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Abstract

In this article, we propose a segmentation algorithm for skin lesions in 3D high-
frequency ultrasound images. The segmentation is done on melanoma and
Basal-cell carcinoma tumors, the most common skin cancer types, and could
be used for diagnosis and surgical excision planning in a clinical context. Com-
pared with previously proposed algorithms, which tend to underestimate the
size of the lesion, we propose two new boundary terms which provide significant
improvements of the accuracy. The first is a probabilistic boundary expan-
sion (PBE) term designed to broaden the segmented area at the boundaries,
which uses the feature asymmetry criterion. The second is a curvature depen-
dent regularization (CDR), which aims at overcoming the tendency of standard
regularization to shrink segmented areas. On a clinical dataset of 12 patients
annotated by a dermatologist, the proposed algorithm has a comparable Dice
index but increases the sensitivity by 26%. The proposed algorithm improves
the sensitivity for all lesions, and the obtained sensitivity is close to that of the
intra-observer variability.
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1. Introduction

In this article, we focus on the problem of segmentation of lesions in 3D high-
frequency ultrasound images. The lesions considered are the two most common
types of skin cancer lesions, melanoma and Basal-Cell Carcinoma (BCC). Skin
cancer is the most common type of cancer by far, accounting for approximately
76% of all cancers [1, 2] (this and the following are statistics measured in the
United States). One in five individuals will develop skin cancer during their
lifetime [3]. The annual cost of treating skin cancer is of $ 8.1 billion per year.
Melanoma is among the most frequent cancers associated with high morbidity,
totaling 4.5% of all diagnosed cancers [2]. For melanoma, early diagnosis is a
crucial factor. For early diagnosed stage IA melanoma, the 10-year survival rate
is of 93%, whereas for late diagnosis stage IIC melanoma the survival rate is of
39% only [4]. BCC is the most widespread skin cancer. Every individual has on
average a 6.0% (age-adjusted) chance of developing BCC per year [1]. BCC has
a much lower morbidity than melanoma, but the surgical treatment has high
recurrence rates [5].

Although dermoscopic evaluation and biopsy is the most used diagnosis tool
in dermatology, a number of noninvasive modalities are available to monitor the
skin, such as reflectance confocal microscopy [6] or optical coherence tomog-
raphy [7]. In this article, we focus on high-frequency ultrasound, which have
several advantages such as providing 2D or 3D images in short times and is
comparatively lightweight and less costly. Moreover, ultrasound can probe at
depths of 3 mm or more, while optical coherence tomography and reflectance
confocal microscopy are limited to a depth of 500 µm, which is insufficient to
scan the bottom of deep lesions. Nevertheless, 3D ultrasound is not widely used
in clinical practice at the moment, in particular due to the lack of processing
tools for the 3D images.

Obtaining 3D segmentation of skin lesions has a number of clinical applica-
tions. For Basal-Cell Carcinoma, determining the spatial extent of a the lesion is
a crucial issue for the surgical excision [8]. Indeed, in standard excision surgery,
the clinician has little information on the exact horizontal and in-depth extent of
the lesion. Large margins are used to ensure the removal of all malignant tissues.
Despite these protocols, recurrence rates in standard surgery can be as high as
12.2% for basal cell carcinoma situated on the face [9]. It has been shown that
high-frequency ultrasound provide good estimators of the tumor depth [10] and
extents [8, 11, 12] for basal-cell carcinomas. Quantitative 3D segmentation may
improve the success of standard surgical excision and avoid resorting to more
expensive methods like Mohs’ Micrographic surgery [9]. For the melanoma, the
segmentation in 3D can be an adjunct to diagnosis, the shape of the lesion being
related with malignancy [13]. It can also serve for biopsy site selection, or the
assessment of treatment response, Confocal Reflectance Microscopy is used in a
similar way [6]. The problem with the diagnosis of melanoma is to reliably detect
malignant lesions among a large number of benign naevi. A lot of research effort
is spend to improve the clinical diagnosis using existing or new imaging methods
such as dermoscopy, reflectance confocal microscopy, total body photography,
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multispectral imaging and even smartphone applications [14, 15]. The devel-
opment of automatic segmentation tools is a part of this effort. In particular,
several segmentation tools have been proposed for dermoscopic images [16, 13].

The most recently proposed algorithms for the segmentation of lesions in
3D ultrasound images are [17, 18]. Reference [17] is based on Markov Random
Fields, and has large computation times. The state-of-the-art intensity-based
3D level-set method for the segmentation of lesions in 3D ultrasound images
is [18].

However, these algorithms lack accuracy at the boundaries of the lesions,
and tend to underestimate the size of the tumors. The first cause of the in-
accuracy is that, close to the boundary of a tumor, the intensity is gradually
increasing from pathological to normal tissue. As a result, the algorithms pro-
posed previously tend to place the boundary in the middle between hypoechoic
tissues and normal tissues, whereas in reality the tumor is formed of all anoma-
lous tissues. The second cause of the lack of accuracy is the regularization term
in the level-set, which causes a curvature driven dynamics [19] during the op-
timization. Although this term is necessary to regularize the contour, it tends
to unnecessarily shrink the segmented area. In the following, we propose two
improvements to address these problems:

1. The first is a Probabilistic Boundary Expansion (PBE) term based on a
conditional maximum likelihood estimate. This term is specifically de-
signed to only increase the extents of the segmented area at the boundary.
This term counter-balances the gradual increase of intensity at the bound-
ary of the lesion, and allows the segmentation of the entire lesion.

2. The second contribution is to replace standard regularization with a Curvature-
Dependent Regularization (CDR) term. This term alleviates the prob-
lem of curvature-driven dynamics, while still ensuring that the contour is
smooth and regular.

We now describe previous works related to the proposed terms. The PBE
uses a Feature Asymmetry (FA) map [20] computed from the monogenic sig-
nal [21]. The Feature Asymmetry is a powerful edge detector for ultrasound
images and has been used successfully in several segmentation tasks [22, 23].
Reference [23] features a non-parametric intensity-based criterion with an ad-
ditional feature asymmetry boundary term. Reference [24] introduces a phase-
based boundary term for the segmentation of 3D ultrasound images.

The second term, curvature dependent regularization (CDR), is a variant
of front-propagation algorithms, such as min/max curvature flow [19]. It is a
natural solution to a well-known effect, the curvature-driven dynamics, which
tends to shrink the segmented area. Previously, this problem was treated using
heuristic terms such as ballooning forces which are still sometimes used [25].
However, such methods introduce an additional parameter, which is difficult
to choose consistently. In our method, the parameters have a direct geomet-
ric meaning. The proposed curvature-dependent regularization is also formally
related with anisotropic diffusion [26, 27].
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The rest of the paper is organized as follows: section 2 describes the pro-
posed PBE and CDR terms, section 3 presents a comparison of the proposed
method with previous methods used in the literature, namely the intensity-
based log-likelihood method [18] and Geometric Active Contours (GAC) [23].
The comparison is conducted on a clinical dataset of 9 melanoma and 3 basal
cell carcinoma. The accuracy is measured using the Dice index, the precision,
the sensitivity and the Mean Absolute Distance with respect to two reference
contours drawn by the expert. The results are discussed in section 4 and a
conclusion follows in section 5.

Figure 1: 3D ultrasound images of two melanoma lesions. (a), (c) Images of the lesions,
showing the epidermis (hyperechoic) and the dermis. The tumors appear as an inhomogeneous
hypoechoic area with blurred boundaries. (b) , (d) Automatic segmentation of the lesions.
(e) Overview of the processing chain. The user gives a seed point inside the lesion. The
feature asymmetry map is computed, and a mask excluding the area above the skin is defined
using a preliminary level-set segmentation. The segmentation takes place on a grid for faster
computation, and after convergence the result is interpolated to the original grid size.

2. Materials and Methods

2.1. 3D high-frequency ultrasound images of tumors

Figure 1 (a-d) depicts 3D ultrasound images of the dermis and the cor-
responding segmentation of the tumor, which is visible as a hypoechoic and
inhomogeneous area in the dermis. The axis z spans the depth of the skin, and
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the (x, y) coordinates span the planes parallel to the surface of the epidermis.
The black area above the epidermis is the ultrasound gel applied on the skin for
the acquisition. The gel area is excluded using a pre-segmentation procedure,
it is called Mask in the processing chain of Fig. 1(e).

2.2. Objective function

The proposed segmentation method is based on a hybrid geodesic active
contour, which contains both an area term and boundary terms. The area term
measures the log-likelihood of the intensity [18], to which we add the proposed
two boundary terms. The image volume X is partitioned into two regions A
and B, according to the sign of the function φx = φ(x), where x represents
the coordinates of a point in the image. Specifically, the region of interest is
A = {x ∈ X|φx > 0} and the background is B = {x ∈ X|φx ≤ 0}, separated
by a boundary ∂A. The segmented area is obtained from a minimizer φx of an
objective function E[φ]:

Eproposed[φ] = αEint[φ] + βEPBE[φ] + γECDR[φ] (1)

which contains a log-likelihood term discriminating the intensity Eint[φ], a bound-
ary term EPBE[φ] and an curvature dependent regularization ECDR[φ], weighted
by three parameters α, β and γ. The two terms EPBE[φ] and ECDR[φ] are the
original contributions of this article.

For completeness, we recall that the log-likelihood term for the intensity
is [18, 28]:

Eint[φ] = −
∫
A

log P̂ (Ix|A)dx−
∫
B

log P̂ (Ix|B)dx (2)

where P̂ (I|A) is the estimate of the distribution of intensity I in the region
A, obtained via a Parzen estimate during the minimization process. Since this
term uses the full empirical distribution of the intensity, all moments of the local
intensity play a role. This term is thus a rich local texture criterion. We now
describe the two boundary terms.

2.3. Probabilistic Boundary Expansion (PBE) term based on the Feature Asym-
metry (FA)

We compute a Feature Asymmetry (FA) map from the monogenic signal as
described in [22]. Before computing the FA map, images are first denoised using
complex wavelets [29] with a thresholding of fixed threshold T = 40 for images
normalized in the range [0,255]. The feature asymmetry map provides reliable
information on the boundary of a lesion, as depicted in Fig. 2(a, b). It can be
observed that the FA map takes nonzero values in the blurry transition area
between the dark lesion and the surrounding tissue. Qualitatively, the contour
should extend as far as possible into the boundary area, to avoid underestimating
the extent of the lesion.

Previously, it was proposed [23] to use the feature asymmetry in a geo-
metric active contour (GAC) [30] boundary term EGAC[φ] =

∫
∂A
gGAC
x dx, with
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gGAC
x = 1/(ε + FAx) (with a hyperparameter ε). With this method, the con-

tour is driven towards the maxima of the feature asymmetry, as depicted in
Fig. 2(c). The study [24] also introduces a similar boundary term which drives
the contour towards maxima of the feature asymmetry. In the following, we
compare the proposed method to the (GAC) segmentation of Ref. [23]. The
(GAC) segmentation is the minimizer of αEint[φ] + βEGAC[φ]. Our tests have
shown that without an area term, like in [24], a correct segmentation of lesions
can not be obtained.

In this article, we propose instead a probabilistic boundary expansion term
(PBE) based on a maximum a posteriori objective function EPBE[φ] which al-
ways tends to make the contour extend within the boundary area as shown
in Fig. 2(d), which suits our application better. The qualitative idea is that
in the area where the Feature Asymmetry is nonzero, the boundary should be
allowed to expand. To express this objective formally, we comply with the
maximum log-likelihood framework used for the intensity Eint[φ]. The PBE
objective is written as a maximum a posteriori log-likelihood of having value
FA of the feature asymmetry, given that the FA is strictly positive. Let us
call P̂ (FA|A,FAx > 0) the conditional probability distribution of the FA, given
that the point of interest x is in region A and that the feature Asymmetry FAx

is strictly positive. The PBE objective function quantifies the log-likelihood of
having value FA of the feature asymmetry, given that the FA is strictly positive,
and reads:

EPBE[φ] = −
∫
A
θ(FAx) log

(
P̂ (FAx|A)

)
dx−

∫
B
θ(FAx) log

(
P̂ (FAx|B)

)
dx(3)

where θ is the Heaviside function θ(x) = 0 for x ≤ 0; θ(x) = 1 for x > 0. This
term does not alter the contour position in regions with FAx = 0 and increases
the likelihood of regions with nonzero FAx to be inside of the contour A. For the
sake of simplicity, the ratio P̂ (FAx|A)/P̂ (FAx|B) is supposed to be constant.

2.4. Curvature-dependent regularization (CDR)

The second boundary term that we propose is a curvature dependent regu-
larization term.

ECDR[φ] =
∫
∂A
gx dx (4)

The gradient descent for the general case (4) is [30]:

∂tφx = δ(φx) div

(
gx
∇φx
|∇φx|

)
(5)

where δ is the Dirac delta distribution. The standard regularization [31] term
is obtained from (4) or (5) with gx = 1. This term produces a curvature-driven
boundary evolution [19], as illustrated in Fig. 3(a, b). This equation can also
be understood as a front propagation ∂tn = −κx where n is the displacement
along the direction normal to the interface, and κx = div (∇φx/|∇φx|) is the
local mean curvature of the boundary. This dynamics typically causes a collapse
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Figure 2: (a) x-y slice of a tumor and (b) Feature Asymmetry map is superimposed in
red. Specifically, the RGB channels of the image shown are set to IRx = FAx/maxx(FAx),
IGx = IBx = Ix/maxx(Ix) (c) Qualitative action of the GAC contour segmentation. Dashed
line: contour at step t. Solid line, contour at step t+ ∆t. With GAC, the contour tends to go
through the maxima of the feature map, which can shrink or extend the segmented area. (d)
Qualitative action of the proposed PBE term, with the same conventions. With the proposed
method, the contour tends to include more and more regions with nonzero feature map, which
always makes the contour extend to include the margins. For the problem at hand, this is the
preferred behavior.

of the smallest region. One can compute analytically the collapse of a spherical
region in 3D, of radius r(t), with initial radius r0. The sphere is parametrized
using φ(r) = r − r(t) in spherical coordinates (r, θ, φ). The local curvature is
given by κ(r) = 2/r, so that the evolution of the radius of the sphere r(t) is
∂tr(t) = −2/r(t), with solution r(t) =

√
r2
0 − 4t. The sphere collapses to a point

in a time t∗ = r2
0/4. The collapse of a sphere and the evolution of the radius as

a function of time is shown in Fig. 3(a, b). The curvature-driven motion, which
is used in the normal segmentation, is one of the causes of underestimation of
the tumor size.

We propose instead a curvature-dependent regularization (CDR). With CDR,
the curvature motion only takes place when the local curvature κx is above a
certain threshold κ0. The curvature-dependent evolution is obtained by setting

gx = 1− 1

1 + exp (λ (|κx| − κ0)/κ0)
(6)

which has the property gx ∼ 0 for κx . κ0 and gx ∼ 1 for κx & κ0. These
properties are exact in the limit λ→∞. The parameter κ0 defines the minimal
curvature expected for the target segmentation, or equivalently the inverse of
the expected length-scale of the roughness. The parameter λ defines the range
of curvature across which the regularization sets in. Figure 3(c, d) illustrates
the CDR curvature motion on a sphere, in the limit λ→∞. Figure 3(e) shows
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the CDR curvature motion on rectangular shape. Figure 3(f) illustrates the
dynamics of the curvature motion with standard regularization and with CDR,
and Fig. 3(g) illustrates a single line with curvature above, equal and below
the threshold curvature κ0. The figures show that the CDR makes the contour
smooth without shrinking the segmented area. In this sense, the CDR term
improves the sensitivity compared with standard regularization.

Figure 3: (a-d) Dynamics induced by the regularization term for four spherical areas of
initial radius r0 = {1, 2, 3, 4}. In (a), (b), the standard regularization gx = 1 is used. In (c),
(d), the curvature-dependent regularization is used, in the limit λ→∞. (a), (c) Depicts the
contour at several times from dark blue to light red. The direction of the curvature motion is
indicated by the arrows. (b), (d) Shows the evolution of the radius r(t) as a function of time
t. Standard regularization. All shapes collapse to a point. (b) With standard regularization,
all spheres collapse to a point in a finite time. (d) With CDR, all spheres of radius r > r∗ are
stable, and all spheres with r < r∗ collapse. The critical radius r∗ = 2/κ0 is equal to r∗ = 2.5,
and shown as a dashed line. (e-g) Dynamics induced by the regularization term for an initial
contour with a rectangle with a hole (black line). The evolution is depicted by the arrows and
the colors from dark blue to light red. (e) Standard regularization. The shape collapses to a
point in a finite time. (f) CDR curvature motion. Contours with a low curvature κ < κ0 are
stable. (g) Example of lines with different curvatures, respectively higher, equal to and less
than κ0. Smoothing in case (f) occurs only for κ > κ0.

2.5. Processing chain

The global processing chain of the clinical data is shown in Fig. 1(e). The
user provides a seed point inside the tumor which is used to initialize the contour.
The feature asymmetry is then computed, along with a mask which restricts the
segmentation to the volume inside the skin. The actual level-set optimization
takes place on a coarse rectangular grid of size 3× 3× 6 pixels, or 160× 160×
22 µm, to save processing time, and the result is interpolated to obtain the
final segmented volume. The grid size has been chosen to have a minor impact
on the accuracy. Specifically, we compare the accuracy of pixelwise and grid
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Figure 4: Dynamics induced by the regularization term in a tumor. Dashed line: contour at
step t. Solid line, contour at step t + ∆t. (a) Standard regularization. The rough parts of
the contour are smoothed. Yet, due to the curvature motion, the segmentation shrinks even
in areas which are already smooth. (b) CDR regularization. The contour is regularized, but
the lesion is not shrunk.

segmentation to the reference contours, for decreasing grid sizes, until a plateau
is reached. The use of the grid decreases the computing time by a factor of 100.

The gradient descent for the energy in Eq. (1) reads:

∂tφx = δ(φx) (αf int
x + βfPBE

x + γfCDR
x ) (7)

fCDR
x = div

(
gx
∇φx

|∇φx|

)
(8)

f int
x = log

(
P̂ (Ix|A)

P̂ (Ix|B)

)
fPBE
x = θ(FAx) log

(
P̂ (FAx|A)

P̂ (FAx|B)

)
(9)

where δ(.) is the Dirac delta distribution and θ is the Heaviside function. The
minimization is performed using a gradient descent with a semi-implicit solver
described in detail in Appendix A.

3. Results

3.1. Clinical data acquisition

Images in the dataset were acquired with a 50 MHz Dermcup 3D imaging
system, Atys Medical (Soucieu-en-Jarrest, France) at the Melanoma Skin Cancer
Clinic, Hamilton Hill, Australia. The probe makes 3D ultrasound images of size
16×16×3.12 mm (last is depth inside the skin), for a size of 300 × 299 × 832
voxels. The lateral resolution is of 50 µm and the axial (depth) resolution is of
25 µm. The clinical cases include 3 basal cell carcinoma (BCC) and 9 melanoma.
Both types of lesion are hypoechoic in ultrasound images, but the melanoma
has a much higher contrast than the BCCs. Although the dataset is small,
the different lesions are representative of the diversity of cases encountered in a
clinical setting. Moreover, the dataset of 12 cases of 3D images is equivalent to
1800 2D images. This study is retrospective chart research on images for which
written consent was obtained.
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The algorithm is implemented in Matlab, with low-level C++ subroutines for
improved speed. A segmentation takes on average 40 s on a single machine with
an Intel i7-4770 processor. The segmented region is in a window centered on the
lesion, the window is on average of size 150 × 150 × 400 voxels, approximately
9 millions voxels.

3.2. Metrics

The performance of the segmentation was evaluated with respect to the two
expert reference contours R1 and R2 made by a dermatologist. The reference
contours R1 are made in z − x parallel planes, whereas the R2 contours are
made on y− z planes. This allowed estimation of the intra-operator variability,
for example computing D(R1|R2) and D(R2|R1).

In the following, we use several similarity measures to assert the accu-
racy of the segmented contours. If Ω = A is the segmented volume, and
R the reference volume, the sensitivity S(Ω|R) = |Ω ∩ R|/|R| is the true
positive rate over the reference area, the precision is P (Ω|R) = |Ω ∩ R|/|Ω|
the true positive rate over the segmented area. The Sørensen-Dice index is
D(Ω|R) = 2|Ω ∩ R|/(|Ω|+ |R|). The Dice index D can also be expressed as
the harmonic mean of sensitivity S and precision P , D = 2/(1/S + 1/P ). The
(symmetric) Mean Absolute Distance MAD(Ω|R) is an average distance between
the segmented contour and the reference:

MAD(Ω|R) =
∑

x∈∂Ω
d(x|R)

2 surf(∂Ω) +
∑

x∈∂R
d(x|Ω)

2 surf(∂R) (10)

where d(x|R) = minx′∈∂R ‖x′ − x‖ is the distance of point x to the reference
contour ∂R. surf(∂R) is the number of pixels in the boundary ∂R. The MAD is
measured in µm. In the following, the accuracy indicators D, S, P and MAD are
measured with respect to R1, then to R2. In the following, all results D(Ω|R1),
D(Ω|R2) are considered as two independent points. For example, for a given
segmentation method, one obtains 12 segmented regions Ω on the 12 tumors,
the comparison to the references R1 and R2 yields 24 Dice indices.

3.3. Parameter setting

For each method, every parameter is optimized to obtain the best average
Dice index over the whole dataset. The Dice index is chosen as a reference
because it takes into account both the sensitivity and the precision.

The proposed algorithm (PBE+CDR) is used with a fixed ratio α/β = 1,
which means that the PBE term and log-likelihood term have equal importance
(see Appendix A). The parameter κ0 sets the inverse minimal length scale of
the roughness expected for a lesion. By inspection of the reference contours, it
is set to κ0 = 0.23. The parameter λ is set to λ = 10. The segmentation is
robust to changes in λ, for example λ = 20 yields similar results. The optimal
smoothing parameter is γ = 0.7.
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3.4. Comparison with other methods

We compare the proposed algorithm to two methods:

• The (no bd) method is the log-likelihood intensity segmentation without
boundary terms [18] with optimal parameter γ = 0.35. The method (no
bd) also plays the role of a comparison with the previous state-of-the-
art method [17], which is based on a similar log-likelihood criteria. The
difference is that [17] assumes a Rayleigh distribution function, and it
has been shown that the non-parametric method has better accuracy [18].
Notice also that compared with Markov Random Fields methods such
as [17], level-set methods provide smoother results with fewer isolated
region artifacts.

• The (GAC) method is the log-likelihood intensity method with an addi-
tional GAC boundary term, as found in [23]. The parameters defined in
section 2.3 are set to γ = 0.35 and ε = 5 after optimization.

3.5. Results

Table 1 summarizes all results for the Dice index D, MAD, sensitivity S and
precision P .

• The proposed method yields the best results in terms of Dice index D,
MAD and sensitivity S.

• The method (no bd) has the best precision P , but poor sensitivity and
lower MAD. This is because the (no bd) algorithm is too conservative:
because the segmented area is small and far from the true boundaries, it
has fewer false positives.

Figure 5 shows slices of the ultrasound image in 6 lesions, the results of
segmentation and the reference contours in orange. The figure gives visual
cues of the sensitivity score: the sensitivity is highest (S = 1) whenever the
segmentation covers the entire reference volume. The proposed method has
better sensitivity than the (GAC) segmentation, which has better sensitivity
than the (no bd) segmentation - with statistically significant improvements, as
discussed below.

Fig. 6 is a box plot of the Dice index, MAD and S for all cases - the average
was given in Table 1. The proposed method compares favorably to (no bd) and
(GAC) in terms of the MAD and the sensitivity S.

The significance of these observations is then qualified statistically with
paired t-tests. As an example, one wants to assess whether the Dice coeffi-
cient is significantly different between the proposed method and the (no bd)
method. A paired samples t-test is performed, to test whether the difference
between the Dice indices in the two methods is significantly different from zero.
More precisely, the test asserts whether the hypothesis of zero mean difference
can be rejected at a given confidence level.
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The paired t-test is performed for the different metrics (Dice, Sensitivity,
MAD). Each method is compared with the other methods and with the intra-
observer variation. Since for a given method a total of 3 paired t-tests are
made, the default significance level (5%) is divided by 3 (1.7% confidence level)
to rule out statistical issues due to multiple comparisons. The results of the
significance test are shown in Fig. 7, where a symbol 3 means that the difference
is significant.

The significance tests of Fig. 7 show that the Dice coefficient is roughly sim-
ilar for the different methods. This is probably related to the parameter search,
which is made to provide the best Dice coefficient. The question becomes: which
method has best sensitivity and lower MAD for a similar Dice index. Figure 7
also shows that the improvements of the proposed method in term of sensitivity
S are relevant. For the proposed method the average is S = 0.82, whereas it is
S = 0.65 for (no bd), a 26% improvement. Additionally, for the sensitivity, the
hypothesis of equal means between the proposed method and the intra-observer
variation can not be ruled out, meaning that their mean is not significantly dif-
ferent. Qualitatively, this means that the sensitivity is roughly as good as that
of an expert.

Figure 8 is a scatter plot of the sensitivity S versus precision P for the three
methods and the intra-observer variability. It illustrates the trade-off between
sensitivity S (segment as much of the lesion area as possible) and precision P
(only segment areas which are really part of the lesion). The method (no bd) has
good precision P but very low sensitivity S (Fig. 8(a)), the method (GAC) has
good sensitivity S (Fig. 8(b)), the proposed method has even better sensitivity
S and better precision P compared with (GAC) (Fig. 8(c)). Figure 8(d) shows
the intra-observer variability for comparison.

Figure 9 is a 3D representation of 6 different lesions and the local accu-
racy of the segmentation. The color map shows the local distance between the
reference and the segmented volume. The distance is consistently lower using
the proposed method than with (no bd) or (GAC) segmentation. This directly
translates into a lower MAD as was found in Fig. 6(b) and Table 1.

Table 1: Average accuracy of the segmentation with the three methods (no bd) [18], GAC [23],
the proposed method (PBE+CDR), and the intra-observer variability. The values indicated
are the mean and standard deviation (±) over all cases.

no bd GAC proposed intra-obs.
D 0.74 ± 0.1 0.70 ± 0.15 0.78 ± 0.1 0.84 ± 0.06
MAD (µm) 240 ± 140 330 ± 190 200 ± 110 130 ± 60
S 0.65 ± 0.2 0.76 ± 0.12 0.82 ± 0.14 0.86 ± 0.07
P 0.93 ± 0.09 0.74 ± 0.3 0.80 ± 0.2 0.83 ± 0.08

4. Discussion

Let us comment on the accuracy and limitations of each method.
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Figure 5: Slices of the 3D ultrasound images on one BCC (BCC1) and 5 melanoma (M1,
M2, M3, M4, M5). The different columns represent the segmentation for the methods (no
bd) [18] (purple), GAC [23] (red) and the proposed method (green), from left to right. The
reference contours R1 and R2 are displayed as orange areas with half transparency (outside
of the segmented contours). The orange areas are thus areas missed by the segmentation.

As it was said in the introduction, the reference method (no bd) [18] has
good precision but low sensitivity, because it tends to underestimate the size of
the lesions, as shown in Fig. 5, see also Fig. 8.

The (GAC) [23] method increases the sensitivity thanks to a better accuracy
at the boundary. The energy EGAC defined in section 2.3 drives the contour to
maxima of the feature asymmetry FAx map, as shown in Fig. 2. Since the
Feature Asymmetry map is a good indicator of the edges of the lesion, the
sensitivity of the segmentation is improved. However, the (GAC) term works
via a local decrease of the regularization factor gGAC

x = 1/(ε + FAx) near the
maxima of the FAx map, as shown in section 2.3. This gives rise to isolated
artifacts around the lesion and less regular contours shown with white arrows
in Fig. 5, for the cases BCC1, M1 and M3. Because of this, the sensitivity of
(GAC) is better than that of (no bd), but the MAD is much higher (worse), see
Fig. 6.

This observation led to the idea of designing a boundary term that does not
act like a boundary term, but instead as a log-likelihood area term, the PBE
term of section 2.3. This term helps the contour to expand closer to the bound-
aries of lesions, increasing the sensitivity, but does not create regularization
artifacts like (GAC). The proposed method also uses the curvature-dependent
regularization (CDR) of section 2.4, to avoid the curvature-driven effect on
smooth boundaries of Fig. 3 or Fig. 4, responsible for the loss of sensitivity of
the (no bd) segmentation. As is summarized in Table 1, Fig. 6, Fig. 8 and
Fig. 9, the careful design of these terms provide an increase in sensitivity and
decreases (improves) the MAD, compared with the (GAC) method.
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Figure 6: (a) Dice D, (b) MAD (µm) and (c) sensitivity S for the standard segmentation
without boundary terms (no bd) [18] in purple, the GAC segmentation [23] in red, the proposed
method in green and the intra-observer variability D(R1|R2), MAD(R1|R2) and S(R1|R2) in
blue.

Some additional results are not shown in the figures:

• It is shown above that the two proposed terms (PBE+CDR) improve the
sensitivity. Further tests have shown that, using only one of the terms
(PBE) or (CDR), e.g. setting either γ = 0 or β = 0 in (1), the sensitivity
higher than with (no bd). The gain is optimal when both terms are
combined as in the proposed (PBE+CDR) method.

• A case by case inspection of the metrics show that the sensitivity is actually
better with the proposed method than with the (no bd) method [18],
for each individual case in the dataset. This raises confidence that the
observed improvements generalize beyond the available dataset.

Concerning computation time, the Markov Random Fields [17] are slower,
one segmentation taking approximately one hour. On the other hand, the three
methods (CDR+PBE), (no bd) and (GAC) compared here have a similar com-
putation time of 40 s for a 3D image of 9 millions of voxels, thanks to the use
of a coarse grid. Without grid, as in [23], the computation time of the (GAC)
segmentation is of 20 minutes.

We now underline some limitations of the proposed method. Table 7 shows
that the MAD is significantly higher for the proposed method than for the
intra-observer MAD, and that the Dice is significantly lower, meaning that the
method is less accurate than the expert and that it can be improved. One
limitation is related to the original assumptions made in equation (2), which
states that the intensity in the lesion derives from a single distribution P (Ix|A).
This is problematic when the intensity distribution of some other region (say
the gel area) is similar to the intensity distribution in the tumor. In such a case,
artifacts occur such as those shown in Fig. 5 for the lesion M1, where small
regions outside of the dermis are segmented as tumor regions. To avoid this, one
may use supervised learning such as neural networks to learn more sophisticated
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Figure 7: Results of the statistical paired t-test for the rejection of the hypothesis of equal
means. The proposed metrics (Dice D, MAD, Sensitivity S) for one method is compared
with the metrics for the other methods and the intra-observer variation. 3 means that the
hypothesis is rejected - hence that the difference is estimated to be significant. 5 means that
the hypothesis is not rejected. The p-value in the case of null hypothesis rejection is (with
the number indicated in each case beside 3): p1 = 2× 10−5, p2 = 2× 10−4, p3 = 7× 10−5,
p4 = 1× 10−4, p5 = 4× 10−3, p6 = 8× 10−5, p7 = 4× 10−3, p8 = 5× 10−6, p9 = 8× 10−8,
p10 = 3× 10−6, p11 = 2× 10−3, p12 = 1.5× 10−3.

Figure 8: Sensitivity S versus precision P for different segmentation methods. For a good
segmentation, both the sensitivity and the precision should be as close to one as possible. The
Dice index D is related to P and S as D = 2/(1/S + 1/P ). Lines of constant Dice index are
indicated as gray lines. (a) (no bd) segmentation [18]. The sensitivity is often too low. (b)
(GAC) segmentation [23]. The precision is often too low. (c) Proposed method, with the best
sensitivity/precision trade-off. (d) Intra-observer variability.

texture criteria, or one may add more geometric priors with a better assessment
of the epidermis and regions above the skin. Such improvements are beyond the
scope of this study.

We finally comment on the generality of the methods proposed here. The
proposed boundary terms are not specific to the tumors studied here, and could
thus be applied to other segmentation problems where the region of interest
has intensity gradients on the boundary, a very common situation in medical
imaging. The feature asymmetry is known to be robust for ultrasound images.
The curvature-dependent regularization is even more general and may apply to
any level-set method. It could for example be relevant for the segmentation of
structures with tubular or irregular shapes, cases in which the standard regu-
larization does not yield satisfying results. Furthermore, the same terms can
be directly generalized from the level-set formalism to the equivalent convex
segmentation algorithms, or the equivalent discrete min-cut problem.

The segmented volumes and the 3D ultrasound images of the dataset are
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Figure 9: Color map of the local inaccuracy of the segmentation, on the 3D reference shape.
Specifically, the color map is the point distance from the reference volume to the segmented
shape. The three columns are the segmentation without boundary terms (no bd) [18], the
GAC [23] and the proposed method. The range of the color scale is normalized to the maximum
value for each lesion, red is the maximum distance dmax indicated for each case (in pixel,
1 pixel = 53 µm). The figure shows one BCC (BCC2) and 5 melanoma (M2, M3, M5, M6,
M7). The melanomas M2 and M3 are shown under two different angles.

accessible online1.

5. Conclusion

In this article, we have proposed a method based on two boundary terms to
improve the segmentation of boundaries in 3D high-frequency ultrasound images
of skin lesions. The first term is a conditional probabilistic boundary expansion
(PBE) term, based on the phase asymmetry. The second term is a curvature-
dependent regularization (CDR) term, which alleviates the curvature driven
dynamics normally found in the level-set method. On the tested clinical dataset
of 12 lesions, the combined method (PBE+CDR) improved the segmentation
significantly. In particular, the sensitivity is improved in each case. The average
sensitivity is increased from 0.65 to 0.82, a 26% improvement.
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Appendix A. Gradient descent

In the standard way, the gradient descent (7) is first recast [33] to the form

∂tφx = |∇φ| (αf int

x + βfPBE + γfCDR

x ) (A.1)

The above equations are solved with Additive Operator Splitting (AOS) [34] on
a narrow-band region Γ within a distance Ts of the contour. The parameters α
and β are dynamically adapted at each step k according to:

αk = αTs

∆t maxx∈Γk
|αf int

x +βfPBE
x | (A.2)

βk = βTs

∆t maxx∈Γk
|αf int

x +βfPBE
x | (A.3)

Γk = {x | |φx| < Ts & sign(φx(αf int
x + βfPBE

x )) < 0} (A.4)

Γk is a narrow-band region within a distance Ts of the contour, and is re-
stricted to points that may change region according to gradient descent term
(sign(φx(αf int

x + βfPBE
x ) < 0). The value of αk and βk in (A.2) is chosen such

that a point at the boundary of Γk changes region, if and only if, the value of
f int is maximal at this point, and such that at least one pixel changes region at
every step.

Algorithm 1 enumerates the main steps of the gradient descent. In the iter-
ative loop, at step 3, a fast-marching algorithm [33] resets the level-set function
φx to |∇φ| = 1 for x ∈ X, φx = 0 for x ∈ ∂A. The evolution step (7) is then
performed alternately, in step 6, and then on the regularization term fCDR in
step 7 with an AOS semi-implicit Euler scheme, which is stable for arbitrary
time steps. In the following, the time step is fixed to ∆t = 1 (only the product
γ ∆t enters Step 7 and the threshold is set to Ts = 2. The remaining parameters
are γ, which sets the degree of smoothness and the ratio α/β, which sets the
relative weight of the boundary term and the intensity term.

Algorithm 1 Gradient descent solver

1: Manual initialization of φ1
x

2: for k = 1 . . .∞ do
3: Reset |∇φk| = 1
4: Set αk, βk according to (A.2)
5: Update κx, gx, P̂ (I|A), P̂ (I|B)
6: Let φx ← φx + ∆t |∇φ| (αkf int

x + βkf
PBE
x ) for x ∈ Γk

7: Let φk+1
x ← φx + γ ∆t|∇φ|fCDR

x for all x
8: end for
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