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Explicit expression of the microscopic renormalized energy for a pinned Ginzburg-Landau functional
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We get a new expression of the microscopic renormalized energy for a pinned Ginzburg-Landau type energy modeling small impurities. This renormalized energy occurs in the simplified 2D Ginzburg-Landau model ignoring the magnetic field as well as the full planar magnetic model.

As in the homogenous case, when dealing with heterogeneities, the notion of renormalized energies is crucial in the study of the variational Ginzburg-Landau type problems. The key point of this article is the location of singularities inside a small impurity.

The microscopic renormalized energy is defined via the minimization of a Dirichlet type functional with an L ∞ -weight. Namely, the main result of the present article is a sharp asymptotic estimate for the minimization of a weighted Dirichlet energy evaluated among S 1 -valued maps defined on a perforated domain with shrinking holes [in the spirit of the famous work of Bethuel-Brezis-Hélein]. The renormalized energy depends on the center of the holes and it is expressed in a computable way.

In particular we get an explicit expression of the microscopic renormalized energy when the weight in the Dirichlet energy models an impurity which is a disk. In this case we proceed also to the minimization of the renormalized energy.

Mathematics Subject Classification (2010) 49K20 • 35J66 • 35J20 1 Introduction
The superconductivity phenomenon is an impressive property that appears on some materials called superconductors. When a superconductor is cooled below a critical temperature, it carries electric currents without dissipation [no electrical resistance] and expels magnetic fields from its body [Meissner effect].

But if the conditions imposed on the material are too strong [e.g. a strong magnetic field] then the superconductivity properties may be destroyed: the material has a classical behavior in some areas of the material. These areas are called vorticity defects.

The present work gives informations for type II superconductors which are characterized by the possible coexistence of vorticity defects with areas in a superconducting phase. This state is called the mixed state. Namely, for an increasing intensity of the magnetic field, the vorticity defects appear first with a small number and look like disks with small radii. [See [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF] for a rigorous and quite complete presentation of these facts]

In an homogeneous superconductor, the vorticity defects arrange themselves into triangular Abrikosov lattice. In the presence of a current, vorticity defects may move, generating dissipation, and destroying zeroresistance state. A way to prevent this motion is to trap the vorticity defects in small areas called pinning sites. In practice, pinning sites are often impurities which are present in a non perfect sample or intentionally introduced by irradiation, doping of impurities.

In order to prevent displacements in the superconductor, the key idea is to consider very small impuri-ties. The heart of this article is to answer the following question: Once the vorticity defects are trapped by small impurities, what is their locations inside the impurities [microscopic location] ?

Since the celebrated monograph of Bethuel, Brezis and Hélein [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF], the mathematical study of the superconductivity phenomenon knew an increasing popularity. In their pioneering work, Bethuel, Brezis and Hélein studied the minimizers of the simplified Ginzburg-Landau energy

E ε : H 1 (Ω, C) → R + u → 1 2 ˆΩ |∇u| 2 + 1 2ε 2 (1 -|u| 2 ) 2
submitted to a Dirichlet boundary condition in the asymptotic ε → 0.

Here Ω is a bounded simply connected domain which is a cross section of an homogenous superconducting cylinder Ω × R.

In this simplified model, a map u which minimizes E ε [under boundary conditions] models the state of the superconductor in the mixed state. The vorticity defects are the connected components of {|u| ≃ 0}. We mention that a quantization of the vorticity defects may be done by observing the degree of a minimizers around their boundaries. In this context we say that z is a vortex of u when it is an isolated zero of u with a non zero degree. With this model we recover the basic description of the vorticity defects as small discs with radii of order of ε centered at a vortex. In [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF], a Dirichlet boundary condition [with a non zero degree] mimics the application of a magnetic field by forcing the presence of vorticity defects. More realistic models including the presence of a magnetic field were intensively studied. Despite the present work applies in these magnetic models [see [START_REF] Santos | Magnetic Ginzburg-Landau energy with a periodic rapidly oscillating and diluted pinning term[END_REF]], in order to motivate our main results [see Theorem 1 and Proposition 1], for sake of simplicity of the presentation, we focus on the model ignoring the magnetic field.

A part of the main results of [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF] concerns quantization & location of the vorticity defects and an asymptotic estimate of the energy of a minimizer. All these results are related with the crucial notion of renormalized energy. The renormalized energy may be seen as a Γ -limit [when ε → 0] of the energy E ε [see [START_REF] Alicandro | Ginzburg-Landau functionals and renormalized energy: A revised Γ -convergence approach[END_REF]]. In particular it gives location informations on vorticity defects for minimizers. Despite the Dirichlet boundary condition used in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF] is not physical [non gauge invariant] (1) , the information on location of the vorticity defects 1 One may modify the renormalized energy by replacing the Dirichlet boundary condition with a degree condition, after this modification the renormalized energy plays a role in a more realistic model with no boundary condition and with a magnetic field [see e.g. [START_REF] Santos | Magnetic Ginzburg-Landau energy with a periodic rapidly oscillating and diluted pinning term[END_REF] where this fact is highlighted or [START_REF] Lefter | Minimization problems and corresponding renormalized energies[END_REF]] coincide with some observations done by physicists [repulsion between vorticity defects, confinement in Ω and quantization of the defects].

As said above, our goal is to deal with superconductor containing small impurities. One may modify the above model in order to consider an heterogenous superconductor. This is done with the help of a pinning term a : Ω → R + by considering the functional

E pinned ε : H 1 (Ω, C) → R + u → 1 2 ˆΩ |∇u| 2 + 1 2ε 2 (a 2 -|u| 2 ) 2 .
There are a lot of works which deal with such an energy. Some variants are studied in the literature with the function a which is "smooth" or piecewise constant; independent of ε or depending on ε... One may for example quote the work of Lassoued-Mironescu [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF] for a model ignoring the magnetic field and [START_REF] Aftalion | Pinning phenomena in the Ginzburg-Landau model of superconductivity[END_REF], [START_REF] André | Vortex pinning with bounded fields for the Ginzburg-Landau equation[END_REF] or [START_REF] Kachmar | Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint[END_REF] for a magnetic model. All these studies obtain similar conclusions: vorticity defects are close to the minimum points of the pinning term [pinning effect].

In order to present an interpretation of the pinning term, we focus on the case of a pinning term a : Ω → R piecewise constant. Say, for some b ∈ (0; 1) we have a(Ω) = {1; b} and a -1 ({b}) is a smooth compact subset of Ω whose connected components represent the impurities. A possible interpretation of a such pinning term is an heterogeneity in temperature. Letting T c be the critical temperature below which superconductivity appears, if T 1 < T c is the temperature in a -1 ({1}), then

T b = (1 -b 2 )T c + b 2 T 1 is the temperature in a -1 ({b}).
Here the impurities are "heat" areas [see Section 2.2 of the Introduction of [START_REF] Santos | Défauts de vorticité dans un supraconducteur en présence d'impuretés[END_REF]].

In order to consider "small" impurities we need to use an ε-dependent pinning term [a ε : Ω → {b; 1} with b independent of ε]. Then we may model shrinking impurities: the diameter of the connected components of a -1 ε ({b}) tend to 0 when ε → 0. A special case of small impurities are the case of diluted impurities. We say that the impurities are diluted when they have small diameter and when the inter-distance between two impurities is much larger than the diameter of the impurities. In [START_REF] Santos | Ginzburg-Landau model with small pinning domains[END_REF] the case of diluted impurities without magnetic field is considered and, as in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF], vorticity defects are created by imposing a Dirichlet boundary condition g ∈ C ∞ (∂Ω, S 1 ). It is proved that, when vorticity defects are trapped by a diluted impurity, then their location inside the impurity [the microscopic location] is independent of the Dirichlet boundary condition g: the microscopic location of the defects tends to minimize a microscopic renormalized energy that is independent of g. This important fact hints that this microscopic renormalized energy should play a role in a more re-alistic model with magnetic field. This is proved in [START_REF] Santos | Magnetic Ginzburg-Landau energy with a periodic rapidly oscillating and diluted pinning term[END_REF] where the case of small impurities for a magnetic energy is treated.

The goal of this article is to give an explicit formula for the microscopic renormalized energy in the context of the study of a pinned Ginzburg-Landau type energy. As in the work of Bethuel, Brezis and Hélein, the microscopic renormalized energy is defined via an auxiliary minimization problem of a weighted Dirichlet functional involving unimodular maps defined in a perforated domain.

Main result

Before stating the main result of this article [Theorem 1] we may give few words on the auxiliary minimization problem treated in this theorem [see Section 2 of [START_REF] Santos | Microscopic renormalized energy for a pinned Ginzburg-Landau functional[END_REF] for a more detailed presentation]. Note that a quite complete presentation of notation is done in Section 3. Consider the simplest diluted pinning term defined in a smooth bounded simply connected domain

Ω ⊂ R 2 [we assume 0 ∈ Ω]: a ε (x) = 1 in Ω \ (δ • ω) b in δ • ω
where ω ⊂ R 2 is a smooth bounded simply connected open set s.t. 0 ∈ ω, b ∈ (0; 1) and δ → 0&δ 2 ≫ ε. One may thus consider the pinned Ginzburg-Landau energy:

E pinned ε (u) = 1 2 ˆΩ |∇u| 2 + 1 2ε 2 (a 2 ε -|u| 2 ) 2 , u ∈ H 1 (Ω, C).
Let U ε be the unique minimizer of E pinned ε with the Dirichlet boundary condition U ≡ 1 on ∂Ω [see [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF]].

Then U ε ∈ H 2 (Ω, R) is a regularization of a ε and, in Ω, U ε ≥ b.
For v ∈ H 1 (Ω, C) we have the Lassoued-Mironescu decoupling:

E pinned ε (U ε v) = E pinned ε (U ε ) + F ε (v) where F ε (v) = 1 2 ˆΩ U 2 ε |∇v| 2 + U 4 ε 2ε 2 (1 -|v| 2 ) 2 . Let g ∈ C ∞ (∂Ω, S 1 ) be s.t. deg ∂Ω (g) = 1. It is clear that u ε ∈ H 1 (Ω, C) minimizes E pinned ε w.r.t. the bound- ary condition g if and only if v ε := u ε /U ε minimizes F ε w.r.t the boundary condition g.
Note that a such minimizer v ε always exists. Under some technical assumptions on δ [see [START_REF] Santos | Ginzburg-Landau model with small pinning domains[END_REF]], for small ε > 0, v ε admits a unique zero

x ε , x ε ∈ δ • ω and |v ε | = 1 + o(1) in Ω \ B(x ε , δ 2 ).
One may prove:

F ε (v ε ) = 1 2 ˆΩ\B(0, √ δ) ∇ v ε |v ε | 2 + F ε [v ε , B(x ε , δ 2 )] + + 1 2 ˆB(0, √ δ)\B(xε,δ 2 ) U 2 ε ∇ v ε |v ε | 2 + o(1).
It is standard to check that

1 2 ˆΩ\B(0, √ δ) ∇ v ε |v ε | 2 = π| ln √ δ| + W BBH g (0) + o(1)
where W BBH g is the renormalized energy of Bethuel-Brezis-Hélein w.r.t the boundary condition g.

Moreover F ε [v ε , B(x ε , δ 2 )] = b 2 π ln b 2 δ 2 ε + γ +o(1)
where γ is a universal constant. Therefore the only contribution of the location of x ε in δ•ω appears in the term "

1 2 ˆB(0, √ δ)\B(xε,δ 2 ) U 2 ε ∇ v ε |v ε | 2 ". Let α = 1 in R 2 \ ω b 2 in ω , since U ε is a regularization of a ε , letting z ε = x ε /δ, w ε (•/δ) = v ε (•)/|v ε (•)| and, for z ∈ ω, D z = D δ -1/2 ,δ,z = B(0, δ -1/2
) \ B(z, δ) after scaling one may prove:

1 2 ˆB(0, √ δ)\B(xε,δ 2 ) U 2 ε ∇ v ε |v ε | 2 = 1 2 ˆDzε α |∇w ε | 2 + o(1) = inf w∈H 1 (Dz ε ,S 1 ) deg(w)=1 1 2 ˆDzε α |∇w| 2 + o(1).
Our main result gives the existence of a function

W micro : ω → R s.t. for z ∈ ω we have inf w∈H 1 (Dz,S 1 ) deg(w)=1 1 2 ˆDz α |∇w| 2 (1) = f (δ -1/2 ) + b 2 π| ln δ| + W micro (z) + o(1)
where

f : (R 0 ; ∞) → R [R 0 > 1 is sufficiently large] is a function independent of z ∈ ω.
The previous calculations may be used to get upper and lower bounds for the minimization problem of E pinned ε in order to prove that z ε tends to minimize W micro .

Since the arguments used in this work apply in a more general framework than above, our main result gives an estimate of the minimal energy (1) in a more complete setting than above.

Theorem 1 Let -ω ⊂ R 2 ≃ C be a smooth bounded simply connected open set s.t. 0 ∈ ω, -N ∈ N * and (ω N ) ⋆ := {(z 1 , ..., z N ) ∈ ω N | z i = z j for i = j}, -B ∈ (0; 1), b ∈ [B; B -1 ] and α ∈ L ∞ (R 2 , [B 2 ; B -2 ]) be s.t. α ≡ b 2 in ω.
For d ∈ Z N and z ∈ (ω N ) ⋆ , we write for large R > 1 and small ρ ∈ (0; 1), D R,ρ,z := B(0, R) \ ∪ i B(z i , ρ) and

E d (D R,ρ,z ) := u ∈ H 1 (D R,ρ,z , S 1 ) | deg(u) = d .
Then there exist

-f : (R 0 , ∞) → R + which satisfies B 2 π ln(R)-C ω,B ≤ f (R) ≤ B -2 π ln(R) + C ω,B
[where C ω,B is a constant depending only on ω&B and R 0 > 1 is sufficiently large],

- W micro : (ω N ) ⋆ × Z N → R (z, d) → W micro (z, d) s.t. for d ∈ Z N and z ∈ (ω N ) ⋆ , when R → ∞ and ρ → 0 + , we have inf u∈E d (DR,ρ,z) 1 2 ˆDR,ρ,z α|∇u| 2 = (2) = N i=1 d i 2 f (R) + b 2 π N i=1 d 2 i | ln ρ| + W micro (z, d) + o(1).
The function f (•) is defined by

f (R) := inf v∈H 1 (BR\ω,S 1 ) deg(v)=1 1 2 ˆBR\ω α|∇v| 2 .
[Note that the degree of a function is defined in Section 3.2]. Even in a simpler framework than in Theorem 1 and despite the apparent basic form of the problem treated in Theorem 1, to the knowledge of the author, this theorem is a new result.

Remark 1 1. In Theorem 1, ω is a small impurity rescaled at scale 1, the N -tuple z corresponds to the centers of N vorticity defects trapped by the impurity with degrees given by d. The weight α may be understood as a 2 ε after rescaling. Then the philosophy of (2) consists in decoupling asymptotically the energy around the vorticity defects as a divergent term that ignores the location of the vorticity defects pulse W micro (z, d). In particular, for a minimal family (a) In the diluted case we have to consider α = 1 outside ω b 2 in ω where ω is the form of the impurity. (b) With the help of the main result of [START_REF] Santos | Ginzburg-Landau model with small pinning domains[END_REF], [START_REF] Santos | The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case[END_REF] and [START_REF] Santos | Magnetic Ginzburg-Landau energy with a periodic rapidly oscillating and diluted pinning term[END_REF], in order to study W micro in the context of a pinned Ginzburg-Landau type function [with or without magnetic field], we may focus on the case d i = 1 for i ∈ {1, ..., N }. But, since the minimization problem considered in Theorem 1 is of its self-interest we treat the case of general degrees.

(u ε ) 0<ε<1 of E pinned ε , if (z, d)

If

ω ⊂ Y := (-1/2; 1/2] × (-1/2; 1/2] is as in Theorem 1, Theorem 1] should govern the limiting location of vortices inside an impurity for the periodic non diluted case. But, there is no result which asserts that in the non diluted case the microscopic location of the vortices may be studied with this minimization problem. [Despite we believe that in the non diluted periodic case the microscopic location of vortices should be given by minimal configurations of W micro with degree 1]

-α = 1 in Y \ ω b 2 in ω , -α is 1-periodic, then W micro [given in
In the diluted circular case, i.e., the set ω is the unit disk D and α ≡ 1 outside ω, we may obtain an explicit expression for W micro .

Proposition 1 If ω is the unit disk D and

α = b 2 if x ∈ ω 1 if x / ∈ ω ,
then the microscopic renormalized energy with N vortices

(z, d) = {(z 1 , d 1 ), ..., (z N , d N )} is W micro (z, d) = -b 2 π   i =j d i d j ln |z i -z j |+ + 1 -b 2 1 + b 2   N j=1 d 2 j ln(1 -|z j | 2 ) + i =j d i d j ln |1 -z i z j |     .
Section 8 is dedicated to the case of the weight considered in Proposition 1. Proposition 1 is proved in Section 8.4. The minimization of the renormalized energy W micro in this situation is presented in some particular cases in Section 8.5.

Remark 2 In [START_REF] Santos | Ginzburg-Landau model with small pinning domains[END_REF], the existence and the role of W micro was established. But its expression was not really usable.

In particular, in the case of an impurity which is a disk containing a unique vortex, it was expected that the limiting location is the center of the disc. The expression of W micro obtained in [START_REF] Santos | Ginzburg-Landau model with small pinning domains[END_REF] does not allow to get this result easily. This result was obtained from scratch in [START_REF] Santos | Microscopic renormalized energy for a pinned Ginzburg-Landau functional[END_REF]. This result is now obvious with the explicit expression obtained in Proposition 1.

3 Notation and basic properties 3.1 General notation

Set and number

• For z ∈ C, |z| is the modulus of z, Re(z) ∈ R is the real part of z, Im(z) ∈ R is the imaginary part of z and z is the conjugate of z. • "∧" stands for the vectorial product in C, i.e., z 1 ∧

z 2 = Im(z 1 z 2 ), z 1 , z 2 ∈ C. • For z ∈ C and r > 0, B(z, r) = {z ∈ C | |z -z| < r}.
When z = 0 we simply write B r := B(0, r) and, in the particular case z = 0&r = 1, we write D = B(0, 1). • For a set A ⊂ R 2 ≃ C, we let A be the closure of A and ∂A be the boundary of A; in particular we write S 1 = ∂D for the unit circle.

Asymptotic

• In this article R > 1 is a large number and ρ ∈ (0; 1) is a small number. We are essentially interested in the asymptotic R → ∞ and ρ → 0 + . • The notation o R (1) [resp. o ρ [START_REF] Aftalion | Pinning phenomena in the Ginzburg-Landau model of superconductivity[END_REF]] means a quantity depending on R [resp. ρ] which tends to 0 when R → +∞ [resp. ρ → 0 + ]. When there is no ambiguity we write o(1).

• The notation o[f (R)] [resp. o[f (ρ)]] means a quan- tity g(R) [resp. g(ρ)] s.t. g(R) f (R) → 0 when R → +∞ [resp. g(ρ) f (ρ) → 0 when ρ → 0]. When there is no ambiguity we write o(f ). • The notation O[f (R)] [resp. O[f (ρ)]] means a quan- tity g(R) [resp. g(ρ)] s.t. g(R) f (R) [resp. g(ρ) f (ρ) ] is bounded [independently of the variable] when R is large [resp. ρ > 0 is small].
When there is no ambiguity we write O(f ).

Function and degree

The functions we consider are essentially defined on perforated domains: Definition 1 We say that D ⊂ R 2 is a perforated domain when D = Ω\∪ P i=1 ω i where P ∈ N * and Ω, ω 1 , ..., ω P are smooth simply connected bounded open sets s.t. for i ∈ {1, ..., P } we have ω i ⊂ Ω and, for i = j, ω i ∩ω j = ∅. If P = 1 we say that D is an annular type domain.

In this article the test functions stand in the standard Sobolev space of order 1 with complex values modeled on L 2 , denoted by H 1 (Ω, C), where Ω is a smooth open set.

Our main interest is based on unimodular maps, i.e, the test functions are S 1 -valued. Thus we focus on maps lying in

H 1 (Ω, S 1 ) := {u ∈ H 1 (Ω, C) | |u| = 1 a.e in Ω}
We let tr ∂Ω :

H 1 (Ω, C) → H 1/2 (∂Ω, C) be the sur- jective trace operator. Here H 1/2 (∂Ω, C) is the trace space. For Γ a connected component of ∂Ω and u ∈ H 1 (Ω, C), tr Γ (u) is the restriction of tr ∂Ω (u) to Γ .
For Γ ⊂ R 2 a Jordan curve and g ∈ H 1/2 (Γ, S 1 ), the degree (winding number) of g is defined as deg Γ (g

) := 1 2π
ˆΓ g ∧ ∂ τ g ∈ Z where:

• τ is the direct unit tangent vector of Γ (τ = ν ⊥ where ν is the outward normal unit vector of int(Γ ), the bounded open set whose boundary is Γ ),

• ∂ τ := τ •∇ is the tangential derivative on Γ . For fur- ther use we denote ∂ ν = ν • ∇ the normal derivative on Γ .
For simplicity of the presentation, when there is no ambiguity, we may omit the "trace" notation or the dependance on the Jordan curve in the notation of the degree. For example:

• if u ∈ H 1 (Ω, S 1 ) and Γ ⊂ Ω is a Jordan curve then we may write deg Γ (u) instead of deg Γ [tr Γ (u)]. • if Γ is a Jordan curve and if h ∈ H 1/2 (Γ, S 1 ), then we may write deg(h) instead of deg Γ (h). • If D = Ω \ ω is an annular type domain and u ∈ H 1 (D, S 1 ), then deg ∂Ω (u) = deg ∂ω (u). Consequently, without ambiguity, we may write deg(u) instead of deg ∂Ω (u) or deg ∂ω (u).
If D is a perforated domain and if u ∈ H 1 (D, S 1 ) then we write

deg(u) := (deg ∂ω1 (u), ..., deg ∂ωP (u)) ∈ Z P .
Note that for d ∈ Z P we have

E d (D) := {u ∈ H 1 (D, S 1 ) | deg(u) = d} = ∅.

Data of the problem

In this article we consider:

• ω ⊂ R 2 ≃ C be a smooth bounded simply connected open set s.t. 0 ∈ ω, • N ∈ N * , d = (d 1 , ..., d N ) ∈ Z N and we let d := N i=1 d i ∈ Z, • z ∈ (ω N ) ⋆ := {(z 1 , ..., z N ) ∈ ω N | z i = z j for i = j}, • B ∈ (0; 1), b ∈ [B; B -1 ] and α ∈ L ∞ (R 2 , [B 2 ; B -2 ]) s.t. α ≡ b 2 in ω.
We denote

R 0 := max{1; 10 2 • diameter(ω)} and ρ 0 := 10 -2 • min 1, min i =j |z i -z j |, min i dist(z i , ∂ω) .
For R > R 0 and ρ 0 > ρ > 0, we denote

-D R,ρ,z := B R \ ∪ N i=1 B(z i , ρ), -Ω R := B R \ ω, -Ω ρ,z := ω \ ∪ N i=1 B(z i , ρ).
The main purpose of this article is the following minimization problem:

I(R, ρ, z, d) := inf u∈E d (DR,ρ,z) 1 2 ˆDR,ρ,z α|∇u| 2 . (3) 
Namely, we are interested in the asymptotic behavior of I(R, ρ, z, d) when R → ∞ and ρ → 0.

Without loss of generality and for simplicity of the presentation, R > R 0 is considered as the major parameter writing ρ = ρ(R).

In order to study the minimization problem (3) we will define other similar minimization problems. In particular we handle minimization problems of the following form:

inf u∈E d ′ (D) 1 2 ˆD α ′ |∇u| 2 (4) 
where

• D := Ω \ ∪ P i=1 ω i is a perforated domain as in Defi- nition 1, • d ′ ∈ Z P , • α ′ ∈ L ∞ (D; [B 2 ; B -2 ]), B ∈ (0; 1).

We have the following classical proposition [whose proof is left to the reader]:

Proposition 2 Minimization problem (4) admits solutions. Moreover if u is a solution of (4) then v is a solution of (4) if and only if there exists λ ∈ S 1 s.t. v = λu.

Moreover a minimizer u d solves

-div(α ′ ∇u d ) = α ′ u d |∇u d | 2 in D ∂ ν u d = 0 on ∂D . ( 5 
)
And there exists ψ d which is locally defined in D and whose gradient is in

L 2 (D, R 2 ) s.t. u d = e ıψ d and -div(α ′ ∇ψ d ) = 0 in D ∂ ν ψ d = 0 on ∂D . ( 6 
)
4 First step in the proof of Theorem 1: splitting of the domain

The first step in the proof of Theorem 1 consists in a strategy which was already used in [START_REF] Santos | Microscopic renormalized energy for a pinned Ginzburg-Landau functional[END_REF]. It is a splitting of the integral over D R,ρ,z [in [START_REF] André | Vortex pinning with bounded fields for the Ginzburg-Landau equation[END_REF]] in two parts: the integral over Ω R and the one over Ω ρ,z .

For each integral we consider a mixed minimization problem by adding an arbitrary Dirichlet boundary condition on ∂ω: h

∈ H 1/2 (∂ω, S 1 ) s.t. deg(h) = d = d i .
We then claim that these mixed minimization problems admit "unique" solutions.

In the next steps we will solve these problems, we will minimize among h ∈ H 1/2 (∂ω, S 1 ) s.t. deg(h) = d and finally we will decouple the minimal energy according to the different data.

The splitting consists in the following obvious equality:

I(R, ρ, z, d) = inf h∈H 1/2 (∂ω,S 1 ) s.t. deg(h)=d      inf v∈H 1 (ΩR,S 1 ) tr ∂ω (v)=h 1 2 ˆΩR α|∇v| 2 + + inf w∈E d (Ωρ,z) tr ∂ω (w)=h b 2 2 ˆΩρ,z |∇w| 2      . ( 7 
)
The three previous minimization problems admit "unique" solutions. Indeed we have the following proposition [whose proof is left to the reader]. The key ingredient in this article is the use of special solutions. It is expressed in the following proposition.

Proposition 4 Let D = Ω \ ∪ P i=1 ω i be a perforated domain, B ∈ (0; 1), α ′ ∈ L ∞ (D; [B 2 ; B -2 ]
) and d ′ ∈ Z P . We let u d ′ be a minimizer of (4). Then for ϕ ∈ H 1 (D, R) we have

1 2 ˆD α ′ |∇(u d ′ e ıϕ )| 2 = 1 2 ˆD α ′ |∇u d ′ | 2 + 1 2 ˆD α ′ |∇ϕ| 2 .
Proof We fix D, B, α ′ , d ′ be as in the proposition. First note that, from Proposition 2, we get the existence of u d ′ . Moreover u d ′ is a solution of (5). We may thus write

u d ′ = e ıψ d ′ where ψ d ′ is locally defined in D and ∇ψ d ′ ∈ L 2 (D, R 2 ). Thus ψ d ′ solves (6). Let ϕ ∈ H 1 (D, R).
We have

1 2 ˆD α ′ |∇(u d ′ e ıϕ )| 2 = 1 2 ˆD α ′ |∇(ψ d ′ + ϕ)| 2 = 1 2 ˆD α ′ |∇ψ d ′ | 2 + ˆD α ′ ∇ψ d ′ • ∇ϕ + 1 2 ˆD α ′ |∇ϕ| 2 .
From ( 6) and an integration by parts we get ˆD α ′ ∇ψ d ′ • ∇ϕ = 0 and this equality ends the proof of the propo-

sition since 1 2 ˆD α ′ |∇ψ d ′ | 2 = 1 2 ˆD α|∇u d ′ | 2 .
Remark 3 It is easy to check that Proposition 4 allows to prove in a "different" way the uniqueness, up to a constant rotation, of a minimizer of (4).

Because minimizers of (4) are not unique, in order to fix such a minimizer we add an extra condition. This choice leads to the crucial notion of special solution.

In both next sections we define the special solutions in Ω R = B R \ω [Section 5.1] and in Ω ρ,z = ω \∪B(z i , ρ) [Section 5.2].

The special solution in Ω R

In this section we focus on the annular type domain Ω R . We first treat the case d = 1 by considering:

inf v∈H 1 (ΩR,S 1 ) deg(v)=1 1 2 ˆΩR α|∇v| 2 . ( 8 
)
With the help of Proposition 2, we may fix a map

v R ∈ H 1 (Ω R , S 1 ) s.t. deg(v R ) = 1 which is a solution of (8). We freeze the non-uniqueness of v R by letting v R be in the form v R = x |x| e ıγR with γ R ∈ H 1 (Ω R , R), ˆ∂ω γ R = 0. (9) 
It is clear that such map v R is unique and well defined. Moreover, for d ∈ Z, we have v d R which is a solution of the minimization problem:

inf v∈H 1 (ΩR,S 1 ) deg(v)=d 1 2 ˆΩR α|∇v| 2 . ( 10 
)
It is direct to check that v d R is the unique solution of the minimization problem (10) of the form

x |x| d e ıγ with γ ∈ H 1 (Ω R , R) s.t. ´∂ω γ = 0.
The special solution v R is fundamental in the analysis since it allows to get a decoupling of the weighted Dirichlet energy. Namely, from Proposition 4 we have:

Lemma 1 For d ∈ Z and ϕ ∈ H 1 (Ω R , R) we have: 1 2 ˆΩR α|∇(v d R e ıϕ )| 2 = d 2 2 ˆΩR α|∇v R | 2 + 1 2 ˆΩR α|∇ϕ| 2 .
The above lemma allows to get a crucial information on the asymptotic behavior of (γ R ) R :

Proposition 5 There exists γ ∞ ∈ H 1 loc (R 2 \ ω, R) s.t. when R → ∞ we have γ R → γ ∞ in H 1 loc (R 2 \ ω). Proof Let R ′ > R > R 0 and ϕ R = γ R ′ -γ R in order to have v R ′ = v R e ıϕR in Ω R .
From Lemma 1 we have

ˆΩR α|∇v R ′ | 2 = ˆΩR α|∇(v R e ıϕR )| 2 = ˆΩR α|∇v R | 2 + ˆΩR α|∇ϕ R | 2 . (11) 
We need the following lemma:

Lemma 2 There exists a constant C B,ω > 0 depending only on B and ω s.t.

1 2 ˆΩR α|∇ϕ R | 2 ≤ C B,ω .
For the convenience of the reader the proof of this lemma is postponed to the Appendix A.

From Lemma 2 we get

ˆB√ R \B R 1/4 α|∇ϕ R | 2 ≤ 2C B,ω .
Notation. In the rest of this proof, C 0 stands for a constant depending only on ω and B derived from C B,ω and with universal multiplicative constants. Its values may change from line to line.

Therefore, with the help of a mean value argument, we have the existence of r ∈ (R 1/4 , √ R) and of a constant C 0 depending only on B and ω s.t.:

ˆ2π 0 |∂ θ ϕ R (re ıθ )| 2 dθ ≤ C 0 ln R .
We denote m R := 2π 0 ϕ R (re ıθ ) dθ. From the above estimate and with the help of a Poincaré-Wirtinger inequality, we have

ˆ2π 0 ϕ R (re ıθ ) -m R 2 dθ ≤ C 0 ln R . We now define φR ∈ H 1 (B R , R): φR (se ıθ ) = =          m R for s ∈ [0, r/2] s -r/2 r/2 ϕ R (re ıθ ) + r -s r/2 m R for s ∈ (r/2, r) ϕ R (se ıθ ) for s ∈ [r, R)
.

It is easy to check that φR ∈ H 1 (B R , R) and with direct calculations we obtain:

ˆBr |∇ φR | 2 = ˆBr\Br/2 |∇ φR | 2 ≤ C 0 ln R . ( 12 
)
By noting that

tr ∂BR (v R e ı φR ) = tr ∂BR (v R e ıϕR ) = tr ∂BR (v R ′ ),
with the help of φR we construct ṽR ∈ H 1 (Ω R ′ , S 1 ):

ṽR = v R ′ in B R ′ \ B R v R e ı φR in Ω R .
From the minimality of v R ′ and Lemma 1 we get

ˆΩR ′ α|∇v R ′ | 2 ≤ ˆΩR ′ α|∇ṽ R | 2 = ˆΩR ′ \ΩR α|∇v R ′ | 2 + + ˆΩR α|∇v R | 2 + ˆΩR α|∇ φR | 2 . ( 13 
)
Estimate (13) implies:

1 2 ˆΩR α|∇v R ′ | 2 ≤ 1 2 ˆΩR α|∇v R | 2 + 1 2 ˆΩR α|∇ φR | 2 .
This inequality coupled with [START_REF] Lamy | Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains[END_REF] gives

1 2 ˆΩR α|∇ϕ R | 2 ≤ 1 2 ˆΩR α|∇ φR | 2 .
On the other hand, from the definition of φR we [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF] and since

have φR = ϕ R in B R \ B r . Consequently we deduce 1 2 ˆΩr α|∇ϕ R | 2 ≤ 1 2 ˆΩr α|∇ φR | 2 . With
r ∈ (R 1/4 , √ R) we may conclude 1 2 ˆΩR 1/4 α|∇ϕ R | 2 ≤ C 0 ln R .
In particular, for a compact set K ⊂ R 2 \ω s.t. ∂ω ⊂ ∂K we have for sufficiently large R

1 2 ˆK α|∇ϕ R | 2 ≤ C 0 ln R .
Since ∂ω ϕ R = 0, we may use a Poincaré type inequal-

ity to get ϕ R H 1 (K) → 0 when R → ∞ independently of R ′ > R. It suffices to note that ϕ R = γ R ′ -γ R in order to con- clude that (γ R ) R is a Cauchy family in H 1 (K). Then (γ R ) R is a Cauchy family in H 1 loc (R 2 \ ω). The com- pleteness of H 1 loc (R 2 \ ω, R) allows to get the existence of γ ∞ ∈ H 1 loc (R 2 \ ω, R) s.t. γ R → γ ∞ in H 1 loc (R 2 \ ω).
Corollary 1 We have two direct consequences of Proposition 5 :

1. tr ∂ω (γ R ) → tr ∂ω (γ ∞ ) in H 1/2 (∂ω), 2. v R = x |x| e ıγR → v ∞ := x |x| e ıγ∞ in H 1 loc (R 2 \ ω).

The special solution in Ω ρ,z

As for the special solution in Ω R , we first consider the minimization problem:

inf w∈E d (Ωρ,z) 1 2 ˆΩρ,z |∇w| 2 . ( 14 
)
From Proposition 2, we may fix w ρ,z,d , a unique solution of ( 14), by imposing

w ρ,z,d = N i=1 x -z i |x -z i | di e ıγ ρ,z,d , ˆ∂ω γ ρ,z,d = 0. ( 15 
)
For i ∈ {1, ..., N }, we may locally define

θ i in R 2 \{z i } as a lifting of x -z i |x -z i | , i.e., e ıθi = x -z i |x -z i |
. Moreover ∇θ i is globally defined. We denote Θ := d 1 θ 1 + ... + d N θ N which is locally defined in R 2 \ {z 1 , ..., z N } and whose gradient is globally defined in R 2 \ {z 1 , ..., z N }. We then may write w ρ,z,d = e ı(Θ+γ ρ,z,d ) .

In contrast with the previous section, the asymptotic behavior of w ρ,z,d is well known when ρ → 0. For example Lefter and Rădulescu proved the following theorem.

Theorem 2 [Theorem 1 [START_REF] Lefter | Minimization problems and corresponding renormalized energies[END_REF]] For ρ 0 > ρ > 0 we let w ρ be a minimizer of (14) and we consider a sequence ρ n ↓ 0. Up to pass to a subsequence, there exists

w 0 ∈ C ∞ (ω\ {z 1 , ..., z N }, S 1 ) s.t. w ρn → w 0 in C k loc (ω \ {z 1 , ..., z N }) for all k ≥ 0.
Moreover the limits w 0 are unique up to the multiplication by a constant in S 1 .

From Theorem 2, we get that the possible limits w 0 's are unique up to a constant rotation. Thus there exists a unique limit w 0,z,d [given by Theorem 2] which may be written:

w 0,z,d = N i=1 x -z i |x -z i | di e ıγ 0,z,d , ˆ∂ω γ 0,z,d = 0. ( 16 
)
We thus have the following corollary:

Corollary 2 Let γ 0,z,d ∈ H 1 loc (ω \ {z 1 , ..., z N }, R) be defined by [START_REF] Simader | The Dirichlet problem for the Laplacian in bounded and unbounded domains[END_REF]. When ρ → 0 we have γ ρ,z,d → γ 0,z,d in H 1 loc (ω \ {z 1 , ..., z N }). Thus we also get tr ∂ω (γ ρ,z,d ) → tr ∂ω (γ 0,z,d ) in H 1/2 (∂ω).

Proof Let K ⊂ ω \ {z 1 , ..., z N } be a connected compact set s.t. ∂ω ⊂ ∂K and let ρ n ↓ 0 be s.t. w ρn,z,d = e ı(Θ+γ ρn ,z,d ) → w 0 = e ı(Θ+γ0) in C 1 (K) for some γ 0 ∈ C 1 (K). It suffices to prove that we may choose γ 0 = γ 0,z,d defined by [START_REF] Simader | The Dirichlet problem for the Laplacian in bounded and unbounded domains[END_REF].

On the one hand, we have ∇γ ρn,z,d = w ρn,z,d ∧ ∇w ρn,z,d -∇Θ → w 0 ∧ ∇w 0 -∇Θ = ∇γ 0 in L 2 (K). Then γ 0 = γ 0,z,d + λ for some λ ∈ R.

On the other hand (γ ρn,z,d ) n is bounded in H 1 (K), consequently, up to pass to a subsequence, we have γ ρn,z,d ⇀ γ 0 in H 1 (K). With the help of the previous paragraph, we get that the convergence is in fact strong. Thus tr ∂ω (γ ρn,z,d ) → tr ∂ω (γ 0 ) in L 2 (∂ω).

In conclusion

0 = ∂ω γ ρn,z,d → ∂ω γ 0 = λ + ∂ω γ 0,z,d .
This means λ = 0 and thus γ 0 = γ 0,z,d .

About the asymptotic energetic expanding, Lefter and Rădulescu proved the following result:

Theorem 3 [Theorem 2 [START_REF] Lefter | Minimization problems and corresponding renormalized energies[END_REF]] For N ∈ N * , there exists a map W : (ω N ) ⋆ × Z N → R s.t. for d ∈ Z N and z ∈ (ω N ) ⋆ when ρ → 0 we have:

inf w∈E d (Ωρ,z) 1 2 ˆΩρ,z |∇w| 2 = π N i=1 d 2 i | ln ρ|+W (z, d)+o ρ (1).

Upper Bound

We are now in position to start the proof of Theorem 1. To this end, the goal of this section is to identify a map

K : {h ∈ H 1/2 (∂ω, S 1 ) | deg(h) = d} → R s.t. for a fixed h ∈ H 1/2 (∂ω, S 1 ) with deg(h) = d, when R → ∞ we have inf v∈H 1 (ΩR,S 1 ) tr ∂ω (v)=h 1 2 ˆΩR α|∇v| 2 + inf w∈E d (Ωρ,z) tr ∂ω (w)=h b 2 2 ˆΩρ,z |∇w| 2 = K(h) + d 2 f (R) + +b 2 π N i=1 d 2 i | ln ρ| + W (z, d) + o(1). (17) 
In the above estimate we have:

-K is independent of R, ρ ; f is defined in Theorem 1 and is independent of h, ρ, z, d and d = d i ;

-W is defined in Theorem 3 and is independent of b, B, h, ρ and R.

Note that from Corollaries 1 and 2, we have the existence of

-γ ∞ ∈ H 1/2 (∂ω) s.t. γ R → γ ∞ in H 1/2 (∂ω), -γ 0,z,d ∈ H 1/2 (∂ω) s.t. γ ρ,z,d → γ 0,z,d in H 1/2 (∂ω).
It is important to claim that since ´∂ω γ R = 0 and ´∂ω γ ρ,z,d = 0, we have ´∂ω γ ∞ = 0 and ´∂ω γ 0,z,d = 0.

Study in the domain

Ω R For R ∈ (R 0 , ∞) and h ∈ H 1/2 (∂ω, S 1 ) s.t. deg(h) = d we consider I R (h) := inf v∈H 1 (ΩR,S 1 ) tr ∂ω (v)=h 1 2 ˆΩR α|∇v| 2 . ( 18 
)
Let h ∈ H 

ˆ∂ω φ h = 0. Recall that for R ∈ (R 0 , ∞] we have v R = x |x| e ıγR
[see [START_REF] Santos | Ginzburg-Landau model with small pinning domains[END_REF] and Corollary 1] and we let

φ h R := φ h -dtr ∂ω (γ R ) ∈ H 1/2 (∂ω, R). We then get h = tr ∂ω (v d R )e ıφ h R and ´∂ω φ h R = 0.
From Corollary 1 we immediately obtain:

Corollary 3 φ h R -→ R→∞ φ h ∞ in H 1/2 (∂ω). For R ∈ (R 0 , ∞) and v ∈ H 1 (Ω R , S 1 ) it is clear that tr ∂ω (v) = h ⇐⇒ v = v d R e ıϕ with ϕ ∈ H 1 (Ω R , R) tr ∂ω (ϕ) = φ h R .
On the other hand, for v = v d R e ıϕ ∈ H 1 (Ω R , S 1 ), from Lemma 1 we have

1 2 ˆΩR α|∇v| 2 = d 2 2 ˆΩR α|∇v R | 2 + 1 2 ˆΩR α|∇ϕ| 2 . (19)
Therefore, one may obtain that v = v d R e ıϕ with tr ∂ω (ϕ) = φ h R is a solution of the minimization problem (18) if and

only if ϕ ∈ H 1 (Ω R , R) is a solution of the minimization problem inf ϕ∈H 1 (ΩR,R) tr ∂ω (ϕ)=φ h R 1 2 ˆΩR α|∇ϕ| 2 . ( 20 
)
It is standard to prove that Problem (20) admits a unique solution denoted by ϕ h R . Moreover this minimizer is the unique solution of

     -div(α∇ϕ h R ) = 0 in Ω R tr ∂ω (ϕ h R ) = φ h R ∂ ν ϕ h R = 0 on ∂B R .
We denote Ω ∞ := R 2 \ ω and for φ ∈ H 1/2 (∂ω, R) we let

H φ := ϕ ∈ H 1 loc (Ω ∞ , R) ∇ϕ ∈ L 2 (Ω ∞ ) tr ∂ω (ϕ) = φ . ( 21 
)
We are now interested in the minimization problem:

inf ϕ∈H φ h ∞ 1 2 ˆΩ∞ α|∇ϕ| 2 . ( 22 
)
By direct minimization, first order variations and from the strict convexity of the energy we get:

Proposition 6 Problem (22) admits a unique solution denoted by ϕ h ∞ . Moreover ϕ h ∞ is a solution of -div(α∇ϕ h ∞ ) = 0 in Ω ∞ . (23) 
We are now able to prove the main result of this section:

Proposition 7 When R → ∞, we have ϕ h R → ϕ h ∞ in H 1 loc (R 2 \ ω) and ∇ϕ h R 1I ΩR → ∇ϕ h ∞ in L 2 (R 2 \ ω), with 1I ΩR (x) = 1 if x ∈ Ω R 0 if x / ∈ Ω R
. And consequently:

ˆΩR α|∇ϕ h R | 2 = ˆΩ∞ α|∇ϕ h ∞ | 2 + o R (1).
Proof From Corollary 3 we have

φ h R -φ h ∞ → 0 in H 1/2 (∂ω). Consequently, there exists ξ R ∈ H 1 (Ω ∞ , R) s.t. tr ∂ω (ξ R ) = φ h R -φ h ∞ and ξ R H 1 (Ω∞) → 0.

The test function ϕ h

∞ + ξ R satisfies the boundary condition of Problem (20), therefore:

1 2 ˆΩR α|∇ϕ h R | 2 ≤ 1 2 ˆΩR α|∇(ϕ h ∞ + ξ R )| 2 = 1 2 ˆΩR α|∇ϕ h ∞ | 2 + o(1). (24) 
We used

ˆΩR α|∇ϕ h ∞ | 2 ≤ C 0 := ˆΩ∞ α|∇ϕ h ∞ | 2 < ∞. From (24), we obtain lim sup R→∞ 1 2 ˆΩR α|∇ϕ h R | 2 ≤ 1 2 ˆΩ∞ α|∇ϕ h ∞ | 2 . ( 25 
)
We now prove the "lim inf"-lower bound:

lim inf R→∞ 1 2 ˆΩR α|∇ϕ h R | 2 ≥ 1 2 ˆΩ∞ α|∇ϕ h ∞ | 2 . ( 26 
)
On the one hand, from (24), for R ∈ (R 0 , ∞) sufficiently large, we have ´ΩR α|∇ϕ h R | 2 ≤ C 0 + 1 and thus, up to passing to a subsequence, we get that ∇ϕ h R 1I ΩR weakly converges in L 2 (R 2 \ ω, R 2 ).

On the other hand, for a connected compact set

K ⊂ R 2 \ω s.t. ∂ω ⊂ ∂K, the competitor ϕ h ∞ +ξ R is bounded in H 1 (K). We let χ R := ϕ h R -(ϕ h ∞ + ξ R ) ∈ H 1 (K)
and then, for sufficiently large R, we have ∇χ R L 2 (ΩR) ≤ 2C 0 + 2. It is easy to check that tr ∂ω (χ R ) = 0. Consequently, from a Poincaré type inequality, there exists a constant

C K > 1 s.t. χ R L 2 (K) ≤ C K ∇χ R L 2 (K) ≤ C K × (2C 0 + 2). Thus there exists a constant C ′ K s.t., for sufficiently large R, ϕ h R L 2 (K) ≤ C ′ K .
Consequently, with the help of an exhaustion by compact sets and a diagonal extraction process, we have the existence of a sequence

R k ↑ ∞ and φ∞ ∈ H 1 loc (R 2 \ ω, R) s.t.          ϕ h R k ⇀ φ∞ in H 1 loc (R 2 \ ω) ∇ϕ h R k 1I ΩR k ⇀ ∇ φ∞ in L 2 (R 2 \ ω) lim inf R→∞ ˆΩR α|∇ϕ h R | 2 = lim R k →0 ˆΩR k α|∇ϕ h R k | 2 . (27) 
We thus get ∇ φ∞ ∈ L 2 (R 2 \ ω) and tr ∂ω ( φ∞ ) = φ h ∞ , i.e., φ∞ ∈ H φ h ∞ . From the definition of ϕ h ∞ [Proposition 6] we have with (27)

1 2 ˆΩ∞ α|∇ϕ h ∞ | 2 ≤ 1 2 ˆΩ∞ α|∇ φ∞ | 2 ≤ lim inf R→∞ 1 2 ˆΩR α|∇ϕ h R | 2 .
We thus obtained (26). Therefore by combining ( 25) and (26) we get:

ˆΩR α|∇ϕ h R | 2 = ˆΩ∞ α|∇ϕ h ∞ | 2 + o R (1). (28) 
The above estimate implies that a limiting map φ∞ ∈ H φ h ∞ as previously obtained satisfies:

1 2 ˆΩ∞ α|∇ φ∞ | 2 ≤ 1 2 ˆΩ∞ α|∇ϕ h ∞ | 2 .
On the other hand ϕ h ∞ is the unique solution of Problem (22). Therefore φ∞ = ϕ h ∞ . Consequently, the convergences in (27) hold for R → ∞ and from (28), these convergences are strong.

Study in the domain Ω ρ,z

Recall that we fixed a map h ∈ H 1/2 (∂ω, S 1 ) s.t. deg(h) = d. We are interested in getting an asymptotic estimate for the minimal energy

I ρ,z,d (h) = inf w∈E d (Ωρ,z) tr ∂ω (w)=h 1 2 ˆΩρ,z |∇w| 2 . ( 29 
)
First note that letting 15) and ( 16)] in order to have h = tr ∂ω (w ρ,z,d )e ıφ h ρ,z,d . Moreover it is clear that

g h z,d := h N i=1 |x -z i | x -z i di ∈ H 1/2 (∂ω
φ h z,d = 0. For ρ ∈ [0, ρ 0 ) we let φ h ρ,z,d := φ h z,d -γ ρ,z,d ∈ H 1/2 (∂ω, R) [γ ρ,z,d is defined in (
∂ω φ h ρ,z,d = 0.
Notation. For simplicity of the presentation, until the end of this section, we omit the subscripts z, d e.g. writing, for ρ ∈ [0, ρ 0 ), φ h ρ instead of φ h ρ,z,d .

From Corollary 2 we get:

Corollary 4 φ h ρ -→ ρ→0 φ h 0 in H 1/2 (∂ω).
For ρ ∈ (0, ρ 0 ) and w ∈ H 1 (Ω ρ,z , S 1 ), we have

tr ∂ω (w) = h ⇐⇒ w = w ρ e ıϕ with ϕ ∈ H 1 (Ω ρ,z , R) tr ∂ω (ϕ) = φ h ρ .
We follow the same strategy as in the previous section. For ϕ ∈ H 1 (Ω ρ,z , R), from Proposition 4 we have for w = w ρ e ıϕ 1 2 ˆΩρ,z

|∇w| 2 = 1 2 ˆΩρ,z |∇w ρ | 2 + 1 2 ˆΩρ,z |∇ϕ| 2 . ( 30 
)
Consequently a test function w = w ρ e ıϕ with tr ∂ω (ϕ) = φ h ρ is a solution of the minimizing problem (29) if and

only if ϕ ∈ H 1 (Ω ρ,z , R) is a solution of the minimizing problem inf ϕ∈H 1 (Ωρ,z,R) tr ∂ω (ϕ)=φ h ρ 1 2 ˆΩρ,z |∇ϕ| 2 . ( 31 
)
And then for ρ ∈ (0, ρ 0 ), the minimizing Problem (31) admits a unique solution denoted by ϕ h ρ . About the asymptotic behavior of ϕ h ρ we have the following result:

Proposition 8 When ρ → 0, we have

1 2 ˆΩρ,z |∇ϕ h ρ | 2 = 1 2 ˆω |∇ φh 0 | 2 + o ρ (1)
where φh 0 is the harmonic extension of φ h 0 in ω.

Proof Let ξ ρ be the harmonic extension of

φ h 0 -φ h ρ in ω. Since φ h 0 -φ h ρ H 1/2 (∂ω) → 0, we have ξ ρ → 0 in H 1 (ω).
We now prove the proposition. On the one hand, by minimality of ϕ h ρ and since tr ∂ω ( φh

0 -ξ ρ ) = φ h ρ we get 1 2 ˆΩρ,z |∇ϕ h ρ | 2 ≤ 1 2 ˆΩρ,z |∇( φh 0 -ξ ρ )| 2 ≤ 1 2 ˆω |∇ φh 0 | 2 + o ρ (1). ( 32 
)
On the other hand, from the Estimate (32), denoting

C 0 := ˆω |∇ φ0 | 2 + 1, for sufficiently small ρ we get N i=1 1 2 ˆB(zi, √ ρ)\B(zi,ρ) |∇ϕ ρ | 2 < C 0 . (33) 
Thus for small ρ, we get the existence of ρ ′ ∈ (ρ, √ ρ) s.t.:

N i=1 1 2 ˆ2π 0 |∂ θ ϕ h ρ (z i + ρ ′ e ıθ )| 2 ≤ 2C 0 | ln ρ| . For i ∈ {1, ..., N } we let m i,ρ := 2π 0 ϕ h ρ (z i + ρ ′ e ıθ ). We now define φ ∈ H 1 (ω) by φ = ϕ h ρ in ω \ ∪ i B(z i , ρ ′ ) and for x = z i + se ıθ ∈ B(z i , ρ ′ ) [with i ∈ {1, ..., N }] φ(z i + se ıθ ) = 2s -ρ ′ ρ ′ ϕ h ρ (z i + ρ ′ e ıθ ) + 2(ρ ′ -s) ρ ′ m i,ρ if s ∈ ( ρ ′ 2 , ρ ′ ) m i,ρ if s ≤ ρ ′ 2 . A direct calculation gives for z ∈ {z 1 , ..., z N } ˆB(z,ρ ′ ) |∇ φ| 2 = O ˆ2π 0 |∂ θ ϕ h ρ (z + ρ ′ e ıθ )| 2 = o ρ (1).
Therefore we obtain

1 2 ˆΩρ,z |∇ϕ h ρ | 2 ≥ 1 2 ˆω |∇ φ| 2 + o ρ (1).
But tr ∂ω ( φ + ξ ρ ) = φ h 0 and consequently, from the Dirichlet principle, we have:

1 2 ˆω |∇( φ + ξ ρ )| 2 ≥ 1 2 ˆω |∇ φh 0 | 2
and thus with (32)

1 2 ˆω |∇ φ| 2 ≥ 1 2 ˆω |∇ φh 0 | 2 + o ρ (1).
On the other hand, since

φ = ϕ h ρ in ω \ ∪ i B(z i , ρ ′ ) ⊂ Ω ρ,z and 1 2 ˆ∪iB(zi,ρ ′ ) |∇ φ| 2 = o ρ (1)
we obtain:

1 2 ˆΩρ,z |∇ϕ h ρ | 2 ≥ 1 2 ˆω\∪iB(zi,ρ ′ ) |∇ϕ h ρ | 2 ≥ 1 2 ˆω |∇ φh 0 | 2 + o ρ (1).
Finally, using (32), by matching upper bound and lower bound we conclude:

1 2 ˆΩρ,z |∇ϕ h ρ | 2 = 1 2 ˆω |∇ φh 0 | 2 + o ρ (1).
The last estimates ends the proof of the proposition.

Conclusion

For h ∈ H 

inf v∈H 1 (ΩR,S 1 ) tr ∂ω (v)=h 1 2 ˆΩR α|∇v| 2 = d 2 2 ˆΩR α|∇v R | 2 + inf ϕ∈H φ h ∞ 1 2 ˆΩ∞ α|∇ϕ| 2 + o R (1).( 34 
)
Using Theorem 3, (30) and Proposition 8 we have inf w∈H 1 (Ωρ,z,S 1 ) tr ∂ω (w)=h

1 2 ˆΩρ,z |∇w| 2 = π| ln ρ| i d 2 i + W (z, d) + 1 2 ˆω |∇ φh 0 | 2 + o ρ (1). (35) Letting K : h ∈ H 1/2 (∂ω, S 1 ) | deg(h) = d → R + defined by K(h) := inf ϕ∈H φ h ∞ 1 2 ˆΩ∞ α|∇ϕ| 2 + b 2 2 ˆω |∇ φh 0 | 2 (36)
we get (17). Recall that, without loss of generality, the parameter "R" is considered as the major parameter writing ρ = ρ(R). From (17), we get for h ∈ H 1/2 (∂ω, S 1 ) s.t. deg(h) = d:

lim sup R→∞ I(R, ρ, z, d) -d 2 f (R) + + b 2 i d 2 i π| ln ρ| + W (z, d) ≤ K(h).( 37 
)
7 Lower bound

In this section we prove the existence of a map

h ∞ ∈ H 1/2 (∂ω, S 1 ) s.t. deg(h ∞ ) = d and lim inf R→∞ I(R, ρ, z, d) -d 2 f (R) + b 2 i d 2 i π| ln ρ| + W (z, d) ≥ K(h ∞ ). ( 38 
)
Clearly a such map h ∞ should minimize

K : h ∈ H 1/2 (∂ω, S 1 ) | deg(h) = d → R + .
But in order to get an explicit expression for h ∞ we do not define h ∞ in this way. We let R n ↑ ∞ be a sequence which realizes the "lim inf" in the left hand side of (38).

In order to keep notation simple, we drop the subscript n writing R = R n when it will not be necessary to specify the dependance on n.

Let u R be a minimizer of (3

) [Proposition 2]. In Ω R , we may decompose u R under the form u R = v d R e ıϕR where ϕ R ∈ H 1 (Ω R , R) and v R is defined in (9).
Since u R is unique up to a multiplicative constant [Proposition 2], we may freeze the non uniqueness by imposing ´∂ω ϕ R = 0.

Notation. For sake of simplicity of the presentation we use the shorthands:

• "R ∈ (R 0 , ∞)" to consider an arbitrary term of the sequence (R n ) n ; • "R ∈ (R 0 , ∞]" to consider either an arbitrary term of the sequence (R n ) n or the limiting case R = ∞.

We denote:

• for R ∈ (R 0 , ∞), h R := tr ∂ω u R , and thus we have 

h R = tr ∂ω x |x| d e ı(dγR+ϕR) ; • g z,d := tr ∂ω |x| x d N i=1 x -z i |x -z i | di . Since g z,d ∈ C ∞ (∂ω, S 1

Compatibility conditions

From the minimality of u R , it is obvious that the restriction of u R to Ω R [resp. Ω ρ,z ] is a solution of the problem (18) [resp. (29)] with h = h R .

It is easy to check that we may write for R ∈ (R 0 , ∞)

h R = tr ∂ω [v d R e ıϕR ] = tr ∂ω [w ρ,z,d e ıϕ ρ,z,d ]
where, omitting the superscript h R , we have:

• v R is the special solution in Ω R defined in (9). • ϕ R = ϕ hR R ∈ H 1 (Ω R , R) is the unique solution of Problem (20) [for the Dirichlet data h R on ∂ω] s.t. u R = v d R e ıϕR in Ω R and ∂ω ϕ R = 0 [ϕ R is defined above]. • w ρ,z,d = N i=1 x -z i |x -z i | di e ıγ ρ,z,d is defined in (15); • ϕ ρ,z,d = ϕ hR ρ,z,d ∈ H 1 (Ω ρ,z , R) is the unique solution of (31) [for the Dirichlet data h R on ∂ω] s.t. u R = w ρ,z,d e ıϕ ρ,z,d in Ω ρ,z and ∂ω ϕ ρ,z,d ∈ (-π, π].
By using Corollaries 1 and 2, we have the existence of

γ ∞ , γ 0,z,d ∈ H 1/2 (∂ω, R) s.t. γ R → γ ∞ and γ ρ,z,d → γ 0,z,d in H 1/2 (∂ω). It is fundamental to note that • γ ∞ and γ 0,z,d are independent of the sequence (R n ) n ; • ˆ∂ω γ R = ˆ∂ω γ ∞ = ˆ∂ω γ 0,z,d = ˆ∂ω γ ρ,z,d = 0.
We have the following equivalences:

e ı[tr ∂ω (ϕR)-tr ∂ω (ϕ ρ,z,d )] = tr ∂ω (w ρ,z,d ) × tr ∂ω (v d R ) ⇔ e ı[tr ∂ω (ϕR)-tr ∂ω (ϕ ρ,z,d )] = e ı[ξ z,d +tr ∂ω (γ ρ,z,d )-dtr ∂ω (γR)]

⇔ ∃ k 0 ∈ Z s.t. tr ∂ω (ϕ R ) -tr ∂ω (ϕ ρ,z,d ) = = ξ z,d + tr ∂ω (γ ρ,z,d )dtr ∂ω (γ R ) + 2k 0 π. ( 39 
)
We thus have

- ∂ω ϕ ρ,z,d = ∂ω ϕ R -ϕ ρ,z,d = ∂ω [ξ z,d + tr ∂ω (γ ρ,z,d ) -dtr ∂ω (γ R ) + 2k 0 π] = 2k 0 π + ∂ω ξ z,d . Since ∂ω ϕ ρ,z,d ∈ (-π, π] and ∂ω ξ z,d ∈ [-π, π), the
above equalities imply that k 0 = 0 in (39). Consequently we get:

tr ∂ω (ϕ R )-tr ∂ω (ϕ ρ,z,d ) = ξ z,d +tr ∂ω (γ ρ,z,d )-dtr ∂ω (γ R ). (40) 
7.2 Asymptotic estimate of the energy By using ( 19) and (30), we have the following decoupling:

I(R, ρ, z, d) = 1 2 ˆDR,ρ,z α|∇u R | 2 = 1 2 ˆΩR α|∇(v d R e ıϕR )| 2 + b 2 2 ˆΩρ,z |∇w ρ,z,d e ıϕ ρ,z,d | 2 = d 2 f (R) + 1 2 ˆΩR α|∇ϕ R | 2 + b 2 2 ˆΩρ,z |∇w ρ,z,d | 2 + + b 2 2 ˆΩρ,z |∇ϕ ρ,z,d | 2 . ( 41 
)
From the minimality of u R and by using (37), letting

C 0 := K x d |x| d + 1
, for sufficiently large R, we have:

I(R, ρ, z, d) -d 2 f (R) + b 2 2 ˆΩρ,z |∇w ρ,z,d | 2 = 1 2 ˆΩR α|∇ϕ R | 2 + b 2 2 ˆΩρ,z |∇ϕ ρ,z,d | 2 ≤ C 0 . (42) 
Since

∂ω ϕ R = 0 [resp. ∂ω ϕ ρ,z,d ∈ (-π, π]] for K 1 a connected compact set of R 2 \ ω [resp. K 2 a connected compact set of ω \ {z 1 , ..., z N }] s.t. ∂ω ⊂ ∂K 1 [resp. ∂ω ⊂ ∂K 2 ], there exists C 1 > 0 [resp. C 2 > 0] s.t. for large R we have ´K1 |ϕ R | 2 ≤ C 1 and ´K2 |ϕ ρ,z,d | 2 ≤ C 2 .
Consequently :

-(ϕ R ) R is bounded in H 1 loc (R 2 \ ω). Thus there exists ϕ ∞ ∈ H 1 loc (R 2 \ ω) s.t.
, up to passing to a subsequence, we have

ϕ R ⇀ ϕ ∞ in H 1 loc (R 2 \ ω). (43) 
-(ϕ ρ,z,d ) R is bounded in H 1 loc (ω \ {z 1 , ..., z N }. Thus there exists ϕ 0,z,d ∈ H 1 loc (ω \ {z 1 , ..., z N }) s.t.
, up to passing to a subsequence, we have

ϕ ρ,z,d ⇀ ϕ 0,z,d in H 1 loc (ω \ {z 1 , ..., z N }). (44) 
From (40), we have

tr ∂ω (ϕ R ) -tr ∂ω (ϕ ρ,z,d ) = ξ z,d + tr ∂ω (γ ρ,z,d )-dtr ∂ω (γ R ).
On the other hand, with Corollaries 1&2, we get that

ξ z,d + tr ∂ω (γ ρ,z,d ) -dtr ∂ω (γ R ) strongly converges in H 1/2 (∂ω) to ξ z,d + tr ∂ω (γ 0,z,d ) - dtr ∂ω (γ ∞ ). Consequently tr ∂ω (ϕ R )-tr ∂ω (ϕ ρ,z,d ) strongly converges in H 1/2 (∂ω) to tr ∂ω (ϕ ∞ ) -tr ∂ω (ϕ 0,z,d ) = ξ z,d + tr ∂ω (γ 0,z,d ) -dtr ∂ω (γ ∞ ).
We thus may deduce e ı[tr ∂ω (ϕ∞)-tr ∂ω (ϕ 0,z,d )] = e ı[ξ z,d +tr ∂ω (γ 0,z,d )-dtr ∂ω (γ∞)] ,

i.e.:

x |x| d e ıtr ∂ω (dγ∞+ϕ∞)

= N i=1 x -z i |x -z i | di e ıtr ∂ω (γ 0,z,d +ϕ 0,z,d ) . (45) 
We now define:

h ∞ := tr ∂ω x |x| d e ı(dγ∞+ϕ∞) ∈ H 1/2 (∂ω, S 1 ). (46) It is clear that deg(h ∞ ) = d.
We prove in the three next subsections [Sections 7.3&7.4&7.5] that h ∞ satisfies (38).

7.3 Calculations in R 2 \ ω
From (42), we get that ∇ϕ R 1I ΩR is bounded in L 2 (R 2 \ ω) and thus, up to passing to a subsequence, ∇ϕ R 1I ΩR weakly converges in L 2 (R 2 \ ω). Consequently, we may improve the convergence in (43), up to passing to a subsequence, we obtain that ∇ϕ

R 1I ΩR ⇀ ∇ϕ ∞ in L 2 (R 2 \ ω). In particular we obtain ∇ϕ ∞ ∈ L 2 (R 2 \ ω).
Consequently, denoting φ ∞ := tr ∂ω (ϕ ∞ ) we obtain ϕ ∞ ∈ H φ∞ . Therefore, with Ω ∞ = R 2 \ ω, we have:

lim inf Rn→∞ 1 2 ˆΩRn α|∇u Rn | 2 - d 2 2 ˆΩRn α|∇v Rn | 2 = lim inf Rn→∞ 1 2 ˆΩRn α|∇ϕ Rn | 2 ≥ 1 2 ˆΩ∞ α|∇ϕ ∞ | 2 ≥ inf ϕ∈H φ∞ 1 2 ˆΩ∞ α|∇ϕ| 2 . (47) 

Calculations on ω

We continue the calculations by proving:

1 2 ˆΩρ,z |∇ϕ ρ,z,d | 2 ≥ 1 2 ˆω |∇ φ0,z,d | 2 + o ρ (1) (48) 
where φ0,z,d is the harmonic extension of φ 0,z,d := tr ∂ω ϕ 0,z,d in ω, ϕ 0,z,d is defined in (44).

In order to get (48), we adapt the argument done to prove Proposition 8. From (42), we have

N i=1 1 2 ˆB(zi, √ ρ)\B(zi,ρ) |∇ϕ ρ,z,d | 2 ≤ C 0 .
Thus, with a mean value argument, there exists

ρ ′ ∈ (ρ, √ ρ) s.t. N i=1 1 2 ˆ2π 0 |∂ θ ϕ ρ,z,d (z i + ρ ′ e ıθ )| 2 dθ ≤ 2C 0 | ln ρ| . Let φρ ∈ H 1 (ω) be defined by φρ = ϕ ρ,z,d in ω \ ∪ i B(z i , ρ ′ ), for i ∈ {1, ..., N } & x = z i + se ıθ ∈ B(z i , ρ ′ ) φρ (z i + se ıθ ) = 2 s -ρ ′ /2 ρ ′ ϕ ρ,z,d (z i + ρ ′ e ıθ ) + 2(ρ ′ -s) ρ ′ m i,ρ if s ≥ ρ ′ 2 m i,ρ if s ≤ ρ ′ 2
where m i,ρ := 1 2π

ˆ2π 0 ϕ ρ,z,d (z i + ρ ′ e ıθ )dθ.
A direct calculation gives:

N i=1 ˆB(zi,ρ ′ ) |∇ φρ | 2 = O N i=1 ˆ2π 0 |∂ θ ϕ ρ,z,d (z i + ρ ′ e ıθ )| 2 = o ρ (1). (49) 
Letting

Ω ρ ′ ,z = ω\∪ N i=1 B(z i , ρ ′ ) and Dρ ′ = ∪ N i=1 B(z i , ρ ′ )\ B(z i , ρ), we obtain: ˆΩρ,z |∇ϕ ρ,z,d | 2 = ˆΩρ ′ ,z |∇ φρ | 2 + ˆD ρ ′ |∇ϕ ρ,z,d | 2 ≥ ˆΩρ ′ ,z |∇ φρ | 2 (49) = ˆω |∇ φρ | 2 + o ρ (1). ( 50 
)
Since φρ is bounded in H 1 (ω), up to passing to a subsequence, we may assume the existence of φ0 ∈ H 1 (ω)

s.t. φρ ⇀ φ0 in H 1 (ω).
On the other hand, it is clear that tr ∂ω φ0 = tr ∂ω ϕ 0,z,d = φ 0,z,d . Consequently from the Dirichlet principle we get [denoting 

ρ n = ρ(R n )] lim inf ρn→0 ˆω |∇ φρ | 2 ≥ ˆω |∇ φ0 | 2 ≥ ˆω |∇ φ0,z,d | 2 . (51) 
I(R, ρ, z, d) -d 2 f (R) + b 2 2 ˆΩρ,z |∇w ρ,z,d | 2 = lim Rn→∞ 1 2 ˆDRn,ρn,z α|∇u Rn | 2 -d 2 f (R n ) + b 2 2 ˆΩρn,z |∇w ρn,z,d | 2 ≥ lim inf Rn→∞ 1 2 ˆΩRn α|∇u Rn | 2 -d 2 f (R n ) + + b 2 lim inf ρn→0 1 2 ˆΩρn,z |∇u Rn | 2 - 1 2 ˆΩρn,z |∇w ρn,z,d | 2 ≥ inf ϕ∈H φ∞ 1 2 ˆΩ∞ α|∇ϕ| 2 + b 2 2 ˆω |∇ φ0,z,d | 2 . ( 53 
) Recall that h ∞ = x |x| d e ı(dγ∞+φ∞) ∈ H 1/2 (∂ω, S 1 )
[see ( 46)]. Therefore from (36) and (45) we may write

K(h ∞ ) = inf ϕ∈H φ∞ 1 2 ˆΩ∞ α|∇ϕ| 2 + b 2 2 ˆω |∇ φ0,z,d | 2 .
Consequently (53) becomes

lim inf R→∞ I(R, ρ, z, d) -d 2 f (R) + b 2 2 ˆΩρ,z |∇w ρ,z,d | 2 ≥ K(h ∞ ). (54) 
It suffices now to see that, from Theorem 3 we have

1 2 ˆΩρ,z |∇w ρ,z,d | 2 = i d 2 i π| ln ρ| + W (z, d) + o ρ (1),
this combined with (37) gives

lim R→∞ I(R, ρ, z, d) -f (R) -b 2 π N i=1 d 2 i | ln ρ| + W (z, d) = K(h ∞ ).
We now define:

W micro (z, d) := b 2 W (z, d) + min h∈H 1/2 (∂ω,S 1 ) deg(h)=d K(h) (55) 
in order to write

I(R, ρ, z, d) = = d 2 f (R) + b 2 π N i=1 d 2 i | ln ρ| + W micro (z, d) + o ρ (1).
The last equality ends the proof of Theorem 1.

8 The case of the radially symmetric diluted impurity: ω = D

In this section we focus on the circular case with ω = D is the unit disc and for b ∈ (0, ∞) we let

α : R 2 → {b 2 ; 1} x → b 2 if x ∈ D 1 if x ∈ R 2 \ D .
We fix

• N ∈ N * , d = (d 1 , ..., d N ) ∈ Z N and we let d := N i=1 d i ∈ Z; • z ∈ (D N ) ⋆ := {(z 1 , ..., z N ) ∈ D N | z i = z j for i = j}.

Explicit expression of the special solutions

We use the same notation as in Section 5.

Notation. In this section and in the next sections, in order to keep notation simple, we use the shorthand "x" to stand for the identity map. Namely we use the abuse of notation Id = x where Id : U → U, x → Id(x) = x and U ⊂ R 2 ≃ C is an arbitrary set .

We let v ∞ be the limiting function obtained in Corollary 1. It is easy to prove that v ∞ (x) =

x |x| , i.e. γ ∞ ≡ 0.

We let w 0,z,d = N i=1

xz i |xz i | di e ıγ 0,z,d be the function defined in [START_REF] Simader | The Dirichlet problem for the Laplacian in bounded and unbounded domains[END_REF]. This function is the canonical harmonic map in D associated to the singularities (z, d).

On the unit circle S 1 we have tr S 1 (w 0,z,d ) = e ıψ 0,z,d with

∂ τ ψ 0,z,d = ∂ ν   N j=1 d j (ln |x -z j | -ln |1 -z j x|)   .
This result comes from [START_REF] Lamy | Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains[END_REF] Eq. (2.25) and (4.1). From Identity (4.14) in [START_REF] Lamy | Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains[END_REF] we get

∂ τ ψ 0,z,d = N j=1 d j [2∂ ν (ln |x -z j |) -1] . Thus ∂ τ ψ 0,z,d = N j=1 d j [2∂ τ (arg(x -z j )) -1] with x -z j |x -z j | = e ıarg(x-zj) .
Consequently we get tr S 1 (w 0,z,d ) = e ıψ 0,z,d

= Cst × x -d N j=1 x -z j |x -z j | 2dj (56) 
where Cst ∈ S 1 is a constant.

Use of Fourier decompositions

In order to get an explicit expression of W micro (z, d) it seems natural to work on K. For h ∈ H 1/2 (S 1 , S 1 ) we have [see (21) and (36)]

K(h) = inf ϕ∈H φ h ∞ 1 2 ˆΩ∞ |∇ϕ| 2 + b 2 2 ˆω |∇ φh 0 | 2 ,
where:

• on the unit circle we have

h = x d e ıφ h ∞ = w 0,z,d e ıφ h 0 with ffl ∂ω φ h ∞ , ffl ∂ω φ h 0 ∈ (-π, π] ; (57) 
• φh 0 is the harmonic extension of φ h 0 in D.

Condition (57) is a compatibility condition between the function φ h

∞ and φ h 0 . Since our goal is to estimate K(h), it is clear that we may slightly modify Condition (57) by imposing

x |x| d e ıφ h ∞ = Cst × w 0,z,d e ıφ h 0 with Cst ∈ S 1 . ( 58 
)
We may easily prove that

inf ϕ∈H φ h ∞ 1 2 ˆΩ∞ |∇ϕ| 2 = 1 2 ˆΩ∞ |∇ φh ∞ | 2
where for φ

∈ H 1/2 (S 1 , R), φ ∈ H 1 loc (R 2 \ D) is the unique solution of -∆ϕ = 0 in R 2 \ D tr S 1 (ϕ) = φ, ∇ϕ ∈ L 2 (R 2 \ D) .
[See Proposition 9 for more details about φ] From (56), an equivalent reformulation of (58) is

Cst N j=1 x -z j |x -z j | × x 2dj = e ı(φ h ∞ -φ h 0 ) with Cst ∈ S 1 .
The above condition is equivalent to the compatibility condition:

φ h ∞ -φ h 0 = Ψ z,d + Cst where Cst ∈ R (59) 
and

Ψ z,d ∈ C ∞ (S 1 , R) is a lifting of N j=1 x -z j |x -z j | × x 2dj .
With a direct calculation, for z 0 ∈ D and x ∈ S 1 , we have

x -z 0 |x -z 0 |x 2 = x -z 0 x -z 0 × x 2 = x -z 0 1 -z 0 x × 1 x = M z0 (x) × 1 x
where M z0 : D → D is the Moebius function defined by

M z0 (x) = x -z 0 1 -z 0 x .
In [START_REF] Santos | Microscopic renormalized energy for a pinned Ginzburg-Landau functional[END_REF], it is proved [Section 7] that if z 0 ∈ D ∩ R + then for e ıθ ∈ S 1 we have M z0 (e ıθ )e -ıθ = e Ψz 0 ,1 (e ıθ )

where Ψ z0,1 (e ıθ ) = In the general case z 0 = te ıγ ∈ D [with t ≥ 0, γ ∈ R] we easily deduce from the previous equality: M z0 (e ıθ )e -ıθ = M t [e ı(θ-γ) ]e -ı(θ-γ) .

Then there is Cst ∈ R s.t. 

We now go back to the previously fixed function h ∈ H 1/2 (S 1 , S 1 ). We are in position to reformulate the compatibility condition (59) in term of Fourier series. Let φ h 0 , φ h ∞ ∈ H 1/2 (S 1 , R) [defined in (57)], consider their Fourier decompositions [we drop the superscript h for the coefficients]:

φ h 0 (e ıθ ) = n∈Z c 0,n e ınθ φ h ∞ (e ıθ ) = n∈Z c ∞,n e ınθ . (61) 
The compatibility condition (58) is equivalent to (59). From (60), the condition (59) reads with Fourier decompositions:

∀ n ∈ Z * , c ∞,n -c 0,n =            N j=1 d j z j n ın if n > 0 - N j=1 d j z j n ın if n < 0 .

Explicit expression of the minimal value of K

Before going further we recall some basic facts.

Proposition 9 Let φ ∈ H 1/2 (S 1 , R) and consider φ(e ıθ ) = n∈Z c n e ınθ be its Fourier decomposition. Then we have is an exterior harmonic extension of φ. Moreover

1. For all n ∈ N, c n = c -n . 2. n∈Z |n||c n | 2 < ∞.
1 2 ˆR2 \D |∇ φ| 2 = π n∈Z |n||c n | 2 . 5. φ is the unique solution of      -∆ϕ = 0 in R 2 \ D, ϕ ∈ H 1 loc (R 2 \ D, R) tr S 1 (ϕ) = φ, ∇ϕ ∈ L 2 (R 2 \ D, R 2 ) . ( 62 
)
Therefore it is also the unique solution of the problem

inf ϕ∈H φ 1 2 ˆR2 \D |∇ϕ| 2 . ( 63 
)
Proof Assertions 1 and 2 are quite standard. Assertions 3 and 4 follow from standard calculations. We now prove Assertion 5. Let φ ∈ H 1/2 (S 1 , R) and let φ be defined by Assertion 4. It is clear that φ solves (62). Assume that ϕ 0 is a solution of (62) and let η := φϕ 0 . Then η satisfies:

     -∆η = 0 in R 2 \ D, η ∈ H 1 loc (R 2 \ D, R) tr S 1 (η) = 0, ∇η ∈ L 2 (R 2 \ D, R 2 )
.

From [START_REF] Simader | The Dirichlet problem for the Laplacian in bounded and unbounded domains[END_REF] [Theorem II.6.2.ii] we get η = 0. This clearly gives uniqueness of the solution of (62).

On the one hand, by direct minimization we know that Problem (63) admits solution(s). It is standard to check that a minimizer for (63) solves (62). Consequently φ is the unique solution of Problem (63). We first recall the expression of W (z, d) [see Proposition 1 in [START_REF] Lefter | Minimization problems and corresponding renormalized energies[END_REF]]:

inf h∈H 1/2 (S 1 ,S 1 ) deg(h)=d K(h) = inf φ0,φ∞∈H 1/2 (S 1 ,R) x d e ıφ∞ =Cst×w 0,z,d e ıφ 0 1 2 ˆΩ∞ |∇ φ∞ | 2 + b 2 2 ˆω |∇ φ0 | 2 = 2π × inf (c0,n) n∈N * (c∞,n)∈ℓ 2 (N * ) c∞,n-c0,n=γn ∀ n∈N * n∈N n|c 0,n | 2 + b 2 n∈N n|c ∞,n | 2 = 2π n∈N *   n × inf c0,n,c∞,n∈C c∞,n-c0,n=γn |c 0,n | 2 + b 2 |c ∞,n | 2   = 2π n∈N * n × inf c0,n∈C |c 0,n | 2 + b 2 |c 0,n + γ n | 2 = 2π n∈N * n × -b 2 1 + b 2 γ n 2 + b 2 -b 2 1 + b 2 γ n + γ n 2 = b 2 1 + b 2 2π n∈N * n|γ n | 2 = b 2 1 + b 2 |Ψ z,d | 2 H 1/2 . ( 64 
W (z, d) = -π i =j d i d j ln |z i -z j | + π N i=1 d 2 i ln(1 -|z i | 2 ) + + π i =j d i d j ln |1 -z i z j |.
From (55) we have

W micro (z, d) = b 2 W (z, d) + min h∈H 1/2 (S 1 ,S 1 ) deg(h)=d K(h).
By combining (60) and (64) we may write

min h∈H 1/2 (S 1 ,S 1 ) deg(h)=d K(h) = 2b 2 1 + b 2 π n∈N * n N j=1 d j z j n ın 2 = 2b 2 1 + b 2 π n∈N * 1 n N j=1 d j z n j 2 .
For n ∈ N * we have the following expansion

N j=1 d j z n j 2 = N j=1 d 2 j |z j | 2n + 2Re   i<j d i d j (z i z j ) n   .
Therefore we obtain

n∈N * 1 n N j=1 d j z n j 2 = N j=1 d 2 j n∈N * 1 n |z j | 2n + 2 i<j d i d j Re n∈N * 1 n (z i z j ) n = - N j=1 d 2 j ln(1 -|z j | 2 ) -2 i<j d i d j Re [ln(1 -z i z j )] = - N j=1 d 2 j ln(1 -|z j | 2 ) - i =j d i d j ln |1 -z i z j |.
We may thus conclude:

W micro (z, d) = b 2 π   - i =j d i d j ln |z i -z j | + N i=1 d 2 i ln(1 -|z i | 2 )+ + i =j d i d j ln |1 -z i z j | - - 2 1 + b 2   N j=1 d 2 j ln(1 -|z j | 2 ) + i =j d i d j ln |1 -z i z j |     = -b 2 π   i =j d i d j ln |z i -z j |+ + 1 -b 2 1 + b 2 N j=1 d 2 j ln(1 -|z j | 2 ) + + 1 -b 2 1 + b 2 i =j d i d j ln |1 -z i z j |   .
These calculations end the proof of Proposition 1.

Minimization of W micro in some particular cases

We first claim that if d = 0 Z N then W micro (•, d) ≡ 0. In the following we consider d ∈ Z N \ {0 Z N }. 

W micro (z, d) = - b 2 (1 -b 2 ) 1 + b 2 πd 2 ln(1 -|z| 2 )
Therefore, if b < 1 then z = 0 is the unique minimizer of W micro .

Remark 6 This simple fact is the main result of [START_REF] Santos | Microscopic renormalized energy for a pinned Ginzburg-Landau functional[END_REF] [where the explicit expression of W micro was unknown].

If b = 1 then W micro (•, d) ≡ 0. If b > 1 then W micro (z, d) → -∞ when |z| → 1.
This implies that W micro (•, d) does not admit minimizers.

Remark 7

We may conclude that the condition b < 1 creates a confinement effect for the points of minimum of W micro (•, d). This confinement effect does not hold for b ≥ 1.

We now consider the case N ≥ 2. We assume that d 1 = 0 and d l = 0 for l = 1.

This case is similar to the above one since for z = (z 1 , ..., z N ) ∈ (ω N ) ⋆ we have W micro (z, d) = W micro (z 1 , d 1 ). Consequently as previously we have:

- This is an example of the standard attractive effect of singularities having degrees with different signs. Since λ > 1, we have W micro (z, d) < W micro (z, d). This fact implies that the lower bound is not reached.

Remark 9 When b = 1, the impurity ω = D does not play any role. Then, due to the standard repulsion effect between vortices, the more the vortices are distant the smaller the energy. Consequently, for fixed degrees having all the same sign, minimal sequences of singularities go to the boundary of the impurity which is not an admissible configuration in this framework. This situation is the most challenging. Note that with the help of [START_REF] Santos | Ginzburg-Landau model with small pinning domains[END_REF] we may obtain the existence of minimizers for W micro (•, d) with d i = 1 for i ∈ {1, ..., N }, N ∈ N * . But [START_REF] Santos | Ginzburg-Landau model with small pinning domains[END_REF] does not give any information on the location of minimizers and for other configurations of degrees.

For simplicity, we restrict the study to N = 2 and p = d 1 , q = d 2 ∈ N * . Note that the case p, q < 0 is obviously symmetric.

We are going to prove that there exist minimizers and they are unique up to a rotation [see ( 70 Since W micro [(z 1 , z 2 ), (p, q)] = -b 2 pqπf (z 1 , z 2 ), in order to study minimizing points of W micro [•, (p, q)], we have to maximize f (•).

We first claim that if either |z 1 | → 1 or |z 2 | → 1 or |z 1z 2 | → 0, then f (z 1 , z 2 ) → -∞. Consequently, from the continuity of f , f admits maximum points in (D 2 ) ⋆ .

Since z 1 = z 2 and since for t ∈ R we have f (z 1 , z 2 ) = f (z 1 e ıt , z 2 e ıt ), we may assume that z 1 = s ≥ 0. We thus have for z 2 = ρe ıθ [0 ≤ ρ < 1, θ ∈ R] f (s, ρe ıθ ) = ln s 2 + ρ 2 -2sρ cos θ + B A ln(1s 2 )+ +A -1 ln(1ρ 2 ) + ln(1 + s 2 ρ 2 -2sρ cos θ) .

We first claim that if s = 0 then ρ > 0 and for ε > 0 we have f (ε, -ρ) = f (0, ρe ıθ ) + ε(ρ -1 + 2βρ) + O(ε 2 ).

Consequently, for ε > 0 sufficiently small we have f (ε, -ρ) > f (0, ρe ıθ ). Therefore, if (s, ρe ıθ ) maximizes f , then s ∈ (0; 1). Using a similar argument, we may prove that for s > 0, if (s, ρe ıθ ) maximizes f , then ρ ∈ (0; 1).

On the other hand, from direct checking, for s, ρ > 0, the map θ ∈ [0, 2π] → f (s, ρe ıθ ) is maximal if and only if θ = π.

Consequently, we focus on the map g : (0; 1) 2 → R (s, t) → f (s, -t) .

We first look for critical points of g: 

∇g(s, t) = 0 ⇔        1 s + t + B -As 1 -s 2 + t 1 + st = 0 1 s + t + B -A -1 t 1 -t 2 + s 1 + st = 0 ⇔            ( 

  ) and deg ∂ω (g z,d ) = 0 we may fix ξ z,d ∈ C ∞ (∂ω, R) s.t. e ıξ z,d = g z,d and ∂ω ξ z,d ∈ [-π, π).

  e ınθ + Cst, Cst ∈ R.

Ψ

  z0,1 (e ıθ ) = Ψ t,1 (e ı(θ-γ)It is easy to prove that we haveΨ z,d = N j=1 d j Ψ zj ,1 + Cst [Cst ∈ R] and then Ψ z,d (e ıθ )

3 . 2 ˆD |∇ φ| 2 = π n∈Z |n||c n | 2 . 4 .

 3224 The map φ : D → R, re ıθ → n∈Z c n r |n| e ınθ is the harmonic extension of φ. Moreover 1 The map φ : R 2 \ D → R, re ıθ → n∈Z c n r -|n| e ınθ

Notation.

  From now on, for φ ∈ H 1/2 (S 1 , R) with Fourier decomposition φ(e ıθ ) = n∈Z c n e ınθ , we let the seminorm |φ| H 1/2 := π n∈Z |n||c n | 2 . For n ∈ N * , letting γ n = N j=1 d j zj n ın , i.e. Ψ z,d (e ıθ ) = Cst + n∈Z * γ n e ınθ [see (60)], we get
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8. 5 . 1

 51 The case N = 1 and the caseN ≥ 2&∃!k 0 ∈ {1, ..., N } s.t. d k0 = 0We first treat the case N = 1. In this situation, we have for z ∈ D and d ∈ Z * :

Remark 8 2 i 2 N i=1 d 2 i

 8222 If b < 1 then the set of global minimizers of W micro is {z ∈ (ω N ) ⋆ | z 1 = 0}. -If b = 1 then W micro (•, d) ≡ 0. -If b > 1 then W micro (z, d) → -∞ when |z 1 | → 1.8.5.2 The case N ≥ 2 and there exist k, l s.t.d k d l < 0 Let d ∈ Z N s.t. there exist k = l satisfying d k d l < 0.In this situation we haveinf z∈(ω N ) ⋆ W micro (z, d) = -∞.Indeed, without loss of generality, we may assume thatd 1 d 2 < 0. For n ∈ N * , we consider z (n) 1 := -1/n, z (n) 2 := 1/n and for k ∈ {1, ..., N } \ {1, 2}, z k := e ı2kπ/N /2.With direct calculations, we obtain lim n W (z n , d) = -∞. This fact underline that if we impose d 1 d 2 < 0 then the main part of the optimal energy I(R, ρ, z, d) | ln ρ|.Indeed when we consider very near singularities z 1 &z 2 we may optimize the divergent term b | ln ρ|.The key argument is that with degrees having different signs (e.g d 1 d 2 < 0) we haveN i=1 d 2 i > (d 1 + d 2 ) 2 +

8. 5 . 3

 53 The case b = 1, N ≥ 2, d k d l ≥ 0 ∀k, l and there exist k 0 , l 0 s.t.d k0 d l0 > 0 When b = 1, for (z, d) ∈ (ω N ) ⋆ × Z N we have W micro (z, d) = -π i =j d i d j ln |z iz j |. Thus inf z∈(ω N ) ⋆ W micro (z, d) > -∞but the lower bound is not attained. Indeed, it is easy to check that for z ∈ (ωN ) ⋆ inf z∈(ω N ) ⋆ W micro (z, d) > -π i =j d i d j ln 2.Consequently W micro (•, d) is bounded from below. We now prove that the lower bound is not reached. Let z ∈ (ω N ) ⋆ , and consider z ∈ (ω N ) ⋆ be s.t. zk = λz k with λ := 2 1 + max l |z l | . It is easy to check that z ∈ (ω N ) ⋆ . Moreover we get W micro (z, d) = W micro (z, d)π ln λ i =j d i d j .

8. 5 . 4 Remark 10

 5410 The case b > 1 and N ≥ 2 If b > 1 then taking, for n ∈ N * and k ∈ {1, ..., N }, z (n) k := (1 -1/n)e ı2πk/N we have W micro (z n , d) The case b > 1 corresponds to an impurity ω = D which have a repulsive effect on the singularities. 8.5.5 The case 0 < b < 1, N = 2 and d ∈ (N * ) 2

•

  )&(71)]. We may assume p ≤ q. For z 1 , z 2 ∈ D we have, writing(z, d) = ((z 1 , p), (z 2 , q)) W micro (z, d) -b 2 π = 2pq ln |z 1z 2 | + 1b 2 1 + b 2 p 2 ln(1 -|z 1 | 2 )+ +q 2 ln(1 -|z 2 | 2 ) + 2pq ln |1z 1 z 2 | . The function defined by f (z 1 , z 2 ) = 2 ln |z 1z 2 | + B A ln(1 -|z 1 | 2 )+ +A -1 ln(1 -|z 2 | 2 ) + 2 ln |1z 1 z 2 | .

  As in the previous section [seeRemark 4], for β ∈ R we have I ρ,z,d (h) = I ρ,z,d (he ıβ ). Thus up to replacing h by he ıβ , with β = -

	, S 1 ) we have deg(g h z,d ) = 0. Thus, from a stan-
	dard lifting result, we may fix φ h z,d ∈ H 1/2 (∂ω, R) s.t. g h z,d = e ıφ h z,d and φ h z,d ∈ (-π, π]. It is clear that ∂ω φ h z,d is uniquely defined.
	Remark 5

∂ω φ h z,d , in order to estimate I ρ,z,d (h), we may assume that ∂ω

By considering the difference of both lines in (65) we get:

(t 2s 2 )(1 + st) + B (A -1 t -As)(1 + st)(s + t) + (ts 2 ts + st 2 )(s + t) = 0 ⇐⇒ (1 + st)(s + t) ts + B((A -1 + 1)t -(A + 1)s) = 0 

.

Using (66) in the first line of (65) we have

Thus, letting σ = s 2 , we get the following equation:

We let

Note that ∆ > 0 and √ ∆ > 1λ + (Aλ)B(1 + λ). We obtain immediately that

is the unique positive solution of (68). Consequently

is the unique positive solution of (67).

In conclusion, the set of minimizers of

where s 0 is given by (70) and λ by (66).

is a minimizers for W micro then we have:

A Proof of Lemma 2

The key ingredient to get Lemma 2 is Proposition C.4 in [START_REF] Santos | The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case[END_REF] previously proved for W 2,∞ weights by Sauvageot in [START_REF] Sauvageot | Homogenization for the Ginzburg-Landau equation[END_REF] [in fact Sauvageot's article treats the anisotropic case which is more general than Proposition 10 below].

For the convenience of the reader we state this proposition:

) and R > r > 0 we denote:

There exists a constant C B depending only on B s.t.

Remark 13 In [START_REF] Santos | The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case[END_REF], Proposition C.4, was initially stated for α ∈ L ∞ (R 2 , [b 2 ; 1]) and b ∈ (0; 1). Some obvious modifications allow to get the aforementioned formulation.

Lemma 2 is equivalent to

Recall that R 0 := max{1; 10

We let

It is easy to check, e.g. using the direct method of minimization, that the minima

Up to multiply u 1 by a constant rotation we may assume tr ∂B R (u 1 ) = tr ∂B R (u 2 ). We are now in position to define

) and deg(u) = 1. Consequently, with Proposition 10 and (73),

α|∇u R | 2 we obtain:

Letting C B,ω := 2C B + B -2 Cω the above inequality is exactly (72).
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