 
ρ (t + T, x) ≤ R, ∀ t ∈ [0, T ], ∀ x ∈ Ω. ( 43 
)
Indeed, the problem (24) on [T, 2T ] with a given initial condition defined by ψ(T, x) can be solved, more precisely ∀t ∈ [0, T ] we have :

ψ i (t + T, x) = ψ i (T, x) + t 0 exp(-λ(s + T )) Ò Ψ i [ψ, ψ] (s + T, x) + Λ i [ψ] (s + T, x) + λ -µ[ρ(s + T, x] -Ò Υ i [ψ] (s + T, x) exp(-λ(s + T )) ψ i (s + T, x)
ds, for i = 1, ..., n.

Let us consider the set defined by:

B T,a1,λ,R = § ψ(t + T ) = (ψ 1 (t + T ), ..., ψ i (t + T ), ..., ψ n (t + T )) T ∈ X T : ψ i ≥ 0, ||ψ(t + T )|| X T ≤ a 1 ||φ|| 1 , n i=1 ψ i (t + T, x -v cos(θ i )(t + T ), y -v sin(θ i )(t + T )) ≤ Rexp(λ(t + T )) t ∈ [0, T ], x ∈ Ω ª .
where R, λ, T, a 0 are fixed and depending on initial data φ.

In the same way as in the case of local existence, it can be shown that, for ψ(t + T ) ≥ 0, t ∈ [0, T ], R given by ( 41), λ = λ 0 , and T given by ( 35), we get :

Ó Aψ i (t + T, x) ≥ 0, i = 1, ..., n, t ∈ [0, T ], x ∈ Ω,
and

n i=1 (Aψ) i (t + T, x -v cos(θ i )(t + T ), y -v sin(θ i )) ≤ Rexp(λ(t + T )) i = 1, ..., n, t ∈ [0, T ], x ∈ Ω.
In addition, it can be shown that:

||Aψ(t + T )|| X T ≤ a 0 ||φ|| 1 + 1 λ C 1 a 2 1 ||φ|| 2 1 + (C 2 + λ) T a 1 ||φ|| 1 . (44) 
Then, ||Aψ(t + T )|| X T ≤ a 1 ||φ|| 1 , if a 1 satisfies the following equation:

(E 1 ) : a 0 ||φ|| 1 + 1 λ C 1 a 2 1 ||φ|| 2 1 + (C 2 + λ) T a 1 ||φ|| 1 = a 1 ||φ|| 1 .
Moreover, there exists a solution of equation (E 1 ) in

a 1 if its discriminant ∆ 1 = ((C 2 + λ) T -1) 2 -4 C1 λ a 0 ||φ|| 1 is positive.
With a choice of φ such that: ||φ|| 1 ≤ min ϕ 0 , λ ((C2+λ)T -1) 2 4C1a0 := ϕ 1 , we have: ∆ 1 ≥ 0.

From there, for ||φ|| 1 ≤ ϕ 1 , t ∈ [0, T ] with T is given by (35), R given by (41), a 1 is a positive solution of equation (E 1 ), we have:

if ψ(t + T ) ∈ B T,a1,λ,R then Aψ(t + T ) ∈ B T,a1,λ,R ∀t ∈ [0, T ].
In addition, let ψ 1 (t + T ), ψ 2 (t + T ) ∈ B T,a1,λ,R , then:

||Aψ 1 (t + T ) -Aψ 2 (t + T )|| X T ≤ 2C 1 λ a 1 ||φ|| 1 + (C 2 + λ) T ||ψ 1 (t + T ) -ψ 2 (t + T )|| X T . (45) 
Let us consider a 1 the smallest solution among the two positive solutions of the equation (E 1 ), given by:

a 1 = λ (1-(λ+C2)T )- √ ∆1 2C1||φ||1 ≥ 0, since 0 ≤ 2C 1 λ a 1 ||φ|| 1 + (C 2 + λ) T = 1 -∆ 1 < 1.
By applying the fixed point theorem which gives the existence and uniqueness of solution ψ(t + T ) ∈ X T , more precisely existence of a solution in [T, 2T ]. This solution is continuous in [T, 2T ] and, in particular, it satisfies (42) and (43). Moreover, if φ satisfies (22) ( n i=1 ||φ i || ∞ ≤ 1), for R given by (41), we have,

ρ (t, x) ≤ 1, ∀ t ∈ [T, 2T ], ∀ x ∈ Ω.
The iteration process can be applied to prove the existence for large times. Suppose that the solution exists and is continuous in [0, (m -1)T ] and satisfies:

||ψ(t + (p -1)T )|| X T ≤ a p-1 ||φ|| 1 , f or p = 1, ..., m, t ∈ [0, T ], ||ψ(pT )|| X T ≤ a p-1 ||φ|| 1 , f or p = 1, ..., m, and ρ (t + (p -1)T, x) ≤ R, f or p = 1, ..., m, t ∈ [0, T ] x ∈ Ω.
where, a 0 , ∆ 0 , R, λ, T are given by ( 39), ( 40), ( 41), (30), (35) respectively.

a p and ∆ p for p = 1, ..., m -1 are given by:

a p = λ (1 -(λ + C 2 ) T ) -∆ p 2C 1 ||φ|| 1 , ∆ p = ((C 2 + λ) T -1) 2 -4 C 1 λ a p-1 ||φ|| 1 .
It can now be proved that we can extend the solution in [(m -1)T, mT ], satisfying the following inequality:

||ψ (t + (m -1)T ) || 1 ≤ a m-1 ||φ|| 1 , t ∈ [0, T ], (46) 
||ψ (mT ) || 1 ≤ a m-1 ||φ|| 1 , (47) 
ρ (t + (m -1)T, x) ≤ R, t ∈ [0, T ] x ∈ Ω. ( 48 
)
Let ψ = (ψ i ) i=1,...,n be the solution of the following problem, for i = 1, ..., n

ψ i (t + (m -1)T, x) = ψ i ((m -1)T, x) + t+(m-1)T (m-1)T exp(-λ(s)) Ò Ψ i [ψ, ψ] (s, x) + Λ i [ψ] (s, x) + λ -µ[ρ(s, x] -Ò Υ i [ψ] ( s, x) exp(-λ(s)) ψ i (s, x) ds. 
In the same way as in the case of local existence, it can be shown that:

||Aψ (t + (m -1)T ) || X T ≤ a m-2 ||φ|| 1 + 1 λ C 1 a 2 m-1 ||φ|| 2 1 + (C 2 + λ) T a m-1 ||φ|| 1 , ||Aψ 1 (t + (m -1)T ) -Aψ 2 (t + (m -1)T ) || X T ≤ 2C 1 λ a m-1 ||φ|| 1 + (C 2 + λ) T ||ψ 1 (t + (m -1)) -ψ 2 (t + (m -1)T ) || X
If we choose a m-1 so that,

a m-1 = λ (1 -(λ + C 2 ) T ) -∆ m-1 2C 1 ||φ|| 1 , (49) where, 
∆ m-1 = ((C 2 + λ) T -1) 2 -4 C 1 λ a m-2 ||φ|| 1 . (50) 
Then a m-1 is a solution of (E m-1 ) :

||φ|| 1 + 1 λ C 1 a 2 m-1 ||φ|| 2 1 + (C 2 + λ) T a m-1 ||φ|| 1 = a m-1 ||φ|| 1 . Moreover 0 ≤ 2C 1 λ a m-1 ||φ|| 1 + (C 2 + λ) T = 1 -∆ m-1 < 1,
which gives the solution in [(m -1)T, mT ], satisfying (46)-(48). Moreover, if φ satisfies (22) ( n i=1 ||φ i || ∞ ≤ 1), for R given by (41), we have:

ρ (t, x) ≤ 1, ∀ t ∈ [(m -1)T, mT ], ∀ x ∈ Ω.
This completes the proof of Theorem 2.

Simulations

Numerical method

The numerical method used in this work is the same numerical scheme described in [START_REF] Agnelli | A kinetic theory approach to the dynamics of crowd evacuation from bounded domains[END_REF][START_REF] Bellomo | From the microscale to collective crowd dynamics[END_REF], is based on the so called splitting method [START_REF] Geiser | Higher order operator splitting methods via Zassenhaus product formula: Theory and applications[END_REF] to solve the proposed mathematical model defined by:

   ∂ t f i (t, x) + v i .∂ x f i (t, x) = Γ i [f ] (t, x) i = 1, ..., n, t ∈ [0, T ], f i (0, x) = φ i (x) i = 1, ..., n, x ∈ Ω, (51) 
on an interval of time [0, T ] . The principle of the method consists in introducing a subdivision [t k ] k=0,...,T of the interval [0, T ], and solving on each subdivision [t k , t k+1 ] the two following systems:

   ∂ t ó f i (t, x) + v i .∂ x ó f i (t, x) = 0 i = 1, ..., n, t ∈ [t k , t k+ 1 2 ],
ó

f i (0, x) = φ i (x) i = 1, ..., n, x ∈ Ω, (52) 
where φ i (x) is the initial distribution of pedestrians, and

   ∂ t f i (t, x) = Γ i [f ] (t, x) i = 1, .., n, t ∈ [t k+ 1 2 , t k+1 ], f i (0, x) = ó f i (x) i = 1, ..., n, x ∈ Ω, (53) 
where ó f i (x) is the solution of system (52).

For the resolution of the transport equation ( 52), the upwind scheme of order 1 [START_REF] Kim | An upwind scheme for a nonlinear model in age-structured population dynamics[END_REF][START_REF] Lopez-Marcos | An upwind scheme for a nonlinear hyperbolic integro-differential equation with integral boundary condition[END_REF] is used, and for the ordinary differential equation (53), Euler's method of order 1 is preferred.

Numerical results and application to the evacuation of a room

Several authors [START_REF] Takashi | Effects of an obstacle position for pedestrian evacuation: SF model approach[END_REF] reported that an obstacle can either facilitate or obstruct pedestrian evacuation of a room with an exit, depending on its position, size and shape. In particular it has been shown that an obstacle may have a strong influence on pedestrians if it is located close to the exit.

In order to show the performance of the proposed mathematical model, it has been applied to the evacuation of a room with and without an obstacle and our study is restricted to the mathematical model without taking into account the internal interactions between the pedestrians. This choice is motivated by considering a small number of pedestrians (N ≤ 50 pedestrians). Our goal is to study the influence of an obstacle on evacuation time and describe some characteristics of the dynamics of a crowd in a bounded domain (with walls, size of the exit and dimensions of the obstacle) namely, avoidance and evacuation.

Therefore the mathematical model (51) becomes:

   ∂ t f i (t, x) + v i .∂ x f i (t, x) = Γ D i [f ] (t, x) i = 1, ..., n, t ∈ [0, T ], f i (0, x) = φ i (x) i = 1, ..., n, x ∈ Ω. ( 54 
)
It is assumed here that σ = 1 and the velocity has a constant modulus. Moreover pedestrians can take nine directions, and 9 densities: f i (t, x) = f (t, x, θ i ), i = 1, ..., 9 (see fig. 8), are taken into account. For all the simulations, the following parameters are chosen:

• dimensions of the domain: length L x = 11m, and width L y = 11m.

• size of exit: S = 1.5m.

• quality of domain: α = 1.

• 9 different directions of velocity on the set S θ ,

S θ = § θ i = i -4 8 π : i = 0, ..., 8 ª . 
• rate of interactions: µ = 1 -ρ, with 0 < µ < 1.

The dimensionless quantities are obtained with reference to the following reference variables:

L = 11 √ 2 m, V m = 2 m.s -1 , T m = 7.78 s.
A value of ρ max = 7 pedestrians /m 2 is chosen to normalize the local density, which is a high value.

The first application deals with the evacuation of N = 50 people of a room, first without obstacle and then with an obstacle. This group of 50 pedestrians at initial time is gathered in a circular area of radius r = 1.91m . The maximum number of pedestrians N max = 7π r 2 = 80. The normalized local density at the initial time (within a circular area) is: ρ 0 = 50 πr 2 ρmax = 0.62. Three cases are considered: first without any obstacle, second with a fixed square-shaped obstacle located between the center of the disk D 0 and the exit and last with a fixed squareshaped obstacle just in front of the exit. For the two last cases, the dimensions of the obstacle are identical :

L obs = l obs = 1.5 m.
The second application concerns the comparison of the evacuation time obtained by our technique and that obtained by a deterministic discrete method in the simple case of the evacuation of a room without obstacle. The evacuation time is defined as the time when the last pedestrian has left the room. Finally, an obstacle is introduced in the room and the last application examines the effect of the dimensions and location of an obstacle on the time evacuation.

Evacuation of a room without obstacle and with a fixed obstacle

In the first case of the room without obstacle, the coordinates of the center of the disk D 0 at t = 0 are M 0 = (2.3; 3); and the results of our model, obtained at four successive times are illustrated in Figures 9a, b, c andd. In the second case, the room contains a fixed square-shaped obstacle (1) whose lower left corner has the coordinates (6.; 2.2), and the center of the initial disk is: D 0 is: M 0 = (2.3; 2.5). The results obtained by our model at four 240 different times are then illustrated in Figures 10 a, b, c andd. In the last case, the obstacle (2) whose lower left corner located at the left bottom has the coordinates (6.25; 4.75), is located in front of the exit at a distance of 3.5 m. The center of the initial disk D 0 is: M 0 = (2.3; 5.5). The results obtained from the proposed procedure at six different times are illustrated in Figures 11 a, b, c, d, e andf. The group of pedestrians splits into two subgroups when in front of the obstacle to avoid it and with the obstacle According to the results in the previous table, the evacuation times obtained by the kinetic and discrete models, respectively, for each case are very similar.

Influence of the obstacle's position and dimensions on the evacuation time

A fixed obstacle in a room is now located in front of the exit (see fig. 12). As previously a group of N = 50 pedestrians evacuates the room. Our goal is to study the influence of the obstacle on the evacuation time of the group. The group of N = 50 pedestrians is distributed in a circular area of radius r = 1.91m in an empty room (without obstacle). The normed local density at the initial circular area is as previously: ρ = 50 πr 2 ρm = 0.62. The evacuation time computed by our technique, to leave the room without any obstacle is: 11.78s.

Group of pedestrians

Then, the obstacle is located in the room, and the obstacle's dimensions and their distance to the exit are changed.

Then, the evacuation time is performed, and its values are collected in Table 5 According to the results in Table 5, with an accurate choice of obstacle parameters (dimensions, position) the time of the pedestrian evacuation could be improved by putting an obstacle in the room.

The square-shaped obstacle that allows to get a smaller evacuation time is that with dimensions 1.5m × 1.5m and located at 1 m from the exit.

Our study confirms that a strategically placed obstacle near an exit can speed evacuations. Several simulations varying its size, shape and orientation have to be performed and tailored to the space and to the width of the exit itself. The proposed technique is interesting for engineers and designers to improve and secure the evacuation of rooms as it executes faster than discrete deterministic model using a random change of some of its parameters.

Conclusions

This paper presents the development of a new approach to model crowd dynamics based on the kinetic theory of active particles. The existence and uniqueness of the solution of the proposed mathematical model have been proven for large times thanks to the Banach fixed-point theorem, assuming that the internal interactions between pedestrians are negligible. Numerical simulations using a scheme based on a splitting method have been performed.

The proposed model is able to describe some characteristics of the dynamics of a crowd in a bounded domain (with walls, an exit and an obstacle) namely, avoidance and evacuation. Indeed, several cases were studied to show the ability of this model to reproduce pedestrian behavior, and the results were compared to those obtained with a deterministic approach. Finally, the influence of a square-shaped obstacle on the evacuation time is studied.

Indeed, with a suitable choice of obstacle parameters (dimensions and position), it has been shown that the time of the pedestrian evacuation may become much shorter than without any obstacle. 

||φ i || ∞ = R 1 ,
and a time: t such that

t ≤ T = 1 λ ln 1 + λ nR (c η R|V | + c µ ) R - n i=1 ||φ i || ∞ := T 0 , ( .4) 
we obtain the relation (31).

4. Let ψ ∈ X T , T ≥ 0, according to the equation ( 9), (6) for P h (i), B hk (i), the hypothesis (A.1.), and using the following variable changes:

305

(z 1 , z 2 ) ← (x + v (cos(θ i ) -cos(θ h )) t, y + v (sin(θ i ) -sin(θ h )) t) ,

(w 1 , w 2 ) ← (x -v cos(θ i )t, y -v sin(θ i )t) .

We show that: 

|| Ò Ψ[ψ, ψ](t)|| 1 ≤ c η ||ψ(t)|| 2 1 , ( .5) 
||Aψ|| X T ≤ ||φ|| 1 + C 1 λ ||ψ|| 2 X T + (λ + C 2 ) T ||ψ|| X T . ( .9) 
This ends the proof of the Lemma.

Appendix B:

The following equation 

(λ + C 2 ) T -1 ≤ 1 -n n ,
then,

[(λ + C 2 ) T -1] 2 ≥ (1 -n) 2 n 2 .
Hence, if we have

4 C 1 λ ||φ|| 1 ≤ (1 -n) 2 n 2
then we get: 4 C1 λ ||φ|| 1 ≤ ((C 2 + λ) T -1) 2 , by taking

||φ|| 1 ≤ (1 -n) 2 n 2 λ 4C 1 ,
hence, 

||φ|| 1 ≤ (1 -n) 2

Figure 1 :

 1 Figure 1: Illustration of the walking domain. W : wall, Or: rectangular obstacle, S: exit, ∂Ω = W ∪ S ∪ ∂Or (with ∂Or is the obstacle's border).

Figure 2 :

 2 Figure 2: Vision field V for a pedestrian located at the point x with unit velocity direction e d .

Figure 3 :

 3 Figure 3: Representation of the three zones: Z = Z + ∪ Z -∪ Z ++ ∪ Z --, the obstacle's influence zone for pedestrians, Zn the neutral zone, and Zs the security zone.

Figure 4 :

 4 Figure 4: (a) Illustration of the construction of the γ(x) vector which models the direction allowing each pedestrian to avoid the obstacle Or, and (b) the γ vector at any point x of the domain Ω.

Figure 5 :

 5 Figure 5: (a) Illustration of the construction of the ν(x) vector which models the direction allowing the pedestrian to go to the exit, and (b) the ν vector in any point x of the domain Ω.

Figure 6 :

 6 Figure 6: Illustration of τ (x) vector which models the direction allowing the pedestrian to avoid the walls.

Figure 7 :

 7 Figure 7: Illustration of vectors modelling the direction allowing pedestrians to avoid walls, the obstacle and to go toward the exit, (a): γ (x), (b): τ (x), (c): ν (x) and (d): e d (x).
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) Theorem 2 .

 2 (Global existence) Considering the same assumptions as in Theorem 1, there exists ϕ p , (p = 1, ..., m -1, m ∈ N) , a p , (p = 1, ..., m -1, m ∈ N), such that if ||φ|| 1 ≤ ϕ p , the problem (18) has a unique maximum positive solution f ∈ C [0, (m -1)T ], L 1 n (Ω) , satisfying for any p ≤ m -1,

2 θ 2 = -π 4 θ 4 = 0 θ 6 = π 4 θ 8 = π 2 Figure 8 :

 2244064828 Figure 8: Illustration of the nine directions defined by:θ k = k-48 π : k = 0, ..., 8, that each pedestrian can take.

  (a) t=0s (b) t = 3.64s (c) t = 7.44s (d) t = 11.92s

Figure 9 :

 9 Figure 9: Time evolution of the local pedestrians density at different times: (a): t = 0s, (b): t = 3.64s, (c): t = 7.44s, and (d): t = 11.92s .

  (a) t = 0s (b) t = 4.56s (c) t = 9.6s (d) t = 12.36s

Figure 10 :

 10 Figure 10: Time evolution of the local pedestrians density at 4 different times:, (a): t = 0s, (b): t = 4.56s, (c): t = 9.6s, and (d): t = 12.36s .

  (a) t = 0s (b) t = 2.24s (c) t = 3.48s (d) t = 6.88s (e) t = 9.88s (f) t = 11.32s

Figure 11 :

 11 Figure 11: Time evolution of the local pedestrians density, (a): t = 0s, (b): t = 2.24s, (c): t = 3.48s, (d): t = 6.88s, (e): t = 9.88s and (f): t = 11.32s.

Figure 12 :

 12 Figure 12: Illustration of the obstacle characteristics : L obs , l obs are its dimensions, and d obs the distance between the exit and the obstacle.

(E) : ||φ|| 1 + 1 λ C 1 a 2 0 ||φ|| 2 1 + 4 C 1 λ ||φ|| 1 .

 141 (C 2 + λ) T a 0 ||φ|| 1 = a 0 ||φ|| 1 has a solution a 0 if, ||φ|| 1 ≤ min § (n -1) 2 c µ 8n 2 c η , (n -1) 2 c η |V | (4n 2 (nc η L B + (n + 1)L η )) ª .Indeed, the discriminant of the equation (E) is given by,∆ 0 = ((C 2 + λ) T -1) 2 -∆ 0 ≥ 0 if ((C 2 + λ) T -1) 2 ≥ 4 C1 λ ||φ|| 1 . According to equation (35) and for R ≥ R 1 , λ = λ 0 = c η R|V | + c µ , η R|V | + c µ ) R -n i=1 ||φ i || ∞ ,by using the following inequality ln(1 + x) ≤ x, for x ≥ 0 (λ + C 2 )

4n 2

 2 Rc η |V | + c µ (2c η + R (nc η L B + (n + 1)L η )) := ϕ * (R).Moreover,||φ|| 1 ≤ argmin R≥0 {ϕ * (R)} .By studying the following function :ϕ * : R → ϕ * (R), with R ∈ [0, +∞[,we have :argmin R≥0 {ϕ * (R)} = min § (n -1) 2 c µ 8n 2 c η , (n -1) 2 c η |V | (4n 2 (nc η L B + (n + 1)L η )) ª in particular for R > R 1 , we have: argmin R>R1 {ϕ * (R)} = min § (n -1) 2 c µ 8n 2 c η , (n -1) 2 c η |V | (4n 2 (nc η L B + (n + 1)L η )) ª := ϕ 0 .

Table 1 :

 1 Definition and illustration of the probability term B

hk [ρ](i).

Table 2 :

 2 Definition

and illustration of probability's term P h (i), where α ∈ [0, 1] sets the quality of the domain.

Table 3 :

 3 Evacuation time (s). CAPFlow developed by Argoul et al.[START_REF] Argoul | Pedestrian trajectories and collisions in crowd motion[END_REF]. In CAPFlow simulations, the pedestrians are randomly distributed in a circular area of radius r = 1.91m. Let the density ρ be in[1.3 4.3]pedestrians/m 2 . To examine the sensitivity of the deterministic model to changes in the value of model parameters, the value of some parameters are changed 255 in a random manner (normal law): the radii of the disks representing the pedestrians, the relaxation time after a collision to recover the desired direction etc[START_REF] Takashi | Effects of an obstacle position for pedestrian evacuation: SF model approach[END_REF]. 150 simulations with the CAPFlow model are performed. The evacuation time taken by the pedestrians to reach the exit is calculated by both the kinetic and discrete models and the results for four local pedestrians densities are shown in Table4.

	4.2.2. Comparison of the proposed method with deterministic approach
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In order to check the validity of the proposed kinetic model, the evacuation time for a room without obstacle calculated with our kinetic model is compared with a mean evacuation time obtained by a discrete deterministic model:

Table 4 :

 4 Evacuation time calculated by the kinetic and discrete models for four initial densities.

  .

	d obs	L obs × l obs	Evacuation time
	(m)	(m × m)	(s)
		0.5 × 0.5	12.36
		0.75 × 0.75	12.48
	1.5	1 × 1	12.20
		1.25 × 1.25	12.00
		1.5 × 1.5	12.62
		0.5 × 0.5	12.32
		0.75 × 0.75	12.42
	1.75	1 × 1	11.86
		1.25 × 1.25	11.42
		1.5 × 1.5	11.48
		0.5 × 0.5	12.28
		0.75 × 0.75	12.38
	2	1 × 1	11.78
		1.25 × 1.25	11.38
		1.5 × 1.5	11.26
		0.5 × 0.5	12.24
		0.75 × 0.75	12.32
	2.25	1 × 1	12.28
		1.25 × 1.25	11.50
		1.5 × 1.5	11.30
		0.5 × 0.5	12.20
		0.75 × 0.75	12.28
	2.5	1 × 1	12.38
		1.25 × 1.25	11.82
		1.5 × 1.5	11.48
		0.5 × 0.5	12.16
		0.75 × 0.75	12.24
	2.75	1 × 1	12.32
		1.25 × 1.25	12.42
		1.5 × 1.5	11.90
		0.5 × 0.5	12.14
		0.75 × 0.75	12.20
	3	1 × 1	12.28
		1.25 × 1.25	12.38
		1.5 × 1.5	12.50

Table 5 :

 5 Influence of the distance d obs between the obstacle and the exit and of the dimensions L obs and l obs on the evacuation time in the presence of an obstacle.

  According to estimates (.1)-(.3), the estimate (28) is obtained withC 1 = 2c η + R (nc η L B + (n + 1)L η ) , C 2 = 2c µ + (n + 1)RL µ . 2. Since Ò Ψ i [ψ, ψ](t, x) ≥ 0 and Λ i [ψ](t, x) ≥ 0 because ψ i (x) ≥ 0, then ( Aψ) i (t, x) ≥ 0 if λ -µ[ρ] - Ò Υ i [ψ](t, x)exp(-λt) ≥ 0 , from (A.1) and the equation (27), it is deduced that:Υ Rc η |V | + c µ .3. Let us note that if P h (i) ≤ 1, from (A.1) and equation (27), it can deduced that, f or i = 1, ..., n,Ò Ψ i [ψ, ψ](t, x) ≤ c η |V |R 2 exp(2λt), Λ i [ψ](t, x) ≤ c µ Rexp(λt),hence for a choice of R such that:

		n
		R ≥
		i=1
	n	n
	×	|ψ 1
	h=1	k=1

1. It is assumed that:

|ρ 1 (t, x) -ρ 2 (t, x)| ≤exp(-λt)... h (t, x -v cos(θ h )t, y -v sin(θ h )t) -ψ 2 k (t, x -v cos(θ k )t, y -v sin(θ k )t) |

, from the equation (

27

) and the hypothesis (A.1), (A.2.), let us note B hk (i)[ρ(t, x)] ≤ 1, the following estimates are then deduced:

|| Ò Ψ[ψ 1 , ψ 1 ](t) -Ò Ψ[ψ 2 , ψ 2 ](t)|| 1 ≤ (c η + nR (c η L B + L η )) ||ψ 1 (t)|| 1 + ||ψ 2 (t)|| 1 ||ψ 1 (t) -ψ 2 (t)|| 1 , (

.1)

|| Ò Υ[ψ 1 ] Ó ψ 1 (t) -Ò Υ[ψ 2 ] Ó ψ 2 (t)|| 1 ≤ (c η + L η R) ||ψ 1 (t)|| 1 + ||ψ 2 (t)|| 1 ||ψ 1 (t) -ψ 2 (t)|| 1 , (

.2)

|| Ò Λ[ψ 1 ](t) -Ò Λ[ψ 2 ](t)|| 1 ≤ (c µ + nRL µ ) ||ψ 1 (t) -ψ 2 (t)|| 1 . (.3) i [ψ](t, x) ≤ Rexp(λt)c η |V |, i = 1...n,

so for that A(ψ) i (t, x) ≥ 0, it is enough to choose λ ≥ λ 0 =

bypassed, the group reforms when it leaves the room.
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Appendix A:

Proof of Lemma