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We consider a strongly coupled ODE-PDE system representing moving bottlenecks immersed in vehicular traffic. The PDE consists of a scalar conservation law modeling the traffic flow evolution and the ODE models the trajectory of a slow moving vehicle. The moving bottleneck influences the bulk traffic flow via a point flux constraint, which is given by an inequality on the flux at the slow vehicle position. We prove uniqueness and continuous dependence of solutions with respect to initial data of bounded variation. The proof is based on a new backward in time method established to capture the values of the norm of generalized tangent vectors at every time.

1 Introduction and main results

Presentation of the problem

Macroscopic models, in particular fluid-dynamic ones, for vehicular traffic were extensively studied and used in recent years in the applied math and engineering communities . The mains reasons for this success include the many analytic tools available [START_REF] Alexandre | Special issue on mathematics of traffic flow modeling, estimation and control[END_REF][START_REF] Bellomo | On the multiscale modeling of vehicular traffic: from kinetic to hydrodynamics[END_REF][START_REF] Bressan | Flows on networks: recent results and perspectives[END_REF][START_REF] Garavello | Traffic flow on networks[END_REF] and their usability with sensors data (both fixed and probe) [START_REF] Cristiani | A fluid dynamic approach for traffic forecast from mobile sensor data[END_REF][START_REF] Garavello | Models for vehicular traffic on networks[END_REF][START_REF] Daniel | A traffic model for velocity data assimilation[END_REF]. Probe sensors has been successfully implemented for traffic monitoring since mid 2000s [START_REF] Amin | Mobile century-using GPS mobile phones as traffic sensors: a field experiment[END_REF] and the new frontiers are in the area of traffic control. A lot of attention is now focused on Connected and Autonomous Vehicles (CAVs) seen as distributed probe actuators [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF]. CAVs can be represented as moving bottlenecks and some modeling approach are available, [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Laura | Stability estimates for scalar conservation laws with moving flux constraints[END_REF][START_REF] Lattanzio | Moving bottlenecks in car traffic flow: A pde-ode coupled model[END_REF], based on flux constraints and coupled ODE-PDE systems. To develop a complete theoretical framework for traffic control via moving bottleneck, the main theoretical question to be addressed is the well-posedness of the ODE-PDE systems. This paper addresses this question for the model introduced by Delle Monache and Goatin in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF].

Let us describe in more detail the ODE-PDE models for moving bottlenecks. In [START_REF] Lattanzio | Moving bottlenecks in car traffic flow: A pde-ode coupled model[END_REF], to represent the capacity drop of car flow due to the presence of a slow vehicle, the authors multiply the usual flux function by a cut-off function. To obtain a unique solution in the sense of Fillipov ( [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]), they assume that the slow vehicle travels at maximal speed. In [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], the authors represent the moving constraint by an pointwise inequality on the flux and prove that the Cauchy problem (1) admits a solution using wave-front tracking approximations. In [START_REF] Laura | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], a proof of the stability of ρ ρα ρα ρ * 1 α f (ρ) Figure 1: Graphical representation of the flux function and of ρα , ρα and ρ * solutions for a weakly coupled PDE-ODE system is given. The term "weakly coupled" means that the position of the slow vehicle is assumed to be assinged. Some numerical methods have been developed in [START_REF] Daganzo | Moving bottlenecks: A numerical method that converges in flows[END_REF][START_REF] Daganzo | On the numerical treatment of moving bottlenecks[END_REF][START_REF] Laura | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF]. In [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF], the authors replace the single conservation law, called Lighthill-Whitham-Richards (briefly LWR) first order model [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Paul | Shock waves on the highway[END_REF], with a system of conservation laws, called the Aw-Rascle-Zhang (briefly ARZ) second order model [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF][START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF]. They define two different Riemann Solvers and they propose numerical methods.

Here we focus on the model proposed in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], thus we study the following strongly coupled ODE-PDE system

∂ t ρ + ∂ x (ρ(1 -ρ)) = 0, (t, x) ∈ IR + × IR, ρ(0, x) = ρ 0 (x),
x ∈ IR, f (ρ(t, y(t)))ẏ(t)ρ(t, y(t)) F α := α 4 (1ẏ(t)) 2 , t ∈ IR + , ẏ(t) = ω(ρ(t, y(t)+))), t ∈ IR + , y(0) = y 0 , x ∈ IR.

(

Above, ρ = ρ(t, x) ∈ [0, 1] is the mean traffic density, f is the flux defined by f (ρ) = ρv(ρ) with v(ρ) = 1ρ.

The variable y denotes the slow vehicle (briefly SV) position and the velocity of the SV is described by :

ω(ρ) = V b if ρ ρ * := 1 -V b , v(ρ) otherwise, (2) 
where V b ∈ (0, 1) denotes the maximal speed of the SV. For future use, we also defined ρα and ρα with ρα ρα to be the solutions of α 4 (1-V b ) 2 +V b ρ = f (ρ) and ρ * to be the solution of V b ρ = f (ρ). See also Figure 1.

Main result

Let us state the main result of this article. The following theorem is devoted to uniqueness and continuous dependence of solutions for [START_REF] Amin | Mobile century-using GPS mobile phones as traffic sensors: a field experiment[END_REF] with respect to the initial data.

Theorem 1. The solution (ρ, y) ∈ C 0 (IR + ; L 1 (IR) ∩ BV (IR, [0, 1])) × W 1,1 (IR + , IR) in the sense of Definition 2 for the Cauchy problem (1) depends in a Lipschitz continuous way from the initial datum. More precisely, let T > 0 and (ρ 1 , y 1 ) and (ρ 2 , y 2 ) two solutions of (1) with corresponding initial data (ρ 1 0 , y 1 0 ) and (ρ 2 0 , y 2 0 ), then there exists C > 0 such that

ρ 2 (t) -ρ 1 (t) L 1 (I R) + |y 2 (t) -y 1 (t)| C( ρ 2 0 -ρ 1 0 L 1 (I R) + |y 2 0 -y 1 0 |), for every t ∈ [0, T ].
The article is organized as follows. In Section 2.1 and Section 2.2, we recall some properties of system (1) (the Riemann solver and the existence of solutions). In section 2.3, we use the notion of generalized tangent vectors to estimate the L 1 distance of two different piecewise constant approximate solutions constructed by wave-front tracking method. In Section 2.4, we introduce a new mathematical object which traces the discontinuities of waves backwards in time. Section 2.5 deals with all the possible interactions between two waves and between a wave and the slow vehicle trajectory giving the evolution of the tangent vectors for each interaction. Section 2.6 is devoted to the proof of Theorem 1; from the final state, we manage to follow backwards in time all the discontinuities capturing the evolution of generalized tangent vectors.

Notations and Preliminary materials 2.1 The Riemann problem with moving constraints

This section is devoted to the study of the Riemann problem. We consider [START_REF] Amin | Mobile century-using GPS mobile phones as traffic sensors: a field experiment[END_REF] with Riemann type initial data

ρ 0 (x) = ρ L if x < 0 ρ R if x > 0 and y 0 = 0. ( 3 
)
The definition of the Riemann solver for (1) and ( 3) is described in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]Section 3]; We denote by R the standard Riemann solver for

∂ t ρ + ∂ x (ρ(1 -ρ)) = 0, (t, x) ∈ IR + × IR, ρ(0, x) = ρ 0 (x), x ∈ IR, (4) 
where ρ 0 is defined in (3).

Definition 1. [18, Section 3]The constrainted Riemann solver R α : [0, 1] 2 → L 1 loc (IR; [0, 1]) for (1) and (3) is defined as follows.

i If f (R(ρ L , ρ R )(V b )) > F α + V b R(ρ L , ρ R )(V b ), then R α (ρ L , ρ R )(x/t) = R(ρ L , ρα )(x/t) if x < V b t, R(ρ α , ρ R )(x/t) if x V b t, and 
y(t) = V b t. ii If V b R(ρ L , ρ R )(V b ) f (R(ρ L , ρ R )(V b )) F α + V b R(ρ L , ρ R )(V b ), then R α (ρ L , ρ R ) = R(ρ L , ρ R ) and y(t) = V b t. iii If f (R(ρ L , ρ R )(V b )) < V b R(ρ L , ρ R )(V b ), then R α (ρ L , ρ R ) = R(ρ L , ρ R ) and y(t) = v(ρ R )t.

The Cauchy problem: existence of solutions

We introduce the definition of solutions to the constrained Cauchy problem (1) as in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]Section 4].

Definition 2. [18, Section 4] The couple (ρ, y) ∈ C 0 [0, +∞[; L 1 ∩ BV(IR; [0, 1]) × W 1,1 ([0, +∞[; IR)
is a solution to (1) if i the function ρ is a weak solution to the PDE in (1), for (t, x) ∈ (0, +∞) × IR;

ii ρ(0, x) = ρ 0 (x), for a.e. x ∈ IR;

iii the function y is a Caratheodory solution to the ODE in (1), i.e. for a.e. t ∈ IR + y(t) = y 0 + t 0 ω (ρ(s, y(s)+)) ds ;

(5) iv the constraint is satisfied, in the sense that for a.e.

t ∈ IR + lim x→y(t)± (f (ρ) -w(ρ)ρ) (t, x) F α ; (6) 
Let ρ 0 ∈ BV (IR, [0, 1]). The existence of solutions for (1) in the sense of Definition 2 is proved in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]. The authors construct a sequence of approximation solutions via the wave-front tracking method and prove its convergence.

Wave-front tracking and generalized tangent vectors

Solutions to Cauchy problems for conservation laws can be constructed by various methods including wave-front tracking, see [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF][START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF]. In simple words, wave-front tracking works in the following way. One first approximate the initial data by piecewise constant functions, then solve the corresponding Riemann problems and piece solutions together approximating rarefaction waves with fans of rarefaction shocks. Then each wave moves with the speed prescribed by the Rankine-Hugoniot condition and when two waves meet a new Riemann problem is solved. Since our problem is scalar, we can use the very first algorithm proposed by Dafermos [START_REF] Dafermos | Polygonal approximations of solutions of the initial value problem for a conservation law[END_REF]. For the system case and application to traffic see [START_REF] Garavello | Traffic flow on networks[END_REF].

We introduce on [0, 1] the mesh M n = {ρ n i } 2 n i=0 defined by

M n = (2 -n IN ∩ [0, 1]).
To introduce the points ρα , ρα and ρ * , we modify the mesh M n as in [18, Section 4.1],

• if min i |ρ αρ n i | = 2 -n-1 then we add the point ρα to the mesh

M n = M n ∪ {ρ α }; • if |ρ α -ρ n l | = min i |ρ α -ρ n i | < 2 -n-1 then we replace ρ n l by ρα M n = M n ∪ {ρ α }\{ρ n l };
• we perform the same operation for ρα and for ρ * .

We notice that if ρn

j , ρn i ∈ M n then 1 2 n+1 |ρ n j -ρn i | 3 2 n+1 . For i = {1, 2}
, we construct a piecewise constant approximate solution of ρ i 0 denoted by ρ i,n 0 such that,

ρ i,n 0 = N j=0 ρ i,n 0,j χ (x 0 j-1 ,x 0 j ] with ρ i,n 0,j ∈ M n and T V (ρ i,n 0 ) T V (ρ i 0 )
which approximates ρ i 0 in the sense of the strong L 1 topology, that is to say,

lim n→∞ ρ i,n 0 -ρ i 0 L 1 (IR) = 0. Above x 0 1 < • • • < x 0
N are the points where ρ i,n 0 is discontinuous. Solving all the Riemann problem for (4) generated by the jump (ρ i,n 0 (x 0 i -), ρ i,n 0 (x 0 i +)) for i = 1, • • • , N , the solution, denoted by ρ i,n , can be prolonged until a first time t 1 is reached, when two wave-fronts interact. In the wavefront tracking method, the centered rarefaction waves are approximated by piecewise constant rarefaction fans where each rarefaction front has strengh less than 3 2 n+1 . Thus, ρ i,n (t 1 , •) is still a piecewise constant function, the corresponding Riemann problems can again be approximately solved within the class of piecewise constant functions and so on. Let y i,n the solution of ẏ(t) = ω(ρ i,n (t, y(t)+))), t ∈ IR + , y(0) = y 0 ,

x ∈ IR.

where ρ i,n (t) corresponds to the wave-front tracking approximate solution at time t as described below with initial data ρ i,n 0 (see [START_REF] Garavello | Traffic flow on networks[END_REF]Section 2.6]). We will prove that

ρ 2,n (t) -ρ 1,n (t) L 1 (I R) + |y 2,n (t) -y 1,n (t)| C(T )( ρ 2,n 0 -ρ 1,n 0 L 1 (IR) + |y 2 0 -y 1 0 |). (7) 
We use the notion of generelized tangent vectors , introduced in [START_REF] Bressan | A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves[END_REF][START_REF] Bressan | Well-posedness of the Cauchy problem for n × n systems of conservation laws[END_REF] for systems of conservation laws and adapted to traffic applications in [START_REF] Bretti | A tracking algorithm for car paths on road networks[END_REF][START_REF] Garavello | Conservation laws on complex networks[END_REF]. The main idea is to estimate the L 1 -distance viewing L 1 as a Riemannian manifold. Let [a, b] ⊂ IR and P C denotes the set of piecewise constant functions with finitely many jumps. An elementary path is a map γ : [a, b] → P C of the form

γ(θ) = ( N j=1 ρ j χ [x θ j-1 ,x θ j ] , y θ ),
where x θ j = x j + ξ j θ, y θ = y + ξ b θ with x θ j-1 < x θ j for every θ ∈ [a, b] and j = 1 • • • N . The length of an elementary path is defined as:

γ = b a j |∆ρ j ξ j | + |ξ b | dθ,
and it is easy to check that this is compatible with the usual L 1 metric, i.e. γ = γ L 1 (IR) .

The functions (ρ 1,n 0 , y 1 0 ) and (ρ 2,n 0 , y 2 0 ) can be joined by a piecewise elementary path γ 0 with a finite number of pieces. If we denote by γ t (θ) the path obtained at time t via wave-front tracking, then:

ρ 2,n (t) -ρ 1,n (t) L 1 (IR) + |y 2,n (t) -y 1,n (t)| inf γt γ t L 1 (IR) , (8) 
and inf

γ0 γ 0 L 1 (IR) = ρ 2,n 0 -ρ 1,n 0 L 1 (IR) + |y 2 0 -y 1 0 |. (9) 
For every t ∈ [0, T ], γ t is a piecewise elementary path, thus γ t admits wave shifts denoted by ξ i (t, θ) and an SV shift denoted by ξ b (t, θ). Therefore for a.e θ ∈ [0, 1] and t ∈ [0, T ],

γ t L 1 (I R) = 1 0 k |∆ρ n k (t, θ)ξ n k (t, θ)| + |ξ n b (t, θ)| dθ, (10) 
where ∆ρ n k (t, θ) are the signed strengths of the k th -waves. Thanks to (8), ( 9) and [START_REF] Bretti | A tracking algorithm for car paths on road networks[END_REF], to prove inequality [START_REF] Bressan | Well-posedness of the Cauchy problem for n × n systems of conservation laws[END_REF] it is enough to show, for every θ ∈ [0, 1],

k |∆ρ n k (T, θ)ξ n k (T, θ)| + |ξ n b (T, θ)| C k |∆ρ n k (0, θ)ξ n k (0, θ)| + |ξ n b (0, θ)| , (11) 
with C > 0 independent of n. To simplify the notations, we drop the dependence on θ in [START_REF] Rinaldo | A hölder continuous ode related to traffic flow[END_REF].

The following sections are devoted to the proof of (11).

2.4 Introduction of K(n, t 1 , t 2 , k)

In the sequel, ρ k L (resp. ρ k R ) denotes the car density at the left side (resp. at right side) of a k th -discontinuity. Our goal in this section is to track the ancestors of a discontinuity along a wave-front tracking solution, without taking account interactions with the SV trajectory. Definition 3. We define the following waves and interactions:

• A classical shock (ρ l , ρ r ) is either a discontinuity such that ρ l < ρ r (shock) or a discontinuity such that ρ r < ρ l and ρ lρ r 3 2 n+1 (rarefaction). • A non classical shock (ρ l , ρ r ) is a discontinuity such that ρ r = ρα and ρ l = ρα . A non classical shock can appear only along the SV trajectory.

• A wave-wave interaction is an interaction between two waves away from the SV trajectory.

• A wave-SV interaction is an interaction between a wave and the SV trajectory without creating or cancelling a non classical shock.

Definition 4. We now define the concept of ancestor.

• K(n, t) denotes the set of classical shocks at time t.

• i ∈ K(n, t 1
) is an ancestor of j ∈ K(n, t 2 ) if t 1 t 2 and i can be connected by to j via waves produced by wave-front tracking via interactions.

• Let 0 t 1 t 2 . The set K(n, t 1 , t 2 , k) denotes the set of classical shocks at time t 1 which are the ancestors of the k th -wave with k ∈ K(n, t 2 ) (see Example 1). Moreover, we have

K(n, t 2 , t 2 , k) = {k}.
The following Lemma gives some basic properties of K(n, t) and K(n, t 1 , t 2 , k). Lemma 1. For every 0 < t 1 t 2 , the following holds.

• Let k ∈ K(n, t 2 ) and j ∈ K(n, t 2 )\{k}. For every (p, q) ∈ K(n, t 1 , t 2 , j) × K(n, t 1 , t 2 , k), we have p = q.

• |K(n, t 1 , t 2 , j)| |K(n, t 0 , t 2 , j)| for every 0 < t 0 t 1 , where |A| denotes the cardinality of the set A.

• K(n, t 1 ) = k∈K(n,t2) K(n, t 1 , t 2 , k).
Proof. We analyze the effect of wave interactions on K, then all claims follow immediately.

• If no interaction occurs over [t 1 , t 2 ], then K(n, t 2 ) = K(n, t) and K(n, t, t 2 , j) = {j} for every (t, j) ∈ [t 1 , t 2 ] × K(n, t 2 ).
• If a wave 1 interacts with a wave 2 creating a wave 3 and no other interaction occurs at t = t > 01 (see Figure 3) then K(n, t-) = (K(n, t+ )\{3})∪{1, 2} and K(n, t-, t+ , 3) = {1, 2}.

• The possible interactions of a wave the SV trajectory are presented in Figure 4, Figure 5, Figure 6 and Figure 7. By definition, a non classical shock does not belong to K(n, •). Thus, we have K(n, t+ ) = K(n, t-) and K(n, t-, t+ , j) = {j} with j ∈ K(n, t+ ). 

t = T t = 0 t = t 1 t = t 2 x t = t 3
≺ n k if there exists t 1 t 2 such that k ∈ K(t 2 , n), j ∈ K(n, t 1 ) and j ∈ K(n, t 1 , t 2 , k). That is to say, j is an ancestor of k if and only if j ≺ n k. Remark 1. If a centered rarefaction fan is created at t = 0 (the sequence of discontinuities are denoted by k 1 , • • • , k m ), we have ξ n ki = ξ n ki+1 for every i = {1, • • • , m -1} where ξ n k denotes the shift of the k th -wave.
Example 1. In the particular case presented in Figure 2, we have 

• K(n, T ) = {14, 19}, • K(n, t + 3 ) = K(n, t - 3 ) = {2, 3, 4, 5, 6, 9, 19}, • K(n, t + 2 ) = {2, 3,

Wave-wave or wave-SV interactions

Let n ∈ IN * and T > 0. We describe all the possible interactions between two waves (see Figure 3) and all the possible interactions between a wave and the SV trajectory (Figure 4, Figure 5, Figure 6 and Figure 7). There is no other possible interaction (for more details, we refer to [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]). For each interaction, we determine the evolution of the shifts ξ n k and the shift of the SV ξ n b over time (see Lemma 3, Lemma 4, Lemma 5 and Lemma 6). Since ξ n k and ξ n b remain constant if no interaction takes place (see [START_REF] Bressan | Well-posedness of the Cauchy problem for n × n systems of conservation laws[END_REF][START_REF] Garavello | Traffic flow on networks[END_REF]), we can only focus on wave-wave interactions and wave-SV interactions. We introduce the function ψ defined by

ψ(ρ R , ρ L ) = w(ρ L )-w(ρ R ) w(ρ L )-λ if (ρ R , ρ L ) ∈ (ρ * , 1) × ([0, pα ] ∪ [p α , 1]), 0 otherwise, ρ R ρ M 2 3 1 ρ L Figure 3: Two waves interact together producing a third wave ρ R ω(ρ L ) ω(ρ R ) ρ L Case a) ρ * ρ R < ρ L and ρ L -ρ R 3 2 n+1 . ρ R ω(ρ L ) ω(ρ R ) ρ L Case b) ρ * < ρ R and ρ L ∈ [0, ρα ] ∪ [ρ α , ρ R ].
Figure 4: Interaction coming from the right with the SV trajectory with λ := 1ρ Lρ R and w defined in [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF]. We notice that 1 -

ψ(ρ R , ρ L ) = w(ρ R )-λ w(ρ L )-λ for (ρ R , ρ L ) ∈ (ρ * , 1) × ([0, pα ] ∪ [p α , 1 
]). By straightforward computations, we have

ψ(ρ L , ρ R ) =      ρ R -ρ * ρ L +ρ R -ρ * if (ρ R > ρ * & ρ l ∈ [0, ρα ] ∪ [ρ α , ρ * ]), ρ R -ρ L ρ R if (ρ R > ρ * & ρ l ∈ [ρ * , ρ R ]) or (ρ * ρ R < ρ L ), 0 otherwise. ( 12 
)
We introduce the function σ defined by σ(ρ

L , ρ R ) := f (ρ L )-f (ρ R ) ρ L -ρ R
which represents the speed of the shock wave (ρ L , ρ r ).

The following lemma, proved in [22, Lemma 2.7.2], deals with the interaction between two waves away from the SV trajectory (see Figure 3). Lemma 2. The interaction between two waves produces a third wave.

Proof. We assume that a wave (ρ l , ρ m ) interacts with an other wave (ρ m , ρ r ) without producing a third wave. Then, we have ρ l = ρ r . Since, in the wave-front tracking method, we have chosen that the speed of a rarefaction (ρ

L , ρ R ) is σ(ρ L , ρ R ) := f (ρ L )-f (ρ R ) ρ L -ρ R
, the speed of the wave (ρ l , ρ m ) is equal to the speed of the wave (ρ m , ρ r ). We conclude that no interaction occurs, whence the contradiction. 

ρ R ρα ρα Case a) ρ L = ρα and ρ R ∈ [ρ α , 1] ρ R ρα ρα V b ρ L Case b) ρ L = ρα and ρ R ∈ [ρ α , ρα ]
V b ρ L Case a) ρ R = ρα and ρ L ∈ [0, ρα ] ρ R ρα ρα V b ρ L Case b) ρ L ∈ [ρ α , ρα ] and ρ R = ρα
R V b V b ρ L Figure 7: ρ L ∈ [0, ρα ], ρ R ∈ [0, ρα ] ∪ [ρ α , p * ] and ρ L + ρ R < ρ * .
Interaction coming from the left with the SV trajectory. Lemma 3. Consider two waves with speeds λ 1 and λ 2 , respectively, that interact together at time t = t producing a wave with speed λ 3 (see Figure 3). If the first wave is shifted by ξ 1 and the second wave by ξ 2 , then the shift of the resulting wave is given by

ξ 3 = λ 3 -λ 2 λ 1 -λ 2 ξ 1 + λ 1 -λ 3 λ 1 -λ 2 ξ 2 .
Besides,

∆ρ 3 ξ 3 = ∆ρ 2 ξ 2 + ∆ρ 1 ξ 1 = k∈K(n, t-, t+ ,3) ∆ρ k ξ k , with ∆ρ 3 = ρ R -ρ L , ∆ρ 1 = ρ R -ρ M and ∆ρ 2 = ρ M -ρ L .
Let t ∈ IR * + . The following Lemmas deal with the interaction between a wave k and the SV trajectory with k ∈ K(n, t+ ) = K(n, t-). Lemma 4 is proved in [10, Section 4.2]. The proof of Lemma 5 and Lemma 6 are standard and they are obtained by mimicking the proof of Lemma 4.

Lemma 4. We assume that the wave k interacts at time t = t with the SV trajectory without creating or cancelling a non-classical shock (see Figure 4), then

ξ b ( t+ ) = (1 -ψ(ρ k L ( t-), ρ k R ( t-)))ξ b ( t-) + ψ(ρ k L ( t-), ρ k R ( t-))ξ k ( t-), ξ k ( t+ ) = ξ k ( t-),
with ξ b the SV shift and ξ k the shift of the wave k.

Lemma 5. We assume that the wave k interacts with the SV trajectory and a non classical shock is created (see Figure 5 (right) and Figure 6 (right)). Then, Lemma 6. We assume that the wave k interacts with the SV trajectory and a non classical shock is cancelled (see Figure 5 a) and Figure 6 a))

ξ b ( t+ ) = ξ b ( t-), ∆ρ k ( t+ )ξ k ( t+ ) + (ρ α -ρα )ξ b ( t+ ) = ∆ρ k ( t-)ξ k ( t-), with ∆ρ k = ρ k R -ρ k L ,
ξ b ( t+ ) = (1 -ψ(ρ k L ( t-), ρ k R ( t-)))ξ b ( t-) + ψ(ρ k L ( t-), ρ k R ( t-))ξ k ( t-), ∆ρ k ( t+ )ξ k ( t+ ) = ∆ρ k ( t-)ξ k ( t-) + (ρ α -ρα )ξ b ( t-), with ∆ρ k = ρ k R -ρ k L
, ξ b the SV shift and ξ k the shift of the wave k. The proof of Theorem 1 is based on the following estimates whose the proof is postponed in Appendix A.

Lemma 7. A. |(1 -ψ(ρ L , ρ R )| 1 + 3 2 n+1 ρ * < 1 + 2 ρ * , for every (ρ R , ρ L ) ∈ (ρ * , 1) × ([0, pα ] ∪ [p α , 1]), B. | ψ(ρ L ,ρ R ) ρ R -ρ L | 2 ρ * , for every (ρ R , ρ L ) ∈ (ρ * , 1) × ([0, pα ] ∪ [p α , 1]), C. | ψ(ρ L ,ρ R ) ρ R -ρ L | + |1 -ψ(ρ L , ρ R )| 2 ρ * 2 ρ * , for every (ρ R , ρ L ) ∈ (ρ * , 1) × [0, pα ].
We give a further property of non classical shocks. Lemma 8. A wave interacting with a non classical shock cancels it and produces an outgoing classical shock wave.

Proof. We assume that a wave 1 (ρ 1 L , ρ 1 R ) interacts at time t with a non classical shock (ρ α , ρα ) coming from the left.

• If the wave 1 is reflected in the non classical shock; in this case, a wave 2 (ρ 2 L , ρ 2 R ) is produced at t = t with ρ 1 L = ρ 2 L . Moreover, by construction, we have

ρ 1 R = ρα and ρ 2 R = ρα . We conclude that σ(ρ 1 L , ρ 1 R ) = σ(ρ 2 L , ρ 2 
R ) which is not possible for a reflection. • If the wave goes through to the non classical shock; in this case ρ 1 L = ρα = ρ 1 R , which is obviously not possible.

We conclude that a wave, coming from the left of the SV trajectory, cancels a non classical shock and, from Lemma 2, the interaction produces an outgoing classical shock wave. A similar proof can be done for a wave coming from the right.

Proof of Theorem 1

2.6.1 Ideas of the proof (a backwards in time method) For every k ∈ K(n, T ), we want to track the exact values of ξ b and ξ j with j ∈ K(n, t, T, k) from t = T until t = 0. We assume that no interactions occurs over (t 1 , T ] and at t = t 1 we have either a wave-wave interaction (see Figure 3) or a wave-SV interaction (see Figure 4, 5, 6 and Figure 7). For every t ∈ (t 1 , T ] and for every k

∈ K(n, T ) = K(n, t), we get ∆ρ n k (T )ξ n k (T ) = ∆ρ n k (t)ξ n k (t) and ξ n b (T ) = ξ n b (t).
• If the wave 1 interacts with the wave 2 producing the wave 3 (see Figure 3) then, from Lemma 3,

   ξ b (T ) = ξ b (t - 1 ), ∆ρ k (T )ξ k (T ) = ∆ρ k (t - 1 )ξ k (t - 1 ), for every k ∈ K(n, T )\{3} = K(n, t - 1 )\{1, 2}, ∆ρ 3 (T )ξ 3 (T ) = ∆ρ 1 (t - 1 )ξ 1 (t - 1 ) + ∆ρ 2 (t - 1 )ξ 2 (t - 1 ). ( 13 
)
• If the wave k with k ∈ K(n, T ) interacts with the SV trajectory at t = t 1 (see Figures 4,5, 6 and 7) then, from Lemma 4, 5 and Lemma 6, there exists (W 1 b,k (t 1 ), W 2 b,k (t 1 ), W 1 k (t 1 ), W 2 k (t 1 )) ∈ IR 4 + such that K(n, T ) = K(n, t - 1 ) and

   ξ b (T ) = W 1 b,k (t 1 )ξ b (t - 1 ) + W 1 k (t 1 )∆ρ k (t - 1 )ξ k (t - 1 ), ∆ρ k (T )ξ k (T ) = W 2 b,k (t 1 )ξ b (t - 1 ) + W 2 k (t 1 )∆ρ k (t - 1 )ξ k (t - 1 ), ∆ρ j (T )ξ j (T ) = ∆ρ j (t - 1 )ξ j (t - 1 ), for every j ∈ K(n, T )\{k} = K(n, t - 1 )\{k}, (14) 
At time t = t 1 > 0, we repeat the previous strategy considering K(n, t - 1 ) instead of K(n, T ) until a second interaction time t = t 2 > 0 and so on. Combining ( 13) with ( 14), for every k ∈ K(n, T ), there exist

W 1 b (0), W 2 b,k (0), (W 1 j,k (0)) j∈K(n,0) , (W 2 j,k (0)) j∈K(n,0) ∈ IR 2 + × IR |K(n,0)| × IR |K(n,0)| such that ξ b (T ) = W 1 b (0)ξ b (0) + j∈K(n,0) W 2 j,k (0)∆ρ j (0)ξ j (0), ∆ρ k (T )ξ k (T ) = W 2 b,k (0)ξ b (0) + j∈K(n,0) W j,k (0)∆ρ j (0)ξ j (0). (15) 
From ( 15), we construct explicitly weight functions (W n k (0)) k∈K(n,0) and W n b (0) such that k∈K(n,T )

|∆ρ n k (T )ξ n k (T )| + |ξ n b (T )| k∈K(n,0) |W n k (0)∆ρ n k (0)ξ n k (0)| + |W n b (0)ξ n b (0)|. ( 16 
)
The desired inequality [START_REF] Rinaldo | A hölder continuous ode related to traffic flow[END_REF] is obtained using the following Lemma Lemma 9. Let T > 0 and n ∈ IN * . There exists

((W n k (0)) k∈K(n,0) , W n b (0)) ∈ IR |K(n,0)| × (IR * + ) such that k∈K(n,T ) |∆ρ n k (T )ξ n k (T )| + |ξ n b (T )| k∈K(n,0) |W n k (0)∆ρ n k (0)ξ n k (0)| + |W n b (0)ξ n b (0)|, ( 17 
)
with max(|W n k (0), W n b (0)) C, for every k ∈ K(n, 0), with C > 0 a constant independent of n.
Lemma 9 is proved by considering only the interactions which may occur an infinite number of times with the SV trajectory. In theses cases, the wave and SV shifts may blow up. In Section 2.6.2, we study the evolution of the SV shift and the evolution of the wave shifts when a non classical shock is created and then cancelled as well as the number of times these particular types of interaction can occur successively. In Section 2.6.3, we determine the expressions of W n k (0) and W n k (0), defined in [START_REF] Laura | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF], in the case where the wave and SV shifts may blow up. Lemma 7 proves that W n k (0) and W n b (0) are bounded independent of n.

Example: We consider the particular case presented in Figure 2. From Lemma 3 and Lemma 4 and

ξ b (T ) = ξ b (t + 3 ), we have      ξ b (T ) = (1 -ψ(ρ 19 L , ρ 19 R )ξ b (t - 3 ) + ψ(ρ 19 L ,ρ 19 R ) ∆ρ19(t - 3 ) ∆ρ 19 (t - 3 )ξ 19 (t - 3 ), ∆ρ 14 (T )ξ 14 (T ) = k∈{2,3,4,5,6,9} ∆ρ k (t - 3 )ξ k (t - 3 ), ∆ρ 19 (T )ξ 19 (T ) = ∆ρ 19 (t - 3 )ξ 19 (t - 3 ), with ψ(ρ 19 L , ρ 19 R ) = ψ(ρ 19 L (t + 3 ), ρ 19 R (t + 3 )) = ψ(ρ 19 L (t - 3 ), ρ 19 R (t - 3 )) and ∆ρ 19 (t - 3 ) = ρ 19 R -ρ 19 L .
From Lemma 3 and Lemma 6, we get

     ξ b (t + 2 ) = (1 -ψ(ρ 9 L (t - 2 ), ρ 9 R (t - 2 )))ξ b (t - 2 ) + ψ(ρ 9 L (t - 2 ),ρ 9 R (t - 2 )) ∆ρ9(t - 2 ) ∆ρ 9 (t - 2 )ξ 9 (t - 2 ), ∆ρ 9 (t + 2 )ξ 9 (t + 2 ) = ∆ρ 9 (t - 2 )ξ 9 (t - 2 ) + (ρ α -ρα )ξ b (t - 2 ), ∆ρ 19 (t + 2 )ξ 19 (t + 2 ) = ∆ρ 17 (t - 2 )ξ 17 (t - 2 ) + ∆ρ 18 (t - 2 )ξ 18 (t - 2 ).
We notice that ρ 9 L (t - 2 ) = ρα and

ρ 9 R (t + 2 ) = ρ 9 R (t - 2 ). Since ξ b (t - 3 ) = ξ b (t + 2 ),          ξ b (T ) = (1 -ψ(ρ 19 L , ρ 19 R ))(1 -ψ(ρ 9 L (t - 2 ), ρ 9 R (t - 2 )))ξ b (t - 2 ), + (1 -ψ(ρ 19 L , ρ 19 R )) ψ(ρ 9 L (t - 2 ),ρ 9 R (t - 2 )) ∆ρ9(t - 2 ) ∆ρ 9 (t - 2 )ξ 9 (t - 2 ) + ψ(ρ 19 L ,ρ 19 R ) ∆ρ19(t - 3 ) k∈{17,18} ∆ρ k (t - 2 )ξ k (t - 2 ), ∆ρ 14 (T )ξ 14 (T ) = k∈{2,3,4,5,6,9} ∆ρ k (t - 2 )ξ k (t - 2 ) + (ρ α -ρα )ξ b (t - 2 ), ∆ρ 19 (T )ξ 19 (T ) = k∈{17,18} ∆ρ k (t - 2 )ξ k (t - 2 ).
From Lemma 3 and Lemma 5, 

   ξ b (t + 1 ) = ξ b (t - 1 ), ∆ρ 7 (t + 1 )ξ 7 (t + 1 ) + (ρ α -ρα )ξ b (t + 1 ) = ∆ρ 7 (t - 1 )ξ 7 (t -
         ξ b (T ) = (1 -ψ(ρ 19 L , ρ 19 R ))(1 -ψ(ρ 9 L (t - 2 ), ρ 9 R (t - 2 )))ξ b (t - 1 ), +(1 -ψ(ρ 19 L , ρ 19 R )) ψ(ρ 9 L (t - 2 ),ρ 9 R (t - 2 )) ∆ρ9(t - 2 ) 8 k=7 ∆ρ k (t - 1 )ξ k (t - 1 ) + ψ(ρ 19 L ,ρ 19 R ) ∆ρ19(t - 3 ) k∈{15,16,18} ∆ρ k (t - 1 )ξ k (t - 1 ), ∆ρ 14 (T )ξ 14 (T ) = k∈{2,3,4,5,6,7,8} ∆ρ k (t - 1 )ξ k (t - 1 ), ∆ρ 19 (T )ξ 19 (T ) = k∈{15,16,18} ∆ρ k (t - 1 )ξ k (t - 1 )
.

By convention, we have ξ 1 (0) = ξ k (0 + ) for every k ∈ {2, 3, 4, 5, 6}. Using ξ b (t 1 +) = ξ b (0), we conclude that

         ξ b (T ) = (1 -ψ(ρ 19 L , ρ 19 R ))(1 -ψ(ρ 9 L (t - 2 ), ρ 9 R (t - 2 )))ξ b (0), + (1 -ψ(ρ 19 L , ρ 19 R )) ψ(ρ 9 L (t - 2 ),ρ 9 R (t - 2 )) ∆ρ9(t - 2 ) k∈{7,8} ∆ρ k (0)ξ k (0) + ψ(ρ 19 L ,ρ 19 R ) ∆ρ19(t - 3 )
k∈{15,16,18} ∆ρ k (0)ξ k (0), ∆ρ 14 (T )ξ 14 (T ) = k∈{1,7,8} ∆ρ k (0)ξ k (0), ∆ρ 19 (T )ξ 19 (T ) = k∈{15,16,18} ∆ρ k (0)ξ k (0).

In the particular case presented in Figure 2, the inequality (11) becomes

k∈{14,19} |∆ρ n k (T )ξ n k (T )| + |ξ n b (T )| k∈{1,7,8,15,16,18} W n k (0)|∆ρ n k (0)ξ n k (0)| + W n b (0)|ξ n b (0)|, with            W b (0) = |(1 -ψ(ρ 19 L , ρ 19 R ))(1 -ψ(ρ 9 L (t - 2 ), ρ 9 R (t - 2 )))|, W 1 (0) = 1, W 7 (0) = W 8 (0) = 1 + |(1 -ψ(ρ 19 L , ρ 19 R )) ψ(ρ 9 L (t - 2 ),ρ 9 R (t - 2 )) ∆ρ9(t - 2 )
|, 

W 15 (0) = W 16 (0) = W 18 (0) = 1 + | ψ(ρ 19 L ,ρ 19 R ) ∆ρ19(t - 3 ) |. Applying Lemma 7, we obtain max(|W n k (0), W n b (0)) 1 + 1 + 2 ρ * 2 ,
|∆ρ k1 (t + 1 )ξ k1 (t + 1 )|+|∆ρ k2 (t + 2 )ξ k2 (t + 2 )| |∆ρ k1 (t - 1 )ξ k1 (t - 1 )|+|∆ρ k2 (t - 2 )ξ k2 (t - 2 )|+|2(ρ α -ρ α )||ξ b (t + 1 )|.
Since this type of interactions can occur an infinite number of times, the usual locally method, which consists in constructing a weight function W b for the SV shift and weight functions W k for waves such that t → W b (t)|ξ b (t)| + W k (t)|∆ρ k (t)ξ k (t)| for every k ∈ K(n, t) are not increasing in time (see [START_REF] Bressan | Uniqueness for discontinuous ode and conservation laws[END_REF][START_REF] Rinaldo | A hölder continuous ode related to traffic flow[END_REF][START_REF] Laura | Traffic flow modeling by conservation laws[END_REF]), is more difficult to apply. That is why we introduce a backward in time method described above which captures all information over [0, T ].

Remark 3. Since k th -wave may interact an infinite number of times with the SV trajectory, to find an upper bound of the weight W n k (0), we have to prove that an infinite serie is bounded, which is the difficult point of this proof (see Proof of Lemma 13).

To obtain [START_REF] Daganzo | On the numerical treatment of moving bottlenecks[END_REF], we need to have a better understandable of the creation and cancellation of a non classical shock (see section 2.6.2).

Creation and cancellation of a non classical shock

We assume that a non classical shock is created at t = t 1 > 0. Let t 2 the first time after t 1 where a wave interacts with the SV trajectory. From Lemma 8, the non classical shock is cancelled 

ρ 1 R ∈ [ρ α , ρα ] ρα ρα ρ 2 L ∈ [0, ρα ] 2 2 1 1 Case a) ρ 1 R ∈ [ρ α , ρα ] ρα ρα ρ 2 L ∈ [0, ρα ] 2 2 1 1 Case b) ρ 1 R ∈ [ρ α , ρα ] ρα ρα 2 2 1 1 Case c)
(ρ 1 L (t - 1 ), ρ 1 R (t - 1 
)) interacts with the SV trajectory at time t 1 creating a non classical shock and a wave (ρ 1

L (t + 1 ), ρ 1 R (t + 1 
)) which will be denoted by 1 as well. The wave 2 (ρ 2

L (t - 2 ), ρ 2 R (t - 2 
)) interacts with the SV trajectory at time t 2 cancelling a non classical shock and producing a wave (ρ 2

L (t + 2 ), ρ 2 R (t + 2 
)) which will be called 2 as well (see Figure 8 a)). In this case, ρ 1

L (t - 1 ) = ρα , ρ 1 R (t - 1 ) = ρ 1 R (t + 1 ) ∈ [ρ α , ρα ], ρ 1 L (t + 1 ) = ρα and ρ 2 L (t - 2 ) = ρ 2 L (t + 2 ) ∈ [0, ρα ], ρ 2 R (t - 2 ) = ρα , ρ 2 R (t +
2 ) = ρα . From Lemma 5 and Lemma 6, we have

         ξ b (t + 2 ) = (1 -ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 )))ξ b (t - 2 ) + ψ(ρ 2 L (t - 2 ),ρ 2 R (t - 2 )) ∆ρ2(t - 2 ) ∆ρ 2 (t - 2 )ξ 2 (t - 2 ), ∆ρ 2 (t + 2 )ξ 2 (t + 2 ) = ∆ρ 2 (t - 2 )ξ 2 (t - 2 ) + (ρ α -ρα )ξ b (t - 2 ), ξ b (t + 1 ) = ξ b (t - 1 ), ∆ρ 1 (t + 1 )ξ 1 (t + 1 ) + (ρ α -ρα )ξ b (t + 1 ) = ∆ρ 1 (t - 1 )ξ 1 (t - 1 ), ( 18 
)
with ∆ρ 2 (t - 2 ) := ρ 2 R (t - 2 ) -ρ 2 L (t - 2 ), ∆ρ 1 (t - 1 ) := ρ 1 R (t - 1 ) -ρ 2 L (t - 1 ), ∆ρ 1 (t + 1 ) := ρ 1 R (t + 1 ) -ρ 1 L (t + 1
) and ψ is defined in [START_REF] Cristiani | A fluid dynamic approach for traffic forecast from mobile sensor data[END_REF].

From Lemma 8 and by definition of t 2 , no other wave can interact with the non classical shock over [t 1 , t 2 ]. Thus, we have ξ b (t - 2 ) = ξ b (t + 1 ) (see Figure 8 a)) and ∆ρ NC2-a) k 1 = k 2 (see Figure 9 a)); roughly speaking the wave 1 never interacts with the wave 2. Let k 0 ∈ K(n, t + 2 , T, k 1 ) such that 1 ∈ K(n, t + 1 , t + 2 , k 0 ). From ( 18), we have

2 (t - 2 )ξ 2 (t - 2 ) = ρ 2 R ∈ [ρ α , 1] ρα ρα ρ 1 L 2 2 1 1 Case a) ρ 2 R ∈ [ρ α , 1] ρα ρα ρ 1 L ∈ [ρ α , ρα ] 2 2 1 1 Case b)
     ξ b (t + 2 ) = (1 -ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 )))ξ b (t - 1 ) + ψ(ρ 2 L (t - 2 ),ρ 2 R (t - 2 )) ∆ρ2(t - 2 ) ∆ρ 2 (t - 2 )ξ 2 (t - 2 ), ∆ρ 2 (t + 2 )ξ 2 (t + 2 ) = k∈K(n,t - 1 ,t + 2 ,2) ∆ρ k ξ k + (ρ α -ρα )ξ b (t - 1 ), ∆ρ k0 (t + 2 )ξ k0 (t + 2 ) = k∈K(n,t - 1 ,t + 2 ,k0) ∆ρ k ξ k -(ρ α -ρα )ξ b (t - 1 ). ( 23 
)
Lemma 11. A wave coming from the left cannot interact with the SV trajectory at time t > t 2 . In particular, a NC2-a) interaction occurs at most one time.

Proof. The proof is obtained by mimicking the proof of Lemma 10. NC2-b) k 1 = k 2 (see Figure 9 b)); roughly speaking the wave 1 interacts with the wave 2. Since t 2 is the first time after t 1 where a wave interacts with the SV trajectory and k 1 = k 2 , then there exist t 3 ∈ (t 2 , T ] and a wave 3 ∈ K(n, T, t + 3 , k 1 ) such that every wave k ∈ K(n, t + 1 , t + 3 , 3)\{2} does not interact with the SV trajectory. Thus, we have

∆ρ 3 (t + 3 )ξ 3 (t + 3 ) = ∆ρ 1 (t + 1 )ξ 1 (t + 1 )+∆ρ 2 (t + 2 )ξ 2 (t + 2 )+ k∈K(n,t + 1 ,t + 3 ,3)\(K(n,t + 1 ,t + 2 ,2)∪{1})
∆ρ k ξ k .

(24) Using ( 18), ( 24) and the equality ∆ρ

2 (t - 2 )ξ 2 (t - 2 ) = k∈K(n,t - 1 ,t - 2 ,2) ∆ρ k ξ k ,      ξ b (t + 2 ) = (1 -ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 )))ξ b (t - 1 ) + ψ(ρ 2 L (t - 2 ),ρ 2 R (t - 2 )) ∆ρ2(t - 2 ) k∈K(n,t - 1 ,t - 2 ,2) ∆ρ k ξ k , ∆ρ 3 (t + 3 )ξ 3 (t + 3 ) = k∈K(n,t - 1 ,t + 3 ,3) ∆ρ k ξ k . ( 25 
)
NC3: A NC3 interaction is obtained combining Figure 6 a) with Figure 6 b). The wave 1 (ρ 1

L (t - 1 ), ρ 1 R (t - 1 
)) interacts with the SV trajectory at time t 1 creating a non classical shock and a wave (ρ 1

ρ 2 L ∈ [0, ρα ] ρα ρα ρ 1 L ∈ [ρ α , ρα ] 2 2 1 1 Case a) ρ 2 R ∈ [ρ α , 1] ρα ρα ρ 1 R ∈ [ρ α , ρα ]
L (t + 1 ), ρ 1 R (t + 1 
)) which will be denoted by 1 as well. The wave 2 (ρ 2

L (t - 2 ), ρ 2 R (t - 2 
)) interacts with the SV trajectory at time t 2 cancelling a non classical shock and producing a wave (ρ 2

L (t + 2 ), ρ 2 R (t + 2 
)) which will be called 2 as well (see Figure 10 a)). In this case, ρ 1

L (t - 1 ) = ρ 1 L (t + 1 ) ∈ [ρ α , ρα ], ρ 1 R (t - 1 ) = ρα , ρ 1 R (t + 1 ) = ρα and ρ 2 L (t - 2 ) = ρ 2 L (t + 2 ) ∈ [0, ρα ], ρ 2 R (t - 2 ) = ρα , ρ 2 R (t + 2 ) = ρα . Since the speed of the SV is not modified (ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 
)) = 0), from Lemma 5 and Lemma 6, we get

   ξ b (t + 2 ) = ξ b (t - 1 ), ∆ρ 2 (t + 2 )ξ 2 (t + 2 ) = ∆ρ 2 (t - 2 )ξ 2 (t - 2 ) + (ρ α -ρα )ξ b (t - 1 ), ∆ρ 1 (t + 1 )ξ 1 (t + 1 ) + (ρ α -ρα )ξ b (t - 1 ) = ∆ρ 1 (t - 1 )ξ 1 (t - 1 ). (26) 
By construction, there exists k 1 ∈ K(n, T ) such that {1} ∈ K(n, t + 1 , T, k 1 ) and {2} ∈ K(n, t + 2 , T, k 1 ). Thus, we have

∆ρ 2 (t - 2 )ξ 2 (t - 2 ) = ∆ρ 1 (t + 1 )ξ 1 (t + 1 ) + k∈K(n,t + 1 ,t - 2 ,2)\{1} ∆ρ k ξ k . (27) 
Using ( 26), [START_REF] Paul | Shock waves on the highway[END_REF], we conclude that

ξ b (t + 2 ) = ξ b (t - 1 ), ∆ρ 2 (t + 2 )ξ 2 (t + 2 ) = k∈K(n,t - 1 ,t + 2 ,2) ∆ρ k ξ k . (28) 
NC4: A NC4 interaction is obtained combining Figure 5 In this case,

ρ 1 R (t - 1 ) = ρ 1 R (t + 1 ) ∈ [ρ α , ρα ], ρ 1 L (t - 1 ) = ρα , ρ 1 L (t + 1 ) = ρα and ρ 2 R (t - 2 ) = ρ 2 R (t + 2 ) ∈ [ρ α , 1], ρ 2 L (t - 2 ) = ρα , ρ 2 R (t + 2 ) = ρα . Moreover, ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 
)) may be different of zero. From Lemma 5 and Lemma 6, the equalities in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF] hold and, by definition of

t 2 , ξ b (t - 2 ) = ξ b (t + 1 )
. By construction, there exists k 1 ∈ K(n, T ) such that {1} ∈ K(n, t + 1 , T, k 1 ) and {2} ∈ K(n, t + 2 , T, k 1 ). Thus, we have

∆ρ 2 (t - 2 )ξ 2 (t - 2 ) = ∆ρ 1 (t + 1 )ξ 1 (t + 1 ) + k∈K(n,t + 1 ,t - 2 ,2)\{1} ∆ρ k ξ k . (29) 
Using ( 18) and ( 29), we conclude that

       ξ b (t + 2 ) = 1 -ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 )) + ψ(ρ 2 L (t - 2 ),ρ 2 R (t - 2 ))( ρα-ρα) ∆ρ2(t - 2 ) ξ b (t - 1 ), + ψ(ρ 2 L (t - 2 ),ρ 2 R (t - 2 )) ∆ρ2(t - 2 ) k∈K(n,t - 1 ,t - 2 ,2) ∆ρ k ξ k , ∆ρ 2 (t + 2 )ξ 2 (t + 2 ) = k∈K(n,t - 1 ,t + 2 ,2) ∆ρ k ξ k . (30) 
Lemma 12. Let t ∈ [0, t - 1 ), a wave k with k ∈ K(n, t, t - 1 , 1) can not interact with the SV trajectory at time t.

Proof. By contradiction, assume that some waves k with k ≺ n 1 interact with the SV trajectory on (0, t - 1 ). Let k be such that the time t 0 is the maximal interaction time on (0, t - 1 ) with the SV trajectory. Then, necessarily, the interaction is from the left and it is of type Figure 6 a) and Figure 7 (Figure 6 b) being excluded). Thus,

ρ k L (t - 0 ) = ρ k L (t + 0 ) ∈ [0, ρα ].
Moreover, no wave can interact from the left with k or any k verifying k ≺ n k on (t 0 , t - 1 ), otherwise t 0 would not be maximal. This implies that k n k and for t ∈ (t + 0 , t - 1 ),

ρ k L (t) = ρ k L (t + 0 ) ∈ [0, ρα ] but this contradicts with ρ 1 L (t - 1 ) = ρα .

Conclusion.

• Using Lemma 10, Lemma 11 and Remark 4, we conclude that either a NC1-a) interaction or a NC2-a) interaction can occur but not both. Morever they happen at most one time and the evolution of tangent vectors is described in [START_REF] Garavello | Conservation laws on complex networks[END_REF].

• From ( 22) and ( 28), a NC1-b) interaction and a NC3 interaction have the same effect as multiple wave-wave interactions (where the evolution of tangent vectors is described in Lemma 3).

• Using [START_REF] Lattanzio | Moving bottlenecks in car traffic flow: A pde-ode coupled model[END_REF] and ξ b (t - 1 ) = ξ b (t - 2 ), a NC2-b) interaction has the same effect as a classical wave-SV interaction at time t 2 (where the evolution of tangents vectors is described in Lemma 4) with multiple wave-wave interactions (where the evolution of tangent vectors is described in Lemma 3).

• Notice that we may have many interactions of type NC4). But, thanks to Lemma 12 the involved waves do not interact in the following sense: if k 1 and k 2 are involved in the creation of two different NC4) types then k 1 ≺ n k 2 and k 2 ≺ n k 1 can not hold true (the evolution of tangent vectors is described in (30)).

Proof of Lemma 9

A) If a non classical wave is created by a wave k at time t = t 1 and it is cancelled at time t 2 > T , then, using Lemma 5,

|∆ρ k (T )ξ k (T )| + |ξ b (T )| |∆ρ k (t 1 )ξ k (t 1 )| + (1 + ρα -ρα )|ξ b (t 1 )|.
B) If a non classical wave in the initial datum is cancelled by a wave k at time t = t 2 then, using Lemma 5,

|∆ρ k (t 2 )ξ k (t 2 )| + |ξ b (t 2 )| |∆ρ k (0)ξ k (0)| + (1 + ρα -ρα )|ξ b (0)|.
• The cases A) and B) may happen at most one time and (1 + ραρα ) < ∞. Thus, the weight functions W n k (0) and W n b (0) defined in Lemma 9 can not blow up because of interactions A) or B).

• From Lemma 10 and Lemma 11, either a NC1-a) interaction or a NC2-a) interaction may occur at most one time. Moreover, ραρα < ∞ and from Lemma 7,

(1 -ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 ))) < ∞ and ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 )) ∆ρ 2 (t - 2 ) < ∞.
Thus, the weight function W n k (0) and W n b (0) defined in Lemma 9 can not blow up because of NC1-a) interactions or NC2-a) interactions.

• NC1-b) interactions and NC3 interactions produce tangent vector increases as multiple wave-wave interactions.

• NC2-b) interactions have the same effect as a classical wave-SV interaction at time t 2 (where the evolution of tangents vectors is described in Lemma 4) with multiple wave-wave interactions (where the evolution of tangents vectors is described in Lemma 3).

• The evolution of the SV tangent vector for a NC4 interaction is described in [START_REF] Daniel | A traffic model for velocity data assimilation[END_REF]. In [START_REF] Daniel | A traffic model for velocity data assimilation[END_REF],

∆ρ 2 (t - 2 ) = ρ 2 R (t - 2 ) -ρ 2 L (t - 2 ) ρα -ρα . Thus, 1 -ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 )) + ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 ))(ρ α -ρα ) ∆ρ 2 (t - 2 )
1.

We conclude that ξ b (t + 2 ) ξ b (t - 1 ), that is to say a NC4 interaction does not increase the value of the SV tangent vector ξ b over time. From Lemma 12, Lemma 7 and (30)

∆ρ 2 (t + 2 )ξ 2 (t + 2 ) = ψ(ρ 2 L (t - 2 ),ρ 2 R (t - 2 )) ∆ρ2(t - 2 ) k∈K(n,0,t - 2 ,2) ∆ρ k (0)ξ k (0) < 2 ρ * k∈K(n,0,t - 2 ,2) ∆ρ k (0)ξ k (0) ,
where the notation are described in Lemma 12. Thus, the weight function W n k (0) and W n b (0) defined in Lemma 9 can not blow up because of NC4 interactions.

Our goal is to prove that the weight functions W n k (0) and W n b (0), defined in Lemma 9 can not blow up when n tends to infinity. Thus, we need only consider the interactions which may blow the weight functions W n k (0) and W n b (0) up. More precisely, we only take into account the simple wave-SV interactions, the wave-wave interactions, the NC1-b) interactions, NC2-b) interactions and the NC3 interactions.

Lemma 13. Let t 1 , t 2 ∈ IR * + such that t 1 < t 2 . We assume that only the following interactions may occur

• multiple wave-wave interactions (the evolution of tangent vectors is described in Lemma 3, Figure 3),

• wave-SV interactions (the evolution of tangent vectors is described in Lemma 4, Figure 4 and Figure 7),

• the NC1-b) interactions (the evolution of tangent vectors is described in [START_REF] Garavello | Traffic flow on networks[END_REF], Figure 8 b))

• the NC2-b) interactions (the evolution of tangent vectors is described in [START_REF] Lattanzio | Moving bottlenecks in car traffic flow: A pde-ode coupled model[END_REF], Figure 9 b)),

• The wave 1 (resp. the wave 2) interacts with the SV trajectory modifying the speed of the SV at time t 1 (resp. at time t 2 ) with t 1 < t 2 and 1 ∈ K(n, t 1 , t 2 , 2) then ρ2 L (t - 2 ) ∈ (0, ρα ). This statement is proved in Lemma 14.

• Since ρ 2 L (t - 2 ) ∈ (0, ρα ), from Lemma 7, we have

| ψ 2 ∆ρ2(t - 2 ) | + |(1 -ψ 2 )| 2 ρ * 2 ρ * . We conclude that |W n 1 (0)| 1 + 3 2 n+1 ρ * 2 | ψ 3 ∆ρ 3 (t - 3 ) | + |(1 -ψ 3 )| 2 ρ * .
Repeating the same process, we get

|W n 1 (0)| 2 exp 3 ρ * ρ * ,
which does not depend on n.

Proof of Theorem 1: From Lemma 9, for every T > 0 and n ∈ N * k∈K(n,T )

|∆ρ n k (T )ξ n k (T )| + |ξ n b (T )| < C k∈K(n,0) |∆ρ n k (0)ξ n k (0)| + |ξ n b (0)|,
with C > 0 a constant independent of n. Thus, using Section 2, we have Lemma 3] we pass to the limit of the previous inequality and we conclude the proof of Theorem 1.

ρ 2,n (t) -ρ 1,n (t) L 1 (I R) + |y 2,n (t) -y 1,n (t)| C( ρ 2,n 0 -ρ 1,n 0 L 1 (IR) + |y 2 0 -y 1 0 |), From [18,
Remark 5. In the particular case presented in Figure 11, C = (39) we conclude that

ξ b (t + 2 ) = m+1 i=1 (1 -ψ pi )ξ b (t - 1 ) + ψ 2 ∆ρ2(t - 2 ) ∆ρ 2 (t - 2 )ξ 2 (t - 2 ) + m k=0 ψ p k ∆ρp k (t - p k ) ∆ρ p k (t - p k )ξ p k (t - p k ) m-k j=0 (1 -ψ pm-j+1 ), (40) 
with p m+1 := 2 and p 0 :

= 1. Now 1 / ∈ K(n, t 1 , t - 2 , p i ). From Lemma 3, ∆ρ 2 (t - 2 )ξ 2 (t - 2 ) = k∈K(n,t - 1 ,t2,2)\∪ m i=0 K(n,t1,tp i ,pi) ∆ρ k ξ k + m i=0 k∈K(n,t1,tp i ,pi) ∆ρ k ξ k . (41) 
Combining (39),( 40) and (41), we conclude that

ξ b (t + 2 ) = W b (t - 1 , t + 2 )ξ b (t - 1 ) + k∈K(n,t - 1 ) W k (t - 1 , t + 2 )∆ρ k ξ k , ∆ρ 2 (t + 2 )ξ 2 (t + 2 ) = k∈K(n,t - 1 ,t + 2 ,2) ∆ρ k ξ k , (42) 
with

W b (t - 1 , t + 2 ) = m+1 i=1 (1 -ψ pi ) and W k (t - 1 , t + 2 ) =          ψ 2 ∆ρ2(t - 2 ) if k ∈ K(n, t - 1 , t 2 , 2)\ ∪ m i=0 K(n, t 1 , t pi , p i ), ψ 2 ∆ρ2(t - 2 ) + (1 -ψ 2 ) ψ p i ∆ρp i (t - p i ) m-i j=1 (1 -ψ pm-j+1 ) if k ∈ K(n, t - 1 , t pi , p i ), i ∈ {0, • • • , m}, 0 otherwise. (43) From Lemma 7, | ψ p i ∆ρp i | 2 ρ * for every i ∈ {0, • • • , m -1} and | m-i j=1 (1 -ψ pi )| (1 + 3 2 n+1 ρ * ) m . Moreover, | ψ 2 ∆ρ 2 + (1 -ψ 2 ) ψ pi ∆ρ pi m-i j=1 (1 -ψ pm-j+1 )| (1 + 3 2 n+1 ρ * ) m | ψ 2 ∆ρ 2 | + |(1 -ψ 2 | 2 ρ * .
Combining Lemma 7 and Lemma 14, we conclude that

| ψ 2 ∆ρ 2 + (1 -ψ 2 ) ψ pi ∆ρ pi m-i j=1 (1 -ψ pm-j+1 )| 2 1 + 3 2 n+1 ρ * m ρ * .
Since, for every ρn j , ρn

i ∈ M n , 1 2 n+1 |ρ n j -ρn i | we have m 2 n+1
T V (ρ 0 ), whence

(1 + 3 2 n+1 ρ * ) m (1 + 3 2 n+1 ρ * ) 2 n+1 T V (ρ0) exp 3T V (ρ 0 ) ρ * . ( 44 
) We conclude that max(W b (t - 1 , t + 2 ), W k (t - 1 , t + 2 )) 2 exp 3T V (ρ0) ρ * ρ * .
Particular case 2: we assume that there exist m wave denoted by 1, • • • , m interacting with the SV trajectory at t = t 1 , t = t 2 , • • • , t = t m respectively as a wave-SV interaction modifying the speed of the SV with 1 ≺ n 2 ≺ n • • • ≺ n ≺ n m and no other interactions with the SV trajectory occur. That is to say for

i = {1, • • • , m -1}, i ∈ K(n, t i , t i+1 , i + 1) and ξ b (t + i-1 ) = ξ b (t - i ). Substituting p i by i in (40), we conclude that ξ b (t + m ) = m i=1 (1 -ψ i )ξ b (t - 1 ) + ψ m ∆ρ m ∆ρ m ξ m + m-1 k=1 ψ k ∆ρ k ∆ρ k ξ k m-k-1 j=0 (1 -ψ m-j ). ( 45 
) Since for i = {1, • • • , m -1}, i ∈ K(n, t i , t i+1 , i + 1) we have, for every k ∈ {1, • • • , m}, ∆ρ k ξ k = ∆ρ k-1 ξ k-1 + l∈K(n,t1,t k ,k)\{K(n,t1,t k-1 ,k-1)} ∆ρ l ξ l , = k i=1 l∈K(n,t1,ti,i)\{K(n,t1,ti-1,i-1)} ∆ρ l ξ l . (46) 
Above, by convention K(n, t 1 , t 0 , 0) = ∅. Using (45) and ( 46), we conclude that

ξ b (t + m ) = m i=1 (1 -ψ i )ξ b (t - 1 ) + m i=1 W i   k∈K(n,t1,ti,i)\K(n,t1,ti-1,i-1) ∆ρ k ξ k   , (47) 
with

W i := ψ m ∆ρm + m-1 k=i ψ k ∆ρp k m-k-1 j=0 ((1 -ψ m-j ) , i = {1, • • • , m -1}, W m = ψ m ∆ρm . (48) 
We notice that

W i = W i+1 + ψ i ∆ρi m-i-1 j=0
(1ψ m-j ). We conclude that

W b (t - 1 , t + m ) = m i=1 (1 -ψ i ), (49) 
and

W k (t - 1 , t + m ) =    W m if k ∈ K(n, t - 1 , t + m , m)\K(n, t - 1 , t + m-1 , m -1), W i if k ∈ K(n, t - 1 , t i , i)\K(n, t - 1 , t i-1 , i -1), i ∈ {1, • • • , m -1}, 0 otherwise, (50) with W m and W i defined in (48). From (44), |W b (t - 1 , t + m )| exp 3T V (ρ0) ρ * . Using Lemma 7, we have | ψ i ∆ρp i | 2 
ρ * for every i ∈ {1, • • • , m} and we conclude that

|W i | | ψ m ∆ρ m |+ m-1 k=i+2 | ψ k ∆ρ p k | m-k-1 j=0 |(1-ψ m-j )|+| ψ i+1 ∆ρ pi+1 | m-i-2 j=0 |(1-ψ m-j )|+ 2 ρ * m-i-1 j=0 |(1-ψ m-j )|.
Moreover, using Lemma 7,

| ψ i+1 ∆ρp i+1 m-i-2 j=0 (1 -ψ m-j ) + ψ i ∆ρp i m-i-1 j=0 (1 -ψ m-j ) = m-i-2 j=0 (1 -ψ m-j ) ψ i+1 ∆ρp i+1 + (1 -ψ i+1 ) ψ i ∆ρp i , m-i-2 j=0 |(1 -ψ m-j )| 2 ρ * . (51) Thus, |W i | | ψ m ∆ρ m |+ m-1 k=i+3 | ψ k ∆ρ p k | m-k-1 j=0 |(1-ψ m-j )|+| ψ i+2 ∆ρ pi+2 | m-i-3 j=0 |(1-ψ m-j )|+ 2 ρ * m-i-2 j=0 |(1-ψ m-j )|.
By induction, we conclude that

|W i | | ψ m ∆ρ m | + |(1 -ψ m )| 2 ρ * 2 ρ * , whence max(W b (t - 1 , t + 2 ), W k (t - 1 , t + 2 )) 2 exp 3T V (ρ0) ρ * ρ * .
General case: we assume that there exist m wave denoted by 1, • • • , m interacting with the SV trajectory at t = t 1 , t = t 2 , • • • , t = t m respectively as a wave-SV interaction modifying the speed of the SV with 1 ≺ n 2 ≺ n • • • ≺ n ≺ n m, that is to say i = {1, • • • , m -1}, i ∈ K(n, t i , t i+1 , i + 1). Let t i be the first interation time after t i-1 such that i -1 ≺ n i for i = {2, • • • , m}. Besides, for i = {1, • • • , m -1}, we may have multiple n i wave-SV interactions coming from the right on (t i , t i+1 ). More precisely, for j = {1, • • • , n i }, we assume that the p i,j -wave interacts with the SV trajectory as a wave-SV interactions at time t pi,j such that t i < t pi,1 < • • • < t pi,n i < t i+1 and p i,j ∈ K(n, t pi,j , t - i+1 , i + 1) et i / ∈ K(n, t i , t - i+1 , p i,j ). We introduce the following notation K j (n, t 1 ) := K(n, t 1 , t j , j)\ ∪ nj -1 q=0 K(n, t 1 , t j,nj -q , p j,nj -q ∪ K(n, t 1 , j -1)) .

K j (n, t 1 ) denotes the set of classical shocks at time t 1 whom the elements are the ancestors of the j th -wave with j ∈ K(n, t j ) and they never interacts again with the SV trajectory over [t 1 , t j ). We notice that K(n, t 1 , t m , p m ) = ∪ m j=1 K j (n, t 1 ) ∪ ∪ m j=2 ∪ nj -q q=0 K(n, t 1 , t j,nj -q , p j,nj -q ) .

In the sequel, we will denote C i by C i := (1ψ i ). Combining ( 42) and (47) with straightforward computations we have

     ξ b (t + m ) = W m b (t - 1 , t + m )ξ b (t - 1 ) + m j=1 W m j k∈Kj (n,t1) ∆ k ρ k , + m j=2 nj -1 q=0 W m j,q
k∈K(n,t1,tj,n j -q ,pj,n j -q ) ∆ k ρ k , ∆ρ j ξ j = k∈K(n,t1,tm,j) ∆ k ξ k , for every j ∈ K(n, t m ), C nj ,l ψ pj,n j -q ∆ρ pj,n j -q .

(55)

If q = 0, by convention we require that nj l=nj -q+1 C nj ,l := 1. From (52), we conclude that

ξ b (t + m ) = W b (t - 1 , t + m )ξ b (t - 1 ) + k∈K(n,t - 1 ) W k (t - 1 , t + m )∆ k ρ k , ∆ρ j (t + m )ξ j (t + m ) = k∈K(n,t - 1 ,t + m ,j) ∆ k ξ k , for every j ∈ K(n, t + m ), (56) 
with W m b (t - 1 , t + m ) defined in (53) and

W k (t - 1 , t + m ) =    W m j if k ∈ K j (n, t 1 ), j = {1, • • • , m}, W m j,q
if k ∈ k ∈ K(n, t 1 , t j,nj -q , p j,nj -q ), i ∈ {1, • • • , m -1}, q = {0, • • • , n j }, 0 otherwise.

(
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where W m j and W m j,q are defined in (55). From now on, we prove that W m b (t - 1 , t + m ) defined in (53) and W k (t - 1 , t + m ) defined in (57) are bounded independently of n. Let j = {1, • • • , m}, q = {0, • • • , n j -1} . From Lemma 7, | m-j-1 i=0 nm-i l=1 C nm-i,l |

(1 + 3 2 n+1 ρ * ) nm+•••+nj+1 and max( ψ j ∆ρp j , ψ p j,n j -q ∆ρp j,n j -q . Thus, max(W m j-1 , W m j,q ) exp 3T V (ρ0)

ρ * | ψ m ∆ρ m | + m-1 k=j | ψ k ∆ρ k | m-k-1 i=0 |C m-i | + m-j i=0 |C m-i | 2 ρ * . Since m-1 k=j | ψ k ∆ρ k | m-k-1 i=0 |C m-i | + m-j i=0 |C m-i | 2 ρ * = m-1 k=j+1 | ψ k ∆ρ k | m-k-1 i=0 |C m-i | + m-j-1 i=0 |C m-i | | ψ j ∆ρ j | + |1 - ψ j ∆ρ j | 2 ρ * .
From Lemma 7 and Lemma 14,

| ψ j ∆ρ [ j | + |1 - ψ j ∆ρ j | 2 ρ * 2 ρ * .
We conclude that max(W m j-1 , W m j,q ) exp( 2

5 ρ * ) | ψ m ∆ρ m | + m-1 k=j+1 | ψ k ∆ρ k | m-k-1 i=0 |C m-i | + m-j-1 i=0 |C m-i | 2 ρ * .
By induction, we deduce that max(W m j-1 ,W m j,q ) exp 3T V (ρ 0 ) ρ * 2 ρ * , whence, for every k ∈ K(n, t ) defined (57). We conclude the proof of Lemma 13 noticing for every k ∈ K(n, t 1 ) that there exist m ∈ N * , j ∈ {1, • • • , m}, n j ∈ IN * and q ∈ {0, • • • , n j -1} such that

W k (t 1 , t 2 ) =    W m j , W m j,q , 0,
where W k (t 1 , t 2 ) is defined in [START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF], W m j is defined in (54) and W m j,q is defined in (55).
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 2 Figure 2: A particular configuration of discontinuities with the SV trajectory.

Figure 5 :

 5 Figure 5: Interaction coming from the right with the SV trajectory cancelling (Case a)) or creating (Case b)) a non classical shock.

Figure 6 :

 6 Figure 6: Interaction coming from the left with the SV trajectory cancelling (Case a)) or creating (Case b)) a non classical shock.

  ρ

  ξ b the SV shift and ξ k the shift of the wave k.

Figure 8 :

 8 Figure 8: Different examples of NC1 interactions

Figure 9 :

 9 Figure 9: An example of a NC2-a) interaction (Case a)) and of a NC2-b) interaction (Case b)).

Remark 4 .

 4 From Lemma 10, if a NC1-a) interaction occurs over [t 1 , t 2 ], a NC2-a) interaction can not happen on [t 2 , T ]. Reciprocally, using Lemma 11, if a NC2-a) interaction occurs over [t 1 , t 2 ], a NC1-a) interaction can not happen on [t 2 , T ]. Thus, either NC1-a) interaction or NC2-a) interaction can occur but not both.

Figure 10 :

 10 Figure 10: An example of a NC3) interaction (Case a)) and of a NC4) interaction (Case b))

  a) with Figure 5 b) (see Figure 10 b)).

  C p n m-i ,l , otherwise. (54) and for j = {1, • • • , m}, q = {0, • • • , n j -1}, W m j,q = W j +

) 2 ρ

 2 * . Since m i=2 n i T V (ρ 0 )2 n+1 we have | m-j-1 i=0 nm-i l=1 C nm-i,l | exp 3T V (ρ0)ρ *

Since the lax entropy condition is verified when ρ L < ρ R and no centered rarefaction wave can be created at t > 0, the interaction presented in Figure3is the only one which can occur at t > 0 far from the SV trajectory

exp(

ρ * ) ρ * .

k∈K(n,t - 1 ,t + 2 ,2) ∆ρ k ξ k . Moreover, since ρ 2 L (t - 2 ) = ρα < ρ * , we have ψ(ρ 2 L (t - 2 ), ρ 2 R (t - 2 )) = 0. Using [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], we conclude that

We distinguish two different cases. By construction, there exists a couple (k 1 , k 2 ) ∈ K(n, T ) 2 such that 1 ∈ K(n, t + 1 , T, k 1 ) = K(n, t - 1 , T, k 1 ) and 2 ∈ K(n, t + 2 , T, k 2 ) = K(n, t - 2 , T, k 2 ).

NC1-a) k 1 = k 2 ; roughly speaking the wave 1 never interacts with the wave 2. Let k 0 ∈ K(n, t + 2 , T, k 1 ) such that 1 ∈ K(n, t + 1 , t + 2 , k 0 ). From [START_REF] Laura | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], we have

Lemma 10. A wave coming from the right cannot interact with the SV trajectory at time t > t 2 . In particular, a NC1-a) interaction occurs at most one time.

Proof. Assuming a wave k, coming from the right, interacts with the SV trajectory at t > t 2 . Using Lemma 2, we have 1 ≺ n k and 2 ≺ n k. Thus, k 1 = k 2 , whence the contradiction. Since NC1-a) starts with an interaction coming from the right of the SV trajectory, the case NC1-a) can happen only once.

NC1-b) k 1 = k 2 ; two different types of NC1-b) interaction are illustrated in Figure 8 b) and in Figure 8 c). Roughly speaking the wave 1 interacts with the wave 2. Since t 2 is the first time after t 1 where a wave interacts with the SV trajectory and k 1 = k 2 , there exist t 3 ∈ (t 2 , T ] and a wave 3 ∈ K(n, t + 3 , T, k 1 ) such that every wave k ∈ K(n, t + 1 , t + 3 , 3)\{2} does not interact with the SV trajectory. Thus, we have

(21) From ( 19), [START_REF] Garavello | Models for vehicular traffic on networks[END_REF] and the equality ∆ρ

From ( 22), a NC1-b) interaction has the same effect as wave-wave interations.

NC2: A NC2 interaction is obtained combining Figure 5 a) with Figure 6 b). We mimic the proof of the previous case keeping the same notations and taking in account that ψ(ρ 2

)) may be different of zero (see Figure 9). From Lemma 5 and Lemma 6, the equalities in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF] hold and by definition of t 2 ξ b (t - 2 ) = ξ b (t + 1 ). We distinguish two different cases. By construction, there exists a couple (k

Figure 11: Interactions with the SV trajectory (• • • ).

• the NC3 interactions (the evolution of tangent vectors is described in (28), Figure 10 a)),

Then there exist

Moreover, we have

The proof is postponed in Appendix B. The following computations of the evolution of tangent vectors in the case of Figure 11 highlights the main ideas of the proof of Lemma 13.

Example: We consider the particular case presented in Figure 11. To simplify the notations,

From Lemma 4,

) and (35), we have

From Lemma 4,

By straightforward computations, we conclude that

(37) Thus we have,

We can notice that if a wave k interacts with the SV trajectory n times then W n k will be decomposed into a sum of n terms. We want to find a bound of W n k which does not depend on n. For instance, we have

The two following points are the main tools to prove Lemma 13:

Appendix A Proof of Lemma 7

This proof is based on the equality ρ * = ρα + ρα .

• We have

B Proof of Lemma 13

From Lemma 3, Lemma 4, Section 2.5 and Section 2.6.1, (31) holds true. The proof of the estimate (32) is based on the following lemma Lemma 14. We only consider the interactions are described in Lemma 13. We assume the wave 1 (resp. the wave 2) interacts with the SV modifying the speed of the SV at time t 1 (resp. at time t 2 ) with t 1 < t 2 and 1 ∈ K(n, t 1 , t 2 , 2) then ρ 2 L (t - 2 ) ∈ (0, ρα ).

Proof. A wave modifies the speed of the SV only if a wave comes from the right of the SV trajectory (see Figure 4 a), Figure 4 b) and Figure 5 a)). Using 1 ∈ K(n, t 1 , t 2 , 2) and Lemma 1, some waves k with 1 ≺ n k and k ≺ n 2 interact with the SV on (t 1 , t 2 ). Let k be such that the time t 0 is the maximal interaction time on (t 1 , t 2 ). Then, necessarily, the interaction is from the left and of type Figure 6 a) and Figure 7 (Figure 6 b) being excluded). Thus,

Moreover, no wave can interact from the left with k or any k verifying k ≺ n k on (t 0 , t 2 ), otherwise t 0 would not be maximal. This implies that k n k and for t

Proof of Lemma 13. Since the NC1-b) interactions, NC2-b) interactions and the NC3 interactions have the same effect as mutliple wave-wave interactions and wave-SV interactions. We can restrict our study to wave-wave interactions and wave-SV interactions. Before we deal with the general case, we will consider two particular cases.

Particular case 1: we assume that there exist a wave 1 and a wave 2 interacting with the SV trajectory at t = t 1 and t = t 2 as a wave-SV interaction modifying the speed of the SV with 1 ∈ K(n, t 1 , t 2 , 2). Let t 2 be the first interation time after t 1 such that 1 ≺ n 2. From Lemma 4,

Combining Lemma 3, 1 ∈ K(n, t