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Explicit expression of the microscopic renormalized energy

for a pinned Ginzburg-Landau functional

Mickaël Dos Santos∗

mickael.dos-santos@u-pec.fr

Abstract

We get a new expression of the microscopic renormalized energy for a pinned Ginzburg-
Landau type energy [with or without magnetic field] modeling small impurities. This is done
by obtaining a sharp decomposition for the minimal energy of a Dirichlet type functional with
an L

∞-weight.
In particular we get an explicit expression of the microscopic renormalized energy for a

circular diluted impurity. We proceed also to the minimization of this renormalized energy in
some cases.
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1 Introduction

1.1 Main results

The goal of this article is to give an explicit formula for a microscopic renormalized energy in
the context of the study of a pinned Ginzburg-Landau type energy.

This renormalized energy allows to know the location of vorticity defects inside small impurities
in an heterogenous superconductor. The microscopic renormalized energy may be defined via an
auxiliary minimization problem involving unimodular maps.

The study of this auxiliary problem is the heart of this work. The main result of this article is
the following theorem:

Theorem 1. Let

• ω ⊂ R2 ≃ C be a smooth bounded simply connected open set s.t. 0 ∈ ω,

• N ∈ N∗ and (ωN )⋆ := {(z1, ..., zN ) ∈ ωN | zi 6= zj for i 6= j},

• B ∈ (0; 1), b ∈ [B;B−1] and α ∈ L∞(R2, [B2;B−2]) be s.t. α ≡ b2 in ω.

For d ∈ Z
N and z ∈ (ωN )⋆, we write for R > 1 and small ρ ∈ (0; 1), DR,ρ,z := B(0, R)\∪iB(zi, ρ)

and Ed(DR,ρ,z) :=
{

u ∈ H1(DR,ρ,z, S1) | deg(u) = d
}

.
Then there exist

• f : (R0,∞) → R+ which satisfies B2π ln(R)−Cω,B ≤ f(R) ≤ B−2π ln(R)+Cω,B [with Cω,B
is a constant depending only on ω&B and R0 > 1 is sufficiently large],

• Wmicro : (ωN )⋆ × ZN → R

(z,d) 7→ Wmicro(z,d)
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s.t. for d ∈ Z
N and z ∈ (ωN )⋆, when R → ∞ and ρ→ 0+, we have

inf
u∈Ed(DR,ρ,z)

1

2

ˆ

DR,ρ,z

α|∇u|2 =

(

N
∑

i=1

di

)2

f(R) + b2π
N
∑

i=1

d2i | ln ρ|+Wmicro(z,d) + o(1). (1)

[Note that the degree of a function is defined in Section 2.2].

Remark 1. 1. The map Wmicro : (ωN)⋆ × ZN → R depends only on α, ω and N .

2. The function f(·) is defined by f(R) := inf
v∈H1(BR\ω,S1)

deg(v)=1

1

2

ˆ

BR\ω
α|∇v|2.

In the diluted circular case, i.e., the set ω is the unit disk D and when α ≡ 1 outside ω, we
may obtain an explicit expression for Wmicro.

Proposition 2. If ω is the unit disk D and α =

{

b2 if x ∈ ω

1 if x /∈ ω
, then the microscopic renormalized

energy with N vortices (z,d) = {(z1, d1), ..., (zN , dN )} is

Wmicro(z,d) = −b2π





∑

i6=j
didj ln |zi − zj|+

1− b2

1 + b2





N
∑

j=1

d2j ln(1 − |zj|2) +
∑

i6=j
didj ln |1− zizj |







 .

Remark 3. Section 7 is dedicated to the case of the weight considered in Proposition 2. Proposition
2 is proved Section 7.4. The minimization of the renormalized energy Wmicro in this situation is
presented in some particular cases Section 7.5.

1.2 Motivations

Theorem 1 may have several applications. For us, the main motivation appears in the study of
a pinned Ginzburg-Landau type energy modeling a superconductor with impurities.

The superconductivity phenomenon is an impressive property that appears on some materials
called superconductors. When a superconductor is cooled below a critical temperature, it carries
electric currents without dissipation [no electrical resistance] and expels magnetic fields from its
body [Meissner effect].

But if the conditions imposed on the material are too strong [e.g. a strong magnetic field] then
the superconductivity properties may be destroyed: the material has a classical behavior in some
areas of the material. These areas are called vorticity defects.

The present work gives informations for type II superconductors which are characterized by the
possible coexistence of vorticity defects with areas in a superconducting state. This state is called
the mixed state. Namely, for an increasing intensity of the magnetic field, the vorticity defects
appear first with a small number and look like disks with small radii of order ε > 0. Usually,
the mathematical studies for type II superconductors take place in the extrem type II case by
considering ε→ 0. See [SS07] for a rigorous and quite complete presentation of these facts.

In an homogeneous superconductor, the vorticity defects arrange themselves into triangular
Abrikosov lattice. In the presence of a current, vorticity defects may move, generating dissipation,
and destroying zero-resistance state. A way to prevent this motion is to trap the vorticity defects
in small areas called pinning sites. In practice, pinning sites are often impurities which are present
in a non perfect sample or intentionally introduced by irradiation, doping of impurities.

In order to prevent displacements in the superconductor, the key idea is to consider very small
impurities. The heart of this article is to answer to the following question: Once the vorticity defects
are trapped by small impurities, what is their locations inside the impurities [microscopic location] ?

The mathematical theory of the superconductivity knew an increasing popularity with the
pioneering work of Bethuel, Brezis and Hélein [BBH94]&[BBH93]. They studied the minimizers of
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the simplified Ginzburg-Landau energy

Eε : H1(Ω,C) → R+

u 7→ 1

2

ˆ

Ω

|∇u|2 + 1

2ε2
(1− |u|2)2

submitted to a Dirichlet boundary condition in the asymptotic ε → 0. In their works, Ω is a
bounded simply connected domain which is a cross section of an homogenous superconducting
cylinder Ω× R.

In this simplified model, a map u which minimizes Eε [under boundary conditions] models the
state of the superconductor in the mixed state. The superconducting area is the set {|u| ≃ 1} and
the vorticity defects are the connected components of {|u| ≃ 0}. Due to a fast phase transition
one may see the vorticity defects as {|u| ≤ 1/2}. We mention that a quantization of the vorticity
defects may be done by observing the degree of a minimizers around their boundaries. In this
context we say that z is a vortex of u when it is an isolated zero of u with a non zero degree.
With this model we recover the basic description of the vorticity defects as small discs with radii
of order of ε centered at a vortex. A Dirichlet boundary condition [with a non zero degree] mimics
the application of a magnetic field by forcing the presence of vorticity defects. More realistic
models including the presence of a magnetic field were intensively studied. Despite the present
work applies in these magnetic models [see [Dos19]], in order to motivate our main results, for sake
of simplicity of the presentation, we focus on the simple model ignoring the magnetic field.

A part of the main results of [BBH94] concerns quantization & location of the vorticity defects
and an asymptotic estimate of the energy of a minimizer. All these results are related with the
crucial notion of renormalized energy. The [Dirichlet] boundary condition used in [BBH94] is not
physical [non gauge invariant]. But one may modify the renormalized energy [by replacing the
Dirichlet boundary condition with a degree condition], after this modification the renormalized
energy plays a role in a more realistic model with no boundary condition and with a magnetic field
[see e.g. [Dos19] where this fact is highlighted].

One may modify the above model in order to consider a superconducting cylinder with impu-
rities. This is done with the help of a pinning term a : Ω → R+ by considering the functional

Epinned
ε : H1(Ω,C) → R+

u 7→ 1

2

ˆ

Ω

|∇u|2 + 1

2ε2
(a2 − |u|2)2 .

There are a lot of works which deal with a such energy. Some variants are studied in the literature
with the function a which is "smooth" or piecewise constant; independent of ε or depending on
ε... See the Introduction of [Dos15] for a more complete presentation of this models.

In order to present the interpretation of the pinning term, we focus on the case of a pinning
term a : Ω → R piecewise constant. Say, for some b ∈ (0; 1) we have a(Ω) = {1; b} and a−1({b}) is
a smooth compact subset of Ω whose connected components represent the impurities. A possible
interpretation of a such pinning term is an heterogeneity in temperature. Letting Tc be the critical
temperature below which superconductivity appears, if T1 < Tc is the temperature in a−1({1}),
then Tb = (1− b2)Tc + b2T1 is the temperature in a−1({b}). Here the impurities are "heat" areas
[note that T1 < T2 < Tc]. See Section 2.2 of the Introduction of [Dos10].

In order to consider "small" impurities we need to use an ε-dependent pinning term [aε : Ω →
{b; 1} with b independent of ε]. Then we may model shrinking impurities: the diameter of the
connected components of a−1({b}) tend to 0. In [Dos13], the case of diluted impurities without
magnetic field is considered and, in [Dos19], diluted impurities for a magnetic energy is treated.

The diluted case is the case where the impurities are small and the inter-distance between two
impurities is very larger than their diameters. It is proved that the vorticity defects are trapped
by the impurities [pinning effect]. And when vorticity defects are included in an impurity ω0 then
their location inside ω0 [the microscopic location] depends only on their number, b and the form
of ω0 [see [DM11] and [Dos13] for the case without magnetic field and [Dos19] for the case with
magnetic field]. It minimizes a microscopic renormalized energy Wmicro. In particular the the
renormalized energy Wmicro is the same using the simplified model ignoring the magnetic field or
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the magnetic model. And thus in both models the microscopic location of the vorticity defects is
the same.

In [Dos15]-[Section 2] it is explained in detailed the link between the minimization problem
considered in Theorem 1 and the microscopic location of vortices in a diluted case.

Remark 4. 1. In [DM11], the existence and the role of Wmicro was established. But its expres-
sion was not really explicit.

2. In particular, in the case of an impurity which is a disk containing a unique vortex, it was
expected that the limiting location is the center of the disc. The expression of Wmicro

obtained in [DM11] does not allow to get this result easily. This result was obtained from
scratch in [Dos15]. This result is obvious with the explicit expression obtained in Proposition
2.

3. Theorem 1 has a more general scope than needed. Indeed:

i. In Theorem 1, the points zi’s correspond to the location of the vortices inside an impurity.
The weight α is close to a2ε rescaled at the size of the impurity.

Essentially, in the diluted case, we have to consider α =

{

1 outside ω

b2 in ω
where ω is the

form of the impurity.

ii. With the help of the main result of [DM11], [Dos13] and [Dos19], in order to studyWmicro

in the context of a pinned Ginzburg-Landau type function [with or without magnetic
field], we may focus on the case di = 1 for i ∈ {1, ..., N}. But, since the minimization
problem considered in Theorem 1 is of its self-interest we treat the case of general degrees.

4. If

• ω ⊂ Y := (−1/2; 1/2]× (−1/2; 1/2] is as in Theorem 1,

• α =

{

1 in Y \ ω
b2 in ω

,

• α is 1-periodic,

then Wmicro [given in Theorem 1] should govern the limiting location of vortices inside an
impurity for the periodic non diluted case. But, there is no result which asserts that in the non
diluted case the microscopic location of the vortices may be studied with this minimization
problem. [Despite we believe that in the non diluted periodic case the microscopic location
of vortices should be given by minimal configurations of Wmicro with degree 1]

2 Notation and basic properties

2.1 General notation

2.1.1 Set and number

• For z ∈ C, |z| is the modulus of z, Re(z) ∈ R is the real part of z, Im(z) ∈ R is the imaginary
part of z and z is the conjugate of z.

• "∧" stands for the vectorial product in C, i.e., z1 ∧ z2 = Im(z1z2), z1, z2 ∈ C.

• For z ∈ C and r > 0, B(z, r) = {z̃ ∈ C | |z − z̃| < r}. When z = 0 we simply write
Br := B(0, r) and, in the particular case z = 0&r = 1, we write D = B(0, 1).

• For a set A ⊂ R
2 ≃ C, we let A be the closure of A and ∂A be the boundary of A; in

particular we write S1 = ∂D for the unit circle.
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2.1.2 Asymptotic

• In this article R > 1 is a large number and ρ ∈ (0; 1) is a small number. We are essentially
interested in the asymptotic R → ∞ and ρ→ 0+.

• The notation oR(1) [resp. oρ(1)] means a quantity depending on R [resp. ρ] which tends to
0 when R → +∞ [resp. ρ→ 0+]. When there is no ambiguity we write o(1).

• The notation o[f(R)] [resp. o[f(ρ)]] means a quantity g(R) [resp. g(ρ)] s.t.
g(R)

f(R)
→ 0 when

R → +∞ [resp.
g(ρ)

f(ρ)
→ 0 when ρ→ 0]. When there is no ambiguity we write o(f).

• The notation O[f(R)] [resp. O[f(ρ)]] means a quantity g(R) [resp. g(ρ)] s.t.
g(R)

f(R)
[resp.

g(ρ)

f(ρ)
] is bounded [independently of the variable] when R is large [resp. ρ > 0 is small]. When

there is no ambiguity we write O(f).

2.2 Function and degree

The functions we consider are essentially defined on perforated domains:

Definition 5. We say that D ⊂ R2 is a perforated domain when D = Ω \∪Pi=1ωi where P ∈ N∗ and
Ω, ω1, ..., ωP are smooth simply connected bounded open sets s.t. for i ∈ {1, ..., P} we have ωi ⊂ Ω
and, for i 6= j, ωi ∩ ωj = ∅. If P = 1 we say that D is an annular type domain.

In this article the test functions stand in the standard Sobolev space of order 1 with complex
values modeled on L2, denoted by H1(Ω,C), where Ω is a smooth open set.

Our main interest is based on unimodular map, i.e, the test functions are S1-valued. Thus we
focus on maps lying in H1(Ω, S1) := {u ∈ H1(Ω,C) | |u| = 1 a.e in Ω}

We let tr∂Ω : H1(Ω,C) → H1/2(∂Ω,C) be the surjective trace operator. Here H1/2(∂Ω,C) is
the trace space. For Γ a connected component of ∂Ω and u ∈ H1(Ω,C), trΓ(u) is the restriction of
tr∂Ω(u) to Γ.

For Γ ⊂ R2 a Jordan curve and g ∈ H1/2(Γ, S1), the degree (winding number) of g is defined

as degΓ(g) :=
1

2π

ˆ

Γ

g ∧ ∂τg ∈ Z where:

• τ is the direct unit tangent vector of Γ (τ = ν⊥ where ν is the outward normal unit vector
of int(Γ), the bounded open set whose boundary is Γ),

• ∂τ := τ ·∇ is the tangential derivative on Γ. For further use we denote ∂ν = ν ·∇ the normal
derivative on Γ.

For simplicity of the presentation, when there is no ambiguity, we may omit the dependance on
the Jordan curve in the notation of the degree. For example:

• if Γ is a Jordan curve and if h ∈ H1/2(Γ, S1), then we may write deg(h) instead of degΓ(h).

• If D = Ω \ ω is an annular type domain and u ∈ H1(D, S1), then deg∂Ω(u) = deg∂ω(u).
Consequently, without ambiguity, we may write deg(u) instead of deg∂Ω(u) or deg∂ω(u).

If D is a perforated domain and if u ∈ H1(D, S1) then we write

deg(u) := (deg∂ω1
(u), ..., deg∂ωP

(u)) ∈ Z
P .

Note that for d ∈ ZP we have Ed(D) := {u ∈ H1(D, S1) | deg(u) = d} 6= ∅.
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2.3 Data of the problem

In this article we consider:

• ω ⊂ R2 ≃ C be a smooth bounded simply connected open set s.t. 0 ∈ ω,

• N ∈ N∗, d = (d1, ..., dN ) ∈ ZN and we let d :=
N
∑

i=1

di ∈ Z,

• z ∈ (ωN )⋆ := {(z1, ..., zN) ∈ ωN | zi 6= zj for i 6= j},

• B ∈ (0; 1), b ∈ [B;B−1] and α ∈ L∞(R2, [B2;B−2]) s.t. α ≡ b2 in ω.

We define

R0 := max{1; 102 · diameter(ω)} and ρ0 := 10−2 ·min

{

1,min
i6=j

|zi − zj|,min
i

dist(zi, ∂ω)

}

.

For R > R0 and ρ0 > ρ > 0, we denote

• DR,z := BR \ ∪Ni=1B(zi, ρ),

• ΩR := BR \ ω,

• Ωρ,z := ω \ ∪Ni=1B(zi, ρ).

The main purpose of this article is the following minimization problem:

I(R, ρ, z,d) := inf
u∈Ed(DR,z)

1

2

ˆ

DR,z

α|∇u|2. (2)

Namely, we are interested in the asymptotic behavior of I(R, ρ, z,d) when R → ∞ and ρ→ 0.
Without loss of generality and for simplicity of the presentation, R > R0 is considered as the

major parameter writing ρ = ρ(R).
In order to study the minimization problem (2) we will define other similar minimization prob-

lems. In particular we handle minimization problems of the following form:

inf
u∈E

d′(D)

1

2

ˆ

D
α′|∇u|2 (3)

where

• D := Ω \ ∪Pi=1ωi is a perforated domain as in Definition 5,

• d
′ ∈ ZP ,

• α′ ∈ L∞(D; [B2;B−2]), B ∈ (0; 1).

We have the following classical proposition [whose proof is left to the reader]:

Proposition 6. Minimization problem (3) admits solutions. Moreover if u is a solution of (3)
then v is a solution of (3) if and only if there exists λ ∈ S1 s.t. v = λu.

Moreover a minimizer ud solves

{

−div(α′∇ud) = α′ud|∇ud|2 in D
∂νud = 0 on ∂D . (4)

And there exists ψd which is locally defined in D and whose gradient is in L2(D,R2) s.t. ud = e ıψd

and
{

−div(α′∇ψd) = 0 in D
∂νψd = 0 on ∂D . (5)

6



3 First step in the proof of Theorem 1: splitting of the do-

main

The first step in the proof of Theorem 1 consists in a strategy which was already used in [Dos15].
It is a splitting of the integral over DR,z [in (2)] in two parts: the integral over ΩR and the one
over Ωρ,z.

For each integral we consider a mixed minimization problem by adding an arbitrary Dirichlet
boundary condition on ∂ω: h ∈ H1/2(∂ω, S1) s.t. deg(h) = d =

∑

di.
We then claim that these mixed minimization problems admit "unique" solutions.
In the next steps we will solve these problems, we will minimize among h ∈ H1/2(∂ω, S1) s.t.

deg(h) = d and finally we will decouple the minimal energy according to the different data.
The splitting consists in the following obvious equality:

I(R, ρ, z,d) = inf
h∈H1/2(∂ω,S1)
s.t. deg(h)=d











inf
v∈H1(ΩR,S

1)
tr∂ω(v)=h

1

2

ˆ

ΩR

α|∇v|2 + inf
w∈Ed(Ωρ,z)
tr∂ω(w)=h

b2

2

ˆ

Ωρ,z

|∇w|2











. (6)

The three previous minimization problems admit "unique" solutions. Indeed we have the following
proposition [whose proof is left to the reader].

Proposition 7. 1. Both minimization problems in (6) having a [partial] Dirichlet boundary
condition h ∈ H1/2(∂ω, S1) in (6) admit each a unique solution.

2. The minimization problem in (6) among h ∈ H1/2(∂ω, S1) s.t. deg(h) = d admits solutions.
Moreover if h0 is a solution, then h̃0 is a minimizer if and only if there exists λ ∈ S1 s.t.
h̃0 = λh0.

4 Second step in the proof of Theorem 1: the key ingredient

The key ingredient in this article is the use of special solutions. It is expressed in the following
proposition.

Proposition 8. Let D = Ω \ ∪Pi=1ωi be a perforated domain, B ∈ (0; 1), α′ ∈ L∞(D; [B2;B−2])
and d

′ ∈ ZP . We let ud′ be a minimizer of (3). Then for ϕ ∈ H1(D,R) we have

1

2

ˆ

D
α′|∇(ud′e ıϕ)|2 =

1

2

ˆ

D
α′|∇ud′ |2 + 1

2

ˆ

D
α′|∇ϕ|2.

Proof. We fix D, B, α′,d′ be as in the proposition. First note that, from Proposition 6, we get the
existence of ud′ . Moreover ud′ is a solution of (4). We may thus write ud′ = e ıψd′ where ψd′ is
locally defined in D and ∇ψd′ ∈ L2(D,R2). Thus ψd′ solves (5). Let ϕ ∈ H1(D,R). We have

1

2

ˆ

D
α′|∇(ud′e ıϕ)|2 =

1

2

ˆ

D
α′|∇(ψd′ + ϕ)|2

=
1

2

ˆ

D
α′|∇ψd′ |2 +

ˆ

D
α′∇ψd′ · ∇ϕ+

1

2

ˆ

D
α′|∇ϕ|2.

From (5) and an integration by parts we get

ˆ

D
α′∇ψd′ · ∇ϕ = 0 and this equality ends the proof

of the proposition since
1

2

ˆ

D
α′|∇ψd′ |2 =

1

2

ˆ

D
α|∇ud′ |2.

Remark 9. It is easy to check that Proposition 8 allows to prove in a "different" way the uniqueness,
up to a constant rotation, of a minimizer of (3).

Because minimizers of (3) are not unique, in order to fix such a minimizer we add an extra
condition. This choice leads to the crucial notion of special solution.

In both next sections we define the special solutions in ΩR = BR \ ω [Section 4.1] and in
Ωρ,z = ω \ ∪B(zi, ρ) [Section 4.2].
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4.1 The special solution in ΩR

In this section we focus on the annular type domain ΩR. We first treat the case d = 1 by
considering:

inf
v∈H1(ΩR,S

1)
deg(v)=1

1

2

ˆ

ΩR

α|∇v|2. (7)

With the help of Proposition 6, we may fix a map vR ∈ H1(ΩR, S
1) s.t. deg(vR) = 1 which is a

solution of (7). We freeze the non-uniqueness of vR by letting vR be in the form

vR =
x

|x|e
ıγR with γR ∈ H1(ΩR,R) s.t.

ˆ

∂ω

γR = 0. (8)

It is clear that such map vR is uniquely and well defined. Moreover, for d ∈ Z, we have vdR
which is a solution of the minimization problem:

inf
v∈H1(ΩR,S

1)
deg(v)=d

1

2

ˆ

ΩR

α|∇v|2. (9)

It is direct to check that vdR is the unique solution of the minimization problem (9) of the form
(

x

|x|

)d

eıγ̃ with γ̃ ∈ H1(ΩR,R) s.t.
´

∂ω
γ̃ = 0.

The special solution vR is fundamental in the analysis since it allows to get a decoupling of the
weighted Dirichlet energy. Namely, from Proposition 8 we have:

Lemma 10. For d ∈ Z and ϕ ∈ H1(ΩR,R) we have:

1

2

ˆ

ΩR

α|∇(vdRe
ıϕ)|2 =

d2

2

ˆ

ΩR

α|∇vR|2 +
1

2

ˆ

ΩR

α|∇ϕ|2.

The above lemma allows to get a crucial information on the asymptotic behavior of (γR)R:

Proposition 11. There exists γ∞ ∈ H1
loc(R

2 \ ω,R) s.t. when R → ∞ we have γR → γ∞ in
H1

loc(R
2 \ ω).

Proof. Let R′ > R > R0 and ϕR = γR′ − γR in order to have vR′ = vRe
ıϕR in ΩR.

From Lemma 10 we have

1

2

ˆ

ΩR

α|∇vR′ |2 =
1

2

ˆ

ΩR

α|∇(vRe
ıϕR)|2 =

1

2

ˆ

ΩR

α|∇vR|2 +
1

2

ˆ

ΩR

α|∇ϕR|2. (10)

We need the following lemma:

Lemma 12. There exists a constant CB,ω > 0 depending only on B and ω s.t.

1

2

ˆ

ΩR

α|∇ϕR|2 ≤ CB,ω.

For the convenience of the reader the proof of this lemma in postponed in Appendix [see
Appendix A].

From Lemma 12 we have
1

2

ˆ

B√
R\B

R1/4

α|∇ϕR|2 ≤ CB,ω.

Notation 13. In the rest of this proof, C0 stands for a constant depending only on ω and B derived
from CB,ω and with universal multiplicative constants. Its values may change from line to line.
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Therefore, with the help of a mean value argument, we have the existence of r ∈ (R1/4,
√
R)

and of a constant C0 depending only on B and ω s.t.:
ˆ 2π

0

|∂θϕR(re ıθ)|2 dθ ≤
C0

lnR
.

We denote mR :=

 2π

0

ϕR(re
ıθ) dθ. From the above estimate and with the help of a Poincaré-

Wirtinger inequality, we have
ˆ 2π

0

[

ϕR(re
ıθ)−mR

]2
dθ ≤ C0

lnR
.

We now define ϕ̃R ∈ H1(BR,R):

ϕ̃R(se
ıθ) =















mR for s ∈ [0, r/2]
s− r/2

r/2
ϕR(re

ıθ) +
r − s

r/2
mR for s ∈ (r/2, r)

ϕR(se
ıθ) for s ∈ [r, R)

.

It is easy to check that ϕ̃R ∈ H1(BR,R) and with direct calculations we obtain:
ˆ

Br

|∇ϕ̃R|2 =

ˆ

Br\Br/2

|∇ϕ̃R|2 ≤ C0

lnR
. (11)

By noting that tr∂BR(vRe
ıϕ̃R) = tr∂BR(vRe

ıϕR) = tr∂BR(vR′), with the help of ϕ̃R we construct
ṽR ∈ H1(ΩR′ , S1):

ṽR =

{

vR′ in BR′ \BR
vRe

ıϕ̃R in ΩR
.

From the minimality of vR′ and Lemma 10 we get

1

2

ˆ

ΩR′

α|∇vR′ |2 ≤ 1

2

ˆ

ΩR′

α|∇ṽR|2

=
1

2

ˆ

ΩR′\ΩR

α|∇vR′ |2 + 1

2

ˆ

ΩR

α|∇vR|2 +
1

2

ˆ

ΩR

α|∇ϕ̃R|2. (12)

Estimate (12) implies:
1

2

ˆ

ΩR

α|∇vR′ |2 ≤ 1

2

ˆ

ΩR

α|∇vR|2+
1

2

ˆ

ΩR

α|∇ϕ̃R|2. This inequality coupled

with (10) gives
1

2

ˆ

ΩR

α|∇ϕR|2 ≤ 1

2

ˆ

ΩR

α|∇ϕ̃R|2.

On the other hand, from the definition of ϕ̃R we have ϕ̃R = ϕR in BR \Br. Consequently we

deduce
1

2

ˆ

Ωr

α|∇ϕR|2 ≤ 1

2

ˆ

Ωr

α|∇ϕ̃R|2. With (11) and since r ∈ (R1/4,
√
R) we may conclude

1

2

ˆ

Ω
R1/4

α|∇ϕR|2 ≤ C0

lnR
.

In particular, for a compact set K ⊂ R2 \ ω s.t. ∂ω ⊂ ∂K we have for sufficiently large R

1

2

ˆ

K

α|∇ϕR|2 ≤ C0

lnR
.

Since

 

∂ω

ϕR = 0, we may use a Poincaré type inequality to get ‖ϕR‖H1(K) → 0 when R → ∞
independently of R′ > R.

It suffices to note that ϕR = γR′ − γR in order to conclude that (γR)R is a Cauchy family in
H1(K). Then (γR)R is a Cauchy family in H1

loc(R
2 \ ω). The completeness of H1

loc(R
2 \ ω,R)

allows to get the existence of γ∞ ∈ H1
loc(R

2 \ ω,R) s.t. γR → γ∞ in H1
loc(R

2 \ ω).
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Corollary 14. We have two direct consequences of Proposition 11 :

1. tr∂ω(γR) → tr∂ω(γ∞) in H1/2(∂ω),

2. vR =
x

|x|e
ıγR → v∞ :=

x

|x|e
ıγ∞ in H1

loc(R
2 \ ω).

4.2 The special solution in Ωρ,z

As for the special solution in ΩR, we first consider the minimization problem:

inf
w∈Ed(Ωρ,z)

1

2

ˆ

Ωρ,z

|∇w|2. (13)

From Proposition 6, we may fix wρ,z,d, a unique solution of (13), by imposing

wρ,z,d =

N
∏

i=1

(

x− zi
|x− zi|

)di

eıγρ,z,d with

ˆ

∂ω

γρ,z,d = 0. (14)

For i ∈ {1, ..., N}, we may locally define θi in R2 \ {zi} as a lifting of
x− zi
|x− zi|

, i.e., e ıθi =
x− zi
|x− zi|

.

Moreover ∇θi is globally defined. We denote Θ := d1θ1 + ... + dNθN which is locally defined in
R

2 \ {z1, ..., zN} and whose gradient is globally defined in R
2 \ {z1, ..., zN}. We then may write

wρ,z,d = eı(Θ+γρ,z,d).
In contrast with the previous section, the asymptotic behavior of wρ,z,d is well known when

ρ→ 0. For example Lefter and Rădulescu proved the following theorem.

Theorem 2. [Theorem 1 [LR96]] For ρ0 > ρ > 0 we let wρ be a minimizer of (13) and we
consider a sequence ρn ↓ 0. Up to pass to a subsequence, there exists w0 ∈ C∞(ω \ {z1, ..., zN}, S1)
s.t. wρn → w0 dans Ckloc(ω \ {z1, ..., zN}) for all k ≥ 0.

Moreover the limits w0 are unique up to the multiplication by a constant in S1.

From Theorem 2, we get that the possible limits w0’s are unique up to a constant rotation.
Thus there exists a unique limit w0,z,d [given by Theorem 2] which may be written:

w0,z,d =

N
∏

i=1

(

x− zi
|x− zi|

)di

eıγ0,z,d with

ˆ

∂ω

γ0,z,d = 0. (15)

We thus have the following corollary:

Corollary 15. Let γ0,z,d ∈ H1
loc(ω \ {z1, ..., zN},R) be defined by (15). When ρ → 0 we have

γρ,z,d → γ0,z,d in H1
loc(ω \ {z1, ..., zN}). Thus we also get tr∂ω(γρ,z,d) → tr∂ω(γ0,z,d) in H1/2(∂ω).

Proof. Let K ⊂ ω \ {z1, ..., zN} be a connected compact set s.t. ∂ω ⊂ ∂K and let ρn ↓ 0 be s.t.
wρn,z,d = eı(Θ+γρn,z,d) → w0 = eı(Θ+γ0) in C1(K) for some γ0 ∈ C1(K). It suffices to prove that
we may choose γ0 = γ0,z,d defined by (15).

On the one hand, we have ∇γρn,z,d = wρn,z,d ∧ ∇wρn,z,d − ∇Θ → w0 ∧ ∇w0 − ∇Θ = ∇γ0 in
L2(K). Then γ0 = γ0,z,d + λ for some λ ∈ R.

On the other hand (γρn,z,d)n is bounded in H1(K), consequently, up to pass to a subsequence,
we have γρn,z,d ⇀ γ0 in H1(K). With the help of the previous paragraph, we get that the
convergence is in fact strong. Thus tr∂ω(γρn,z,d) → tr∂ω(γ0) in L2(∂ω).

In conclusion

0 =

 

∂ω

γρn,z,d →
 

∂ω

γ0 = λ+

 

∂ω

γ0,z,d.

This means λ = 0 and thus γ0 = γ0,z,d.

About the asymptotic energetic expanding, Lefter and Rădulescu proved the following result:

Theorem 3. [Theorem 2 [LR96]] For N ∈ N∗, there exists a map W : (ωN )⋆ × ZN → R s.t. for
d ∈ Z

N and z ∈ (ωN )⋆ when ρ→ 0 we have:

inf
w∈Ed(Ωρ,z)

1

2

ˆ

Ωρ,z

|∇w|2 = π

N
∑

i=1

d2i | ln ρ|+W (z,d) + oρ(1).
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5 Upper Bound

We are now in position to start the proof of Theorem 1. To this end, the goal of this section is
to identify a map K : {h ∈ H1/2(∂ω, S1) | deg(h) = d} → R s.t. for a fixed h ∈ H1/2(∂ω, S1) with
deg(h) = d, when R → ∞ we have

inf
v∈H1(ΩR,S

1)
tr∂ω(v)=h

1

2

ˆ

ΩR

α|∇v|2 + inf
w∈Ed(Ωρ,z)
tr∂ω(w)=h

b2

2

ˆ

Ωρ,z

|∇w|2

= K(h) + d2f(R) + b2

[

π

(

N
∑

i=1

d2i

)

| ln ρ|+W (z,d)

]

+ o(1). (16)

In the above estimate we have:

• K is independent of R, ρ ;

• f is defined by Remark 1.2 and is independent of h, ρ, z,d and d =
∑

di;

• W is defined in Theorem 3 and is independent of b, B, h, ρ and R.

Note that from Corollaries 14 and 15, we have the existence of

• γ∞ ∈ H1/2(∂ω) s.t. γR → γ∞ in H1/2(∂ω),

• γ0,z,d ∈ H1/2(∂ω) s.t. γρ,z,d → γ0,z,d in H1/2(∂ω).

It is important to claim that since
´

∂ω
γR = 0 and

´

∂ω
γρ,z,d = 0, we have

´

∂ω
γ∞ = 0 and

´

∂ω γ0,z,d = 0.

5.1 Study in the domain ΩR

For R ∈ (R0,∞) and h ∈ H1/2(∂ω, S1) s.t. deg(h) = d we consider

IR(h) := inf
v∈H1(ΩR,S

1)
tr∂ω(v)=h

1

2

ˆ

ΩR

α|∇v|2. (17)

Let h ∈ H1/2(∂ω, S1) s.t. deg(h) = d. In this section we want to estimate IR(h) when R → ∞.

We let gh := h

( |x|
x

)d

∈ H1/2(∂ω). It is clear that deg(gh) = 0 and then we may fix a unique

φh ∈ H1/2(∂ω,R) s.t. gh = eıφh and

 

∂ω

φh ∈ (−π, π].

Remark 16. Since our goal is to estimate IR(h) and since for β ∈ R we have IR(h) = IR(e
ıβh), up

to replace h by e ıβh with β = −
 

∂ω

φh, we may assume that

ˆ

∂ω

φh = 0.

Recall that for R ∈ (R0,∞] we have vR =
x

|x|e
ıγR [see (8) and Corollary 14]. For R ∈ (R0,∞]

we let φhR := φh − dtr∂ω(γR) ∈ H1/2(∂ω,R) and so we get h = tr∂ω(v
d
R)e

ıφh
R and

´

∂ω φ
h
R = 0.

From Corollary 14 we immediately obtain:

Corollary 17. φhR −→
R→∞

φh∞ in H1/2(∂ω).

For R ∈ (R0,∞) and v ∈ H1(ΩR, S
1) it is clear that

tr∂ω(v) = h⇐⇒ v = vdRe
ıϕ with

∣

∣

∣

∣

ϕ ∈ H1(ΩR,R)
tr∂ω(ϕ) = φhR

.
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On the other hand, for v = vdRe
ıϕ ∈ H1(ΩR, S

1), from Lemma 10 we have

1

2

ˆ

ΩR

α|∇v|2 =
d2

2

ˆ

ΩR

α|∇vR|2 +
1

2

ˆ

ΩR

α|∇ϕ|2. (18)

Therefore, one may obtain that v = vdRe
ıϕ with tr∂ω(ϕ) = φhR is a solution of the minimization

problem (17) if and only if ϕ ∈ H1(ΩR,R) is a solution of the minimization problem

inf
ϕ∈H1(ΩR,R)

tr∂ω(ϕ)=φh
R

1

2

ˆ

ΩR

α|∇ϕ|2. (19)

It is classic to prove that Problem (19) admits a unique solution denoted by ϕhR. Moreover this
minimizer is the unique solution of











−div(α∇ϕhR) = 0 in ΩR

tr∂ω(ϕ
h
R) = φhR

∂νϕ
h
R = 0 on ∂BR

.

We denote Ω∞ := R2 \ ω and for φ ∈ H1/2(∂ω,R) we let

Hφ := {ϕ ∈ H1
loc(Ω∞,R) | ∇ϕ ∈ L2(Ω∞) and tr∂ω(ϕ) = φ}. (20)

We are now interested in the minimization problem:

inf
ϕ∈H

φh
∞

1

2

ˆ

Ω∞

α|∇ϕ|2. (21)

By direct minimization, first order variations and from the strict convexity of the energy we get:

Proposition 18. Problem (21) admits a unique solution denoted by ϕh∞. Moreover ϕh∞ is a
solution of

− div(α∇ϕh∞) = 0 in Ω∞. (22)

We are now able to prove the main result of this section:

Proposition 19. When R → ∞, we have ϕhR → ϕh∞ in H1
loc(R

2 \ ω) and ∇ϕhR1IΩR → ∇ϕh∞ in

L2(R2 \ ω), with 1IΩR(x) =

{

1 if x ∈ ΩR

0 if x /∈ ΩR
.

And consequently:

ˆ

ΩR

α|∇ϕhR|2 =

ˆ

Ω∞

α|∇ϕh∞|2 + oR(1).

Proof. From Corollary 17 we have φhR − φh∞ → 0 in H1/2(∂ω). Consequently, there exists ξR ∈
H1(Ω∞,R) s.t. tr∂ω(ξR) = φhR − φh∞ and ‖ξR‖H1(Ω∞) → 0.

The test function ϕh∞ + ξR satisfies the boundary condition of Problem (19), therefore:

1

2

ˆ

ΩR

α|∇ϕhR|2 ≤ 1

2

ˆ

ΩR

α|∇(ϕh∞ + ξR)|2 =
1

2

ˆ

ΩR

α|∇ϕh∞|2 + o(1). (23)

Note we used

ˆ

ΩR

α|∇ϕh∞|2 ≤ C0 :=

ˆ

Ω∞

α|∇ϕh∞|2 <∞. From (23), we obtain

lim sup
R→∞

1

2

ˆ

ΩR

α|∇ϕhR|2 ≤ 1

2

ˆ

Ω∞

α|∇ϕh∞|2. (24)

We now prove the "lim inf"-lower bound:

lim inf
R→∞

1

2

ˆ

ΩR

α|∇ϕhR|2 ≥ 1

2

ˆ

Ω∞

α|∇ϕh∞|2. (25)
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On the one hand, from (23), for R ∈ (R0,∞) sufficiently large, we have
´

ΩR
α|∇ϕhR|2 ≤ C0+1 and

thus, up to pass to a subsequence, we get that ∇ϕhR1IΩR weakly converges in L2(R2 \ ω,R2).
On the other hand, for a connected compact set K ⊂ R2 \ ω s.t. ∂ω ⊂ ∂K, the test function

ϕh∞ + ξR is bounded in H1(K). We let χR := ϕR − (ϕh∞ + ξR) ∈ H1(K) and then, for sufficiently
largeR, we have ‖∇χR‖L2(ΩR) ≤ 2C0+2. It is easy to check that tr∂ω(χR) = 0. Consequently, from
a Poincaré type inequality, there exists a constant CK > 1 s.t. ‖χR‖L2(K) ≤ CK‖∇χR‖L2(K) ≤
CK × (2C0 + 2). Thus there exists a constant C′

K s.t., for sufficiently large R, ‖ϕhR‖L2(K) ≤ C′
K .

Consequently, with the help of an exhaustion by compact sets and a diagonal extraction process,
we have the existence of a sequence Rk ↑ ∞ and ϕ̃∞ ∈ H1

loc(R
2 \ ω,R) s.t.







ϕhRk
⇀ ϕ̃∞ in H1

loc(R
2 \ ω) and ∇ϕhRk

1IΩRk
⇀ ∇ϕ̃∞ in L2(R2 \ ω).

lim inf
R→∞

ˆ

ΩR

α|∇ϕhR|2 = lim
Rk→0

ˆ

ΩRk

α|∇ϕhRk
|2 . (26)

We thus get ∇ϕ̃∞ ∈ L2(R2 \ ω) and tr∂ω(ϕ̃∞) = φh∞, i.e., ϕ̃∞ ∈ Hφh
∞

.

From the definition of ϕh∞ [Proposition 18] we have with (26)

1

2

ˆ

Ω∞

α|∇ϕh∞|2 ≤ 1

2

ˆ

Ω∞

α|∇ϕ̃∞|2 ≤ lim inf
R→∞

1

2

ˆ

ΩR

α|∇ϕhR|2.

We thus obtained (25). Therefore by combining (24) and (25) we get:

ˆ

ΩR

α|∇ϕhR|2 =

ˆ

Ω∞

α|∇ϕh∞|2 + oR(1). (27)

The above estimate implies that a limiting map ϕ̃∞ ∈ Hφh
∞

as previously obtained satisfies:

1

2

ˆ

Ω∞

α|∇ϕ̃∞|2 ≤ 1

2

ˆ

Ω∞

α|∇ϕh∞|2.

On the other hand ϕh∞ is the unique solution of Problem (21). Therefore ϕ̃∞ = ϕh∞. Consequently,
the convergences in (26) hold for R → ∞ and from (27), these convergences are strong.

5.2 Study in the domain Ωρ,z

Recall that we fixed a map h ∈ H1/2(∂ω, S1) s.t. deg(h) = d. We are interested in getting an
asymptotic estimate for the minimal energy

Iρ,z,d(h) = inf
w∈Ed(Ωρ,z)
tr∂ω(w)=h

1

2

ˆ

Ωρ,z

|∇w|2. (28)

First note that letting gh
z,d := h

N
∏

i=1

( |x− zi|
x− zi

)di

∈ H1/2(∂ω, S1) we have deg(gh
z,d) = 0. Thus, from

a standard lifting result, we may fix φh
z,d ∈ H1/2(∂ω,R) s.t. gh

z,d = eıφ
h
z,d and

 

∂ω

φhz,d ∈ (−π, π].
It is clear that φh

z,d is uniquely defined.

Remark 20. As in the previous section [see Remark 16], for β ∈ R we have Iρ,z,d(h) = Iρ,z,d(he
ıβ).

Thus up to replace h by he ıβ , with β = −
 

∂ω

φh
z,d, in order to estimate Iρ,z,d(h), we may assume

that

 

∂ω

φh
z,d = 0.

For ρ ∈ [0, ρ0) we let φhρ,z,d := φh
z,d − γρ,z,d ∈ H1/2(∂ω,R) [γρ,z,d is defined in (14) and (15)] in

order to have h = tr∂ω(wρ,z,d)e
ıφh

ρ,z,d . Moreover it is clear that

 

∂ω

φhρ,z,d = 0.
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Notation 21. For simplicity of the presentation, until the end of this section, we omit the subscripts
z,d e.g. writing, for ρ ∈ [0, ρ0), φ

h
ρ instead of φhρ,z,d.

From Corollary 15 we get:

Corollary 22. φhρ −→
ρ→0

φh0 in H1/2(∂ω).

For ρ ∈ (0, ρ0) and w ∈ H1(Ωρ,z, S
1), we have

tr∂ω(w) = h⇐⇒ w = wρe
ıϕ with

∣

∣

∣

∣

ϕ ∈ H1(Ωρ,z,R)
tr∂ω(ϕ) = φhρ

.

We follow the same strategy than in the previous section. For ϕ ∈ H1(Ωρ,z,R), from Proposition
8 we have for w = wρe

ıϕ

1

2

ˆ

Ωρ,z

|∇w|2 =
1

2

ˆ

Ωρ,z

|∇wρ|2 +
1

2

ˆ

Ωρ,z

|∇ϕ|2. (29)

Consequently a test function w = wρe
ıϕ with tr∂ω(ϕ) = φhρ is a solution of the minimizing problem

(28) if and only if ϕ ∈ H1(Ωρ,z,R) is a solution of the minimizing problem

inf
ϕ∈H1(Ωρ,z,R)

tr∂ω(ϕ)=φh
ρ

1

2

ˆ

Ωρ,z

|∇ϕ|2. (30)

And then for ρ ∈ (0, ρ0), the minimizing Problem (30) admits a unique solution denoted by ϕhρ .

About the asymptotic behavior of ϕhρ we have the following result:

Proposition 23. When ρ→ 0, we have

1

2

ˆ

Ωρ,z

|∇ϕhρ |2 =
1

2

ˆ

ω

|∇φ̃h0 |2 + oρ(1)

where φ̃h0 is the harmonic extension of φh0 in ω.

Proof. Let ξρ be the harmonic extension of φh0 − φhρ in ω. Since ‖φh0 − φhρ‖H1/2(∂ω) → 0, we have

ξρ → 0 in H1(ω).

We now prove the proposition. On the one hand, by minimality of ϕhρ and since tr∂ω(φ̃
h
0 −ξρ) =

φhρ we get

1

2

ˆ

Ωρ,z

|∇ϕhρ |2 ≤ 1

2

ˆ

Ωρ,z

|∇(φ̃h0 − ξρ)|2

≤ 1

2

ˆ

ω

|∇φ̃h0 |2 + oρ(1). (31)

On the other hand, from the Estimate (31), denoting C0 :=

ˆ

ω

|∇φ̃0|2 + 1, for sufficiently small ρ

we get
N
∑

i=1

1

2

ˆ

B(zi,
√
ρ)\B(zi,ρ)

|∇ϕρ|2 < C0. (32)

Thus for small ρ, we get the existence of ρ′ ∈ (ρ,
√
ρ) s.t.:

N
∑

i=1

1

2

ˆ 2π

0

|∂θϕhρ(zi + ρ′eıθ)|2 ≤ 2C0

| ln ρ| .
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For i ∈ {1, ..., N} we let mi,ρ :=

 2π

0

ϕhρ(zi + ρ′eıθ). We now define ϕ̃ ∈ H1(ω) by ϕ̃ = ϕhρ in

ω \ ∪iB(zi, ρ′) and for x = zi + seıθ ∈ B(zi, ρ
′) [with i ∈ {1, ..., N}]

ϕ̃(zi + seıθ) =

∣

∣

∣

∣

∣

∣

∣

2s− ρ′

ρ′
ϕhρ(zi + ρ′eıθ) +

2(ρ′ − s)

ρ′
mi,ρ if s ∈ (

ρ′

2
, ρ′)

mi,ρ if s ≤ ρ′

2

.

A direct calculation gives for z ∈ {z1, ..., zN}
ˆ

B(z,ρ′)

|∇ϕ̃|2 = O
[
ˆ 2π

0

|∂θϕhρ(z + ρ′eıθ)|2
]

= oρ(1).

Therefore we obtain
1

2

ˆ

Ωρ,z

|∇ϕhρ |2 ≥ 1

2

ˆ

ω

|∇ϕ̃|2 + oρ(1).

But tr∂ω(ϕ̃+ ξρ) = φh0 and consequently, from the Dirichlet principle, we have:

1

2

ˆ

ω

|∇(ϕ̃+ ξρ)|2 ≥ 1

2

ˆ

ω

|∇φ̃h0 |2

and thus with (31)
1

2

ˆ

ω

|∇ϕ̃|2 ≥ 1

2

ˆ

ω

|∇φ̃h0 |2 + oρ(1).

On the other hand, since ϕ̃ = ϕhρ in ω \ ∪iB(zi, ρ′) ⊂ Ωρ,z and
1

2

ˆ

∪iB(zi,ρ′)

|∇ϕ̃|2 = oρ(1) we

obtain:
1

2

ˆ

Ωρ,z

|∇ϕhρ |2 ≥ 1

2

ˆ

ω\∪iB(zi,ρ′)

|∇ϕhρ |2 ≥ 1

2

ˆ

ω

|∇φ̃h0 |2 + oρ(1).

Finally, using (31), by matching upper bound and lower bound we conclude:

1

2

ˆ

Ωρ,z

|∇ϕhρ |2 =
1

2

ˆ

ω

|∇φ̃h0 |2 + oρ(1).

The last estimates ends the proof of the proposition.

5.3 Conclusion

For h ∈ H1/2(∂ω, S1) s.t. deg(h) = d we have from (18) and Proposition 19:

inf
v∈H1(ΩR,S

1)
tr∂ω(v)=h

1

2

ˆ

ΩR

α|∇v|2 =
d2

2

ˆ

ΩR

α|∇vR|2 + inf
ϕ∈H

φh
∞

1

2

ˆ

Ω∞

α|∇ϕ|2 + oR(1). (33)

Using Theorem 3, (29) and Proposition 23 we have

inf
w∈H1(Ωρ,z,S

1)
tr∂ω(w)=h

1

2

ˆ

Ωρ,z

|∇w|2 =

(

∑

i

d2i

)

π| ln ρ|+W (z,d) +
1

2

ˆ

ω

|∇φ̃h0 |2 + oρ(1). (34)

Letting K :
{

h ∈ H1/2(∂ω, S1) | deg(h) = d
}

→ R+ defined by

K(h) := inf
ϕ∈H

φh
∞

1

2

ˆ

Ω∞

α|∇ϕ|2 + b2

2

ˆ

ω

|∇φ̃h0 |2 (35)

we get (16). Recall that, without loss of generality, the parameter "R" is considered as the major
parameter writing ρ = ρ(R). From (16), we get for h ∈ H1/2(∂ω, S1) s.t. deg(h) = d:

lim sup
R→∞

{

I(R, ρ, z,d)−
[

d2f(R) + b2

(

∑

i

d2i π| ln ρ|+W (z,d)

)]}

≤ K(h). (36)
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6 Lower bound

In this section we prove the existence of a map h∞ ∈ H1/2(∂ω, S1) s.t. deg(h∞) = d and

lim inf
R→∞

{

I(R, ρ, z,d)−
[

d2f(R) + b2

(

∑

i

d2i π| ln ρ|+W (z,d)

)]}

≥ K(h∞). (37)

Clearly a such map h∞ should minimize K :
{

h ∈ H1/2(∂ω, S1) | deg(h) = d
}

→ R+. But in order
to get an explicit expression for h∞ we do not define h∞ in this way.

We let Rn ↑ ∞ be a sequence which realizes the "lim inf" in the left hand side of (37).
In order to keep notation simple, we drop the subscript n writing R = Rn when it will not be

necessary to specify the dependance on n.
Let uR be a minimizer of (2) [Proposition 6]. In ΩR, we may decompose uR under the form

uR = vdRe
ıϕR where ϕR ∈ H1(ΩR,R) and vR is defined in (8).

Since uR is unique up to a multiplicative constant [Proposition 6], we may freeze the non
uniqueness by imposing

´

∂ω ϕR = 0.

Notation 24. For sake of simplicity of the presentation we use the shorthands:

• ”R ∈ (R0,∞)” to consider an arbitrary term of the sequence (Rn)n;

• ”R ∈ (R0,∞]” to consider either an arbitrary term of the sequence (Rn)n or the limiting
case R = ∞.

We denote:

• for R ∈ (R0,∞), hR := tr∂ωuR, and thus we have hR = tr∂ω

[

(

x

|x|

)d

e ı(dγR+ϕR)

]

;

• gz,d := tr∂ω

[

( |x|
x

)d N
∏

i=1

(

x− zi
|x− zi|

)di
]

.

Since gz,d ∈ C∞(∂ω, S1) and deg∂ω(gz,d) = 0 we may fix ξz,d ∈ C∞(∂ω,R) s.t. e ıξz,d = gz,d and
 

∂ω

ξz,d ∈ [−π, π).

6.1 Compatibility conditions

From the minimality of uR, it is obvious that the restriction of uR to ΩR [resp. Ωρ,z] is a
solution of the problem (17) [resp. (28)] with h = hR.

It is easy to check that we may write for R ∈ (R0,∞)

hR = tr∂ω[v
d
Re

ıϕR ] = tr∂ω[wρ,z,de
ıϕρ,z,d ]

where, omitting the superscript hR, we have:

• vR is the special solution in ΩR defined in (8).

• ϕR = ϕhR

R ∈ H1(ΩR,R) is the unique solution of Problem (19) [for the Dirichlet data hR on

∂ω] s.t. uR = vdRe
ıϕR in ΩR and

 

∂ω

ϕR = 0 [ϕR is defined above].

• wρ,z,d =

N
∏

i=1

(

x− zi
|x− zi|

)di

eıγρ,z,d is defined in (14);

• ϕρ,z,d = ϕhR

ρ,z,d ∈ H1(Ωρ,z,R) is the unique solution of (30) [for the Dirichlet data hR on ∂ω]

s.t. uR = wρ,z,de
ıϕρ,z,d in Ωρ,z and

 

∂ω

ϕρ,z,d ∈ (−π, π].
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By using Corollaries 14 and 15, we have the existence of γ∞, γ0,z,d ∈ H1/2(∂ω,R) s.t. γR → γ∞
and γρ,z,d → γ0,z,d in H1/2(∂ω). It is fundamental to note that

• γ∞ and γ0,z,d are independent of the sequence (Rn)n;

•
ˆ

∂ω

γR =

ˆ

∂ω

γ∞ =

ˆ

∂ω

γ0,z,d =

ˆ

∂ω

γρ,z,d = 0.

We have the following equivalences:

e ı[tr∂ω(ϕR)−tr∂ω(ϕρ,z,d)] = tr∂ω(wρ,z,d)× tr∂ω(vdR)

⇔ e ı[tr∂ω(ϕR)−tr∂ω(ϕρ,z,d)] = e ı[ξz,d+tr∂ω(γρ,z,d)−dtr∂ω(γR)]

⇔ tr∂ω(ϕR)− tr∂ω(ϕρ,z,d) = ξz,d + tr∂ω(γρ,z,d)− dtr∂ω(γR) + 2k0π with k0 ∈ Z. (38)

We thus have

−
 

∂ω

ϕρ,z,d =

 

∂ω

ϕR − ϕρ,z,d =

 

∂ω

[ξz,d + tr∂ω(γρ,z,d)− dtr∂ω(γR) + 2k0π] = 2k0π +

 

∂ω

ξz,d.

Since

 

∂ω

ϕρ,z,d ∈ (−π, π] and

 

∂ω

ξz,d ∈ [−π, π), the above equalities imply that k0 = 0 in (38).

Consequently we get:

tr∂ω(ϕR)− tr∂ω(ϕρ,z,d) = ξz,d + tr∂ω(γρ,z,d)− dtr∂ω(γR). (39)

6.2 Asymptotic estimate of the energy

By using (18) and (29), we have the following decoupling:

I(R, ρ, z,d) =
1

2

ˆ

DR,z

α|∇uR|2

=
1

2

ˆ

ΩR

α|∇(vdRe
ıϕR)|2 + b2

2

ˆ

Ωρ,z

|∇wρ,z,de ıϕρ,z,d |2

= d2f(R) +
1

2

ˆ

ΩR

α|∇ϕR|2 +
b2

2

ˆ

Ωρ,z

|∇wρ,z,d|2 +
b2

2

ˆ

Ωρ,z

|∇ϕρ,z,d|2. (40)

From the minimality of uR and by using (36), letting C0 := K
(

xd

|x|d
)

+1, for sufficiently large

R, we have:

I(R, ρ, z,d)−
[

d2f(R) +
b2

2

ˆ

Ωρ,z

|∇wρ,z,d|2
]

=
1

2

ˆ

ΩR

α|∇ϕR|2 +
b2

2

ˆ

Ωρ,z

|∇ϕρ,z,d|2 ≤ C0. (41)

Since

 

∂ω

ϕR = 0 [resp.

 

∂ω

ϕρ,z,d ∈ (−π, π]] for K1 a connected compact set of R2 \ ω [resp. K2

a connected compact set of ω \ {z1, ..., zN}] s.t. ∂ω ⊂ ∂K1 [resp. ∂ω ⊂ ∂K2], there exists C1 > 0
[resp. C2 > 0] s.t. for large R we have

´

K1

|ϕR|2 ≤ C1 and
´

K2

|ϕρ,z,d|2 ≤ C2.
Consequently :

• (ϕR)R is bounded in H1
loc(R

2 \ ω). Thus there exists ϕ∞ ∈ H1
loc(R

2 \ ω) s.t., up to pass to a
subsequence, we have

ϕR ⇀ ϕ∞ in H1
loc(R

2 \ ω). (42)

• (ϕρ,z,d)R is bounded in H1
loc(ω \ {z1, ..., zN}. Thus there exists ϕ0,z,d ∈ H1

loc(ω \ {z1, ..., zN})
s.t., up to pass to a subsequence, we have

ϕρ,z,d ⇀ ϕ0,z,d in H1
loc(ω \ {z1, ..., zN}). (43)
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From (39), we have tr∂ω(ϕR)− tr∂ω(ϕρ,z,d) = ξz,d + tr∂ω(γρ,z,d)− dtr∂ω(γR). On the other hand,
with Corollaries 14&15, we get that ξz,d+tr∂ω(γρ,z,d)−dtr∂ω(γR) strongly converges in H1/2(∂ω)
to ξz,d + tr∂ω(γ0,z,d) − dtr∂ω(γ∞). Consequently tr∂ω(ϕR) − tr∂ω(ϕρ,z,d) strongly converges in
H1/2(∂ω) to tr∂ω(ϕ∞)− tr∂ω(ϕ0,z,d) = ξz,d + tr∂ω(γ0,z,d)− dtr∂ω(γ∞).

We thus may deduce e ı[tr∂ω(ϕ∞)−tr∂ω(ϕ0,z,d)] = e ı[ξz,d+tr∂ω(γ0,z,d)−dtr∂ω(γ∞)], i.e.,

(

x

|x|

)d

e ıtr∂ω(dγ∞+ϕ∞) =
N
∏

i=1

(

x− zi
|x− zi|

)di

e ıtr∂ω(γ0,z,d+ϕ0,z,d). (44)

We now define:

h∞ := tr∂ω

[

(

x

|x|

)d

e ı(dγ∞+ϕ∞)

]

∈ H1/2(∂ω, S1). (45)

It is clear that deg(h∞) = d. We prove in the three next subsections [Sections 6.3&6.4&6.5] that
h∞ satisfies (37).

6.3 Calculations in R2 \ ω
From (41), we get that ∇ϕR1IΩR is bounded in L2(R2\ω) and thus, up to pass to a subsequence,

∇ϕR1IΩR weakly converges in L2(R2 \ω). Consequently, we may improve the convergence in (42),
up to pass to a subsequence, we obtain that ∇ϕR1IΩR ⇀ ∇ϕ∞ in L2(R2 \ ω). In particular we
obtain ∇ϕ∞ ∈ L2(R2 \ ω).

Consequently, denoting φ∞ := tr∂ω(ϕ∞) we obtain ϕ∞ ∈ Hφ∞ . Therefore, with Ω∞ = R2 \ ω,
we have:

lim inf
Rn→∞

{

1

2

ˆ

ΩRn

α|∇uRn |2 −
d2

2

ˆ

ΩRn

α|∇vRn |2
}

= lim inf
Rn→∞

1

2

ˆ

ΩRn

α|∇ϕRn |2

≥ 1

2

ˆ

Ω∞

α|∇ϕ∞|2

≥ inf
ϕ∈Hφ∞

1

2

ˆ

Ω∞

α|∇ϕ|2. (46)

6.4 Calculations on ω

We continue the calculations by proving:

1

2

ˆ

Ωρ,z

|∇ϕρ,z,d|2 ≥ 1

2

ˆ

ω

|∇φ̃0,z,d|2 + oρ(1) (47)

where φ̃0,z,d is the harmonic extension of φ0,z,d := tr∂ωϕ0,z,d in ω, ϕ0,z,d is defined in (43).
In order to get (47), we adapt the argument done to prove Proposition 23. From (41), we have

N
∑

i=1

1

2

ˆ

B(zi,
√
ρ)\B(zi,ρ)

|∇ϕρ,z,d|2 ≤ C0.

Thus, with a mean value argument, there exists ρ′ ∈ (ρ,
√
ρ) s.t.

N
∑

i=1

1

2

ˆ 2π

0

|∂θϕρ,z,d(zi + ρ′eıθ)|2dθ ≤ 2C0

| ln ρ| .

We now define ϕ̃ρ ∈ H1(ω) by ϕ̃ρ = ϕρ,z,d in ω \∪iB(zi, ρ′) and for i ∈ {1, ..., N}& x = zi+ se
ıθ ∈

B(zi, ρ
′) we let

ϕ̃ρ(zi + seıθ) =

∣

∣

∣

∣

∣

∣

∣

∣

2
s− ρ′/2

ρ′
ϕρ,z,d(zi + ρ′eıθ) +

ρ′ − s

πρ′

ˆ 2π

0

ϕρ,z,d(zi + ρ′eıθ)dθ if s ∈ (
ρ′

2
, ρ′)

1

2π

ˆ 2π

0

ϕρ,z,d(zi + ρ′eıθ)dθ if s ≤ ρ′

2

.
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A direct calculation gives:

N
∑

i=1

ˆ

B(zi,ρ′)

|∇ϕ̃ρ|2 = O
[

N
∑

i=1

ˆ 2π

0

|∂θϕρ,z,d(zi + ρ′eıθ)|2
]

= oρ(1). (48)

Thus, letting Ωρ′,z = ω \ ∪Ni=1B(zi, ρ′) and D̃ρ′ = ∪Ni=1B(zi, ρ
′) \B(zi, ρ), we obtain:

ˆ

Ωρ,z

|∇ϕρ,z,d|2 =

ˆ

Ωρ′,z

|∇ϕ̃ρ|2 +
ˆ

D̃ρ′

|∇ϕρ,z,d|2

≥
ˆ

Ωρ′,z

|∇ϕ̃ρ|2

(48)
=

ˆ

ω

|∇ϕ̃ρ|2 + oρ(1). (49)

Since ϕ̃ρ is bounded in H1(ω), up to pass to a subsequence, we may assume the existence of
ϕ̃0 ∈ H1(ω) s.t. ϕ̃ρ ⇀ ϕ̃0 in H1(ω).

On the other hand, it is clear that tr∂ωϕ̃0 = tr∂ωϕ0,z,d = φ0,z,d. Consequently from the
Dirichlet principle we get [denoting ρn = ρ(Rn)]

lim inf
ρn→0

ˆ

ω

|∇ϕ̃ρ|2 ≥
ˆ

ω

|∇ϕ̃0|2 ≥
ˆ

ω

|∇φ̃0,z,d|2. (50)

By combining (49) and (50) we obtain (47). From (40) and (47) we may write

lim inf
ρn→0

{

1

2

ˆ

Ωρn,z

|∇uRn |2 −
1

2

ˆ

Ωρn,z

|∇wρn,z,d|2
}

= lim inf
ρn→0

1

2

ˆ

Ωρn,z

|∇ϕρn,z,d|2

≥ 1

2

ˆ

ω

|∇φ̃0,z,d|2. (51)

6.5 Conclusion

Using (46), (51) and the definition of the sequence (Rn)n we get

lim inf
R→∞

{

I(R, ρ, z,d)−
(

d2f(R) +
b2

2

ˆ

Ωρ,z

|∇wρ,z,d|2
)}

= lim
Rn→∞

{

1

2

ˆ

DRn,z

α|∇uRn |2 −
(

d2f(Rn) +
b2

2

ˆ

Ωρn,z

|∇wρn,z,d|2
)}

≥ lim inf
Rn→∞

{

1

2

ˆ

ΩRn

α|∇uRn |2 − d2f(Rn)

}

+ b2 lim inf
ρn→0

{

1

2

ˆ

Ωρn,z

|∇uRn |2 −
1

2

ˆ

Ωρn,z

|∇wρn,z,d|2
}

≥ inf
ϕ∈Hφ∞

1

2

ˆ

Ω∞

α|∇ϕ|2 + b2

2

ˆ

ω

|∇φ̃0,z,d|2. (52)

Recall that h∞ =

(

x

|x|

)d

e ı(dγ∞+φ∞) ∈ H1/2(∂ω, S1) [see (45)]. Therefore from (35) and (44) we

may write

K(h∞) = inf
ϕ∈Hφ∞

1

2

ˆ

Ω∞

α|∇ϕ|2 + b2

2

ˆ

ω

|∇φ̃0,z,d|2.

Consequently (52) becomes

lim inf
R→∞

{

I(R, ρ, z,d)−
(

d2f(R) +
b2

2

ˆ

Ωρ,z

|∇wρ,z,d|2
)}

≥ K(h∞). (53)
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It suffices now to see that, from Theorem 3 we have

1

2

ˆ

Ωρ,z

|∇wρ,z,d|2 =
∑

i

d2iπ| ln ρ|+W (z,d) + oρ(1),

this combined with (36) gives

lim
R→∞

{

I(R, ρ, z,d)−
[

f(R) + b2

(

π

N
∑

i=1

d2i | ln ρ|+W (z,d)

)]}

exists

and

lim
R→∞

{

I(R, ρ, z,d)−
[

f(R) + b2

(

π

N
∑

i=1

d2i | ln ρ|+W (z,d)

)]}

= K(h∞).

We now define:
Wmicro(z,d) := b2W (z,d) + min

h∈H1/2(∂ω,S1)
deg(h)=d

K(h) (54)

in order to write

I(R, ρ, z,d) = d2f(R) + b2π

N
∑

i=1

d2i | ln ρ|+Wmicro(z,d) + oρ(1).

The last equality ends the proof of Theorem 1.

7 The case of the radially symmetric diluted impurity: ω = D

In this section we focus on the circular case with ω = D is the unit disc and for b ∈ (0,∞) we
let

α : R2 → {b2; 1}

x 7→
{

b2 if x ∈ D

1 if x ∈ R2 \ D .

We fix

• N ∈ N∗, d = (d1, ..., dN ) ∈ ZN and we let d :=
N
∑

i=1

di ∈ Z;

• z ∈ (DN )⋆ := {(z1, ..., zN ) ∈ DN | zi 6= zj for i 6= j}.

7.1 Explicit expression of the special solutions

We use the same notation as in Section 4.

Notation 25. In this section and in the next sections, in order to keep notation simple, we use
the shorthand "x" to stand the identity map. Namely we use the abuse of notation Id = x where
Id : U → U, x 7→ Id(x) = x and U ⊂ R2 ≃ C is an arbitrary set .

We let v∞ be the limiting function obtained in Corollary 14. It is easy to prove that v∞(x) =
x

|x| , i.e. γ∞ ≡ 0.

We let w0,z,d =

N
∏

i=1

(

x− zi
|x− zi|

)di

eıγ0,z,d be the function defined in (15). This function is the

canonical harmonic map in D associated to the singularities (z,d).
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On the unit circle S1 we have trS1(w0,z,d) = e ıψ0,z,d with

∂τψ0,z,d = ∂ν





N
∑

j=1

dj (ln |x− zj | − ln |1 − zjx|)



 .

This result comes from [LM14] Eq. (2.25) and (4.1). From Identity (4.14) in [LM14] we get

∂τψ0,z,d =

N
∑

j=1

dj [2∂ν (ln |x− zj |)− 1] .

Thus

∂τψ0,z,d =

N
∑

j=1

dj [2∂τ (arg(x− zj))− 1]with
x− zj
|x− zj |

= e ıarg(x−zj).

Consequently we get

trS1(w0,z,d) = e ıψ0,z,d = Cst× x−d
N
∏

j=1

(

x− zj
|x− zj |

)2dj

(55)

where Cst ∈ S1 is a constant.

7.2 Use of Fourier decompositions

In order to get an explicit expression of Wmicro(z,d) it seems natural to work on K. For
h ∈ H1/2(S1, S1) we have [see (20) and (35)]

K(h) = inf
ϕ∈H

φh
∞

1

2

ˆ

Ω∞

|∇ϕ|2 + b2

2

ˆ

ω

|∇φ̃h0 |2,

where:

• on the unit circle we have

h = xde ıφ
h
∞ = w0,z,de

ıφh
0 with

 

∂ω

φh∞,

 

∂ω

φh0 ∈ (−π, π]; (56)

• φ̃h0 is the harmonic extension of φh0 in D.

Condition (56) is a compatibility condition between the function φh∞ and φh0 . Since our goal is
to estimate K(h), it is clear that we may slightly modify Condition (56) by imposing

(

x

|x|

)d

e ıφ
h
∞ = Cst× w0,z,de

ıφh
0 with Cst ∈ S

1. (57)

We may easily prove that

inf
ϕ∈H

φh
∞

1

2

ˆ

Ω∞

|∇ϕ|2 =
1

2

ˆ

Ω∞

|∇φ̂h∞|2

where for φ ∈ H1/2(S1,R), φ̂ ∈ H1
loc(R

2 \D) is the unique solution of

{

−∆ϕ = 0 in R
2 \ D

trS1(ϕ) = φ, ∇ϕ ∈ L2(R2 \ D) .

[See Proposition 26 for more details about φ̂]
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From (55), an equivalent reformulation of (57) is

Cst

N
∏

j=1

(

x− zj
|x− zj| × x

)2dj

= e ı(φ
h
∞−φh

0
) with Cst ∈ S

1.

The above condition is equivalent to the compatibility condition:

φh∞ − φh0 = Ψz,d +Cst where Cst ∈ R (58)

and Ψz,d ∈ C∞(S1,R) is a lifting of

N
∏

j=1

(

x− zj
|x− zj | × x

)2dj

.

With a direct calculation, for z0 ∈ D and x ∈ S
1, we have

(

x− z0
|x− z0|x

)2

=
x− z0

x− z0 × x2
=

x− z0
1− z0x

× 1

x
=Mz0(x) ×

1

x

where Mz0 : D → D is the Moebius function defined by Mz0(x) =
x− z0
1− z0x

.

In [Dos15], it is proved [Section 7] that if z0 ∈ D ∩ R+ then for e ıθ ∈ S1

Mz0(e
ıθ)e−ıθ = eΨz0,1(e

ıθ) where Ψz0,1(e
ıθ) =

∑

n∈Z∗

z
|n|
0

ın
e ınθ +Cst, Cst ∈ R.

In the general case z0 = te ıγ ∈ D [with t ≥ 0, γ ∈ R] we easily deduce from the previous
equality:

Mz0(e
ıθ)e−ıθ =Mt[e

ı(θ−γ)]e−ı(θ−γ).

Then

Ψz0,1(e
ıθ) = Ψt,1(e

ı(θ−γ)) + Cst

=
∑

n∈Z∗

t|n|

ın
e ın(θ−γ) + Cst

=
∑

n∈N∗

[

z0
n

ın
e ınθ − z0

n

ın
e−ınθ

]

+Cst, Cst ∈ R.

It is easy to prove that we have Ψz,d =
∑N

j=1 djΨzj,1 +Cst [Cst ∈ R] and then

Ψz,d(e
ıθ) = Cst +

∑

n∈N∗

N
∑

j=1

dj

[

zj
n

ın
e ınθ − zj

n

ın
e−ınθ

]

. (59)

We now go back to the previously fixed function h ∈ H1/2(S1, S1). We are in position to reformulate
the compatibility condition (58) in term of Fourier series.

Let φh0 , φ
h
∞ ∈ H1/2(S1,R) [defined in (56)], consider their Fourier decompositions [we drop the

superscript h for the coefficients]:

φh0 (e
ıθ) =

∑

n∈Z

c0,ne
ınθ and φh∞(e ıθ) =

∑

n∈Z

c∞,ne
ınθ. (60)

The compatibility condition (57) is equivalent to (58). From (59), the condition (58) reads with
Fourier decompositions:

∀n ∈ Z
∗, c∞,n − c0,n =























N
∑

j=1

dj
zj
n

ın
if n > 0

−
N
∑

j=1

dj
zj
n

ın
if n < 0

.
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7.3 Explicit expression of the minimal value of K
Before going further we recall some basic facts.

Proposition 26. Let φ ∈ H1/2(S1,R) and consider φ(e ıθ) =
∑

n∈Z
cne

ınθ be its Fourier decom-
position.

Then we have

1. For all n ∈ N, cn = c−n.

2.
∑

n∈Z

|n||cn|2 <∞.

3. The map φ̃ : D → R, re ıθ 7→
∑

n∈Z

cnr
|n|e ınθ is the harmonic extension of φ. Moreover

1

2

ˆ

D

|∇φ̃|2 = π
∑

n∈Z

|n||cn|2.

4. The map φ̂ : R2 \ D → R, re ıθ 7→
∑

n∈Z

cnr
−|n|e ınθ is an exterior harmonic extension of φ.

Moreover
1

2

ˆ

R2\D
|∇φ̂|2 = π

∑

n∈Z

|n||cn|2.

5. φ̂ is the unique solution of











−∆ϕ = 0 in R2 \ D,
ϕ ∈ H1

loc(R
2 \ D,R)

trS1(ϕ) = φ, ∇ϕ ∈ L2(R2 \ D,R2)

. (61)

Therefore it is also the unique solution of the problem

inf
ϕ∈Hφ

1

2

ˆ

R2\D
|∇ϕ|2. (62)

Proof. Assertions 1 and 2 are quite standard. Assertions 3 and 4 follow from standard calculations.
We now prove Assertion 5. Let φ ∈ H1/2(S1,R) and let φ̂ be defined by Assertion 4. It is clear

that φ̂ solves (61). Assume that ϕ0 is a solution of (61) and let η := φ̂− ϕ0. Then η satisfies:











−∆η = 0 in R2 \ D,
η ∈ H1

loc(R
2 \ D,R)

trS1(η) = 0, ∇η ∈ L2(R2 \ D,R2)

.

From [SS96] [Theorem II.6.2.ii] we get η = 0. This clearly gives the uniqueness of the solution of
(61).

On the one hand, by direct minimization we know that Problem (62) admits solution(s). It is

standard to check that a minimizer for (62) solves (61). Consequently φ̂ is the unique solution of
Problem (62).

Notation 27. From now on, for φ ∈ H1/2(S1,R) with Fourier decomposition φ(e ıθ) =
∑

n∈Z
cne

ınθ,

we let the semi-norm |φ|H1/2 :=
√

π
∑

n∈Z
|n||cn|2.
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For n ∈ N∗, letting γn =
∑N

j=1 dj
zj

n

ın , i.e. Ψz,d(e
ıθ) = Cst +

∑

n∈Z∗ γne
ınθ [see (59)], we get

inf
h∈H1/2(S1,S1)

deg(h)=d

K(h) = inf
φ0,φ∞∈H1/2(S1,R)

xde ıφ∞=Cst×w0,z,de
ıφ0

(

1

2

ˆ

Ω∞

|∇φ̂∞|2 + b2

2

ˆ

ω

|∇φ̃0|2
)

= 2π inf
(c0,n)n∈N∗ ,(c∞,n)∈ℓ2(N∗)
c∞,n−c0,n=γn ∀n∈N

∗

(

∑

n∈N

n|c0,n|2 + b2
∑

n∈N

n|c∞,n|2
)

= 2π
∑

n∈N∗



n× inf
c0,n,c∞,n∈C

c∞,n−c0,n=γn

(

|c0,n|2 + b2|c∞,n|2
)





= 2π
∑

n∈N∗

[

n× inf
c0,n∈C

(

|c0,n|2 + b2|c0,n + γn|2
)

]

= 2π
∑

n∈N∗

[

n×
(

∣

∣

∣

∣

−b2
1 + b2

γn

∣

∣

∣

∣

2

+ b2
∣

∣

∣

∣

−b2
1 + b2

γn + γn

∣

∣

∣

∣

2
)]

=
b2

1 + b2
2π
∑

n∈N∗

n|γn|2 =
b2

1 + b2
|Ψz,d|2H1/2 . (63)

7.4 Explicit expression of W
micro: Proof of Proposition 2

We first recall the expression of W (z,d) [see Proposition 1 in [LR96]]:

W (z,d) = −π
∑

i6=j
didj ln |zi − zj|+ π

N
∑

i=1

d2i ln(1− |zi|2) + π
∑

i6=j
didj ln |1− zizj |.

From (54) we have Wmicro(z,d) = b2W (z,d) + minh∈H1/2(S1,S1)
deg(h)=d

K(h).

By combining (59) and (63) we may write

min
h∈H1/2(S1,S1)

deg(h)=d

K(h) =
2b2

1 + b2
π
∑

n∈N∗

n

∣

∣

∣

∣

∣

∣

N
∑

j=1

dj
zj
n

ın

∣

∣

∣

∣

∣

∣

2

=
2b2

1 + b2
π
∑

n∈N∗

1

n

∣

∣

∣

∣

∣

∣

N
∑

j=1

djz
n
j

∣

∣

∣

∣

∣

∣

2

.

For n ∈ N∗ we have the following expanding

∣

∣

∣

∣

∣

∣

N
∑

j=1

djz
n
j

∣

∣

∣

∣

∣

∣

2

=

N
∑

j=1

d2j |zj |2n + 2Re





∑

i<j

didj(zizj)
n



 .

Therefore we obtain

∑

n∈N∗

1

n

∣

∣

∣

∣

∣

∣

N
∑

j=1

djz
n
j

∣

∣

∣

∣

∣

∣

2

=
N
∑

j=1

d2j

(

∑

n∈N∗

1

n
|zj|2n

)

+ 2
∑

i<j

didjRe

[

∑

n∈N∗

1

n
(zizj)

n

]

= −
N
∑

j=1

d2j ln(1− |zj|2)− 2
∑

i<j

didjRe [ln(1− zizj)]

= −
N
∑

j=1

d2j ln(1− |zj|2)−
∑

i6=j
didj ln |1− zizj |.
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We may thus conclude:

Wmicro(z,d) = b2π



−
∑

i6=j
didj ln |zi − zj|+

N
∑

i=1

d2i ln(1− |zi|2) +
∑

i6=j
didj ln |1− zizj |−

− 2

1 + b2





N
∑

j=1

d2j ln(1− |zj |2) +
∑

i6=j
didj ln |1− zizj |









= −b2π





∑

i6=j
didj ln |zi − zj |+

1− b2

1 + b2

N
∑

j=1

d2j ln(1− |zj |2) +
1− b2

1 + b2

∑

i6=j
didj ln |1− zizj|



 .

These calculations end the proof of Proposition 2.

7.5 Minimization of Wmicro in some particular cases

We first claim that if d = 0ZN then Wmicro(·,d) ≡ 0. In the following we consider d ∈
ZN \ {0ZN}.

7.5.1 The case N = 1 and the case N ≥ 2&∃!k0 ∈ {1, ..., N} s.t. dk0 6= 0

We first treat the case N = 1. In this situation, we have for z ∈ D and d ∈ Z∗ :

Wmicro(z, d) = −b
2(1− b2)

1 + b2
πd2 ln(1 − |z|2)

Therefore, if b < 1 then z = 0 is the unique minimizer of Wmicro.

Remark 28. This simple fact is the main result of [Dos15] [where the explicit expression of Wmicro

was unknown].

If b = 1 then Wmicro(·, d) ≡ 0.
If b > 1 then Wmicro(z, d) → −∞ when |z| → 1. This implies that Wmicro(·, d) does not admit

minimizers.

Remark 29. We may conclude that the condition b < 1 creates a confinement effect for the points
of minimum of Wmicro(·, d). This confinement effect does not hold for b ≥ 1.

We now consider the case N ≥ 2. We assume that d1 6= 0 and dl = 0 for l 6= 1.
This situation is similar to the above one since for z = (z1, ..., zN ) ∈ (ωN )⋆ we haveWmicro(z,d) =

Wmicro(z1, d1). Consequently as previously we have:

• If b < 1 then the set of global minimizers of Wmicro is {z ∈ (ωN )⋆ | z1 = 0}.

• If b = 1 then Wmicro(·,d) ≡ 0.

• If b > 1 then Wmicro(z,d) → −∞ when |z1| → 1.

7.5.2 The case N ≥ 2 and there exist k, l s.t. dkdl < 0

Let d ∈ ZN s.t. there exist k 6= l satisfying dkdl < 0. In this situation we have

inf
z∈(ωN )⋆

Wmicro(z,d) = −∞.

Indeed, without loss of generality, we may assume that d1d2 < 0. For n ∈ N∗, we consider

z
(n)
1 := −1/n, z

(n)
2 := 1/n and for k ∈ {1, ..., N} \ {1, 2}, zk := e ı2kπ/N/2.

With direct calculations, we obtain limnW (zn,d) = −∞.
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Remark 30. This fact underline that if we impose d1d2 < 0 then the main part of the optimal
energy I(R, ρ, z,d) is not

(

N
∑

i=1

di

)2

f(R) + b2π

N
∑

i=1

d2i | ln ρ|.

Indeed when we consider very near singularities z1&z2 we may optimize the divergent term

b2
(

∑N
i=1 d

2
i

)

| ln ρ|. The key argument is that with degrees having different signs (e.g d1d2 < 0)

we have
N
∑

i=1

d2i > (d1 + d2)
2 +

N
∑

i=3

d2i .

This is an example of the standard attractive effect of singularities having degrees with different
signs.

7.5.3 The case b = 1, N ≥ 2, dkdl ≥ 0 ∀k, l and there exist k0, l0 s.t. dk0dl0 > 0

When b = 1, for (z,d) ∈ (ωN )⋆ × ZN we have Wmicro(z,d) = −π
∑

i6=j
didj ln |zi − zj |. Thus

inf
z∈(ωN )⋆

Wmicro(z,d) > −∞

but the lower bound is not attained. Indeed, it is easy to check that for z ∈ (ωN )⋆

inf
z∈(ωN )⋆

Wmicro(z,d) > −π
∑

i6=j
didj ln 2.

Consequently Wmicro(·,d) is bounded from below. We now prove that the lower bound is not

reached. Let z ∈ (ωN )⋆, and consider z̃ ∈ (ωN)⋆ be s.t. z̃k = λzk with λ :=
2

1 + maxl |zl|
. It is

easy to check that z̃ ∈ (ωN )⋆. Moreover we get Wmicro(z̃,d) =Wmicro(z,d) − π lnλ
∑

i6=j didj .

Since λ > 1, we have Wmicro(z̃,d) < Wmicro(z,d). This fact implies that the lower bound is
not reached.

Remark 31. When b = 1, the impurity ω = D does not play any role. Then, due to the standard
repulsion effect between vortices, the more the vortices are distant the smaller the energy. Con-
sequently, for fixed degrees having all the same sign, minimal sequences of singularities go to the
boundary of the impurity which is not an admissible configuration in this framework.

7.5.4 The case b > 1 and N ≥ 2

If b > 1 then taking, for n ∈ N∗ and k ∈ {1, ..., N}, z(n)k := (1− 1/n)e ı2πk/N we have

Wmicro(zn,d) = O(1) +
b2 − 1

1 + b2

N
∑

j=1

d2j ln(1− |z(n)j |2) → −∞ when n→ ∞.

Remark 32. The case b > 1 corresponds to an impurity ω = D which have a repulsive effect on the
singularities.

7.5.5 The case 0 < b < 1, N = 2 and d ∈ (N∗)2

This situation is the most challenging. Note that with the help of [DM11] we may obtain the
existence of minimizers for Wmicro(·,d) with di = 1 for i ∈ {1, ..., N}, N ∈ N∗. But [DM11] does
not give any information on the location of minimizers and for other configurations of degrees.

From technical issues, we restrict the study to N = 2 and p, q ∈ N∗. Note that the case p, q < 0
is obviously symmetric.
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We are going to prove that there exist minimizers and they are unique up to a rotation [see
(69)&(70)].

We may assume p ≤ q. For z1, z2 ∈ D we have, writing (z,d) = ((z1, p), (z2, q))

Wmicro(z,d)

−b2π = 2pq ln |z1 − z2|+
1− b2

1 + b2
[

p2 ln(1− |z1|2) + q2 ln(1− |z2|2) + 2pq ln |1− z1z2|
]

.

We let:

• B :=
1− b2

1 + b2
and A :=

p

q
≤ 1;

• f(z1, z2) = 2 ln |z1 − z2|+ B
[

A ln(1− |z1|2) +A−1 ln(1 − |z2|2) + 2 ln |1− z1z2|
]

.

Note that Wmicro[(z1, z2), (p, q)] = −b2pqπf(z1, z2). Consequently, in order to study minimizing
points of Wmicro[·, (p, q)], we have to maximize f(·). We first claim that if either |z1| → 1 or
|z2| → 1 or |z1 − z2| → 0, then f(z1, z2) → −∞. Consequently, from the continuity of f , f admits
maximum points in (D2)⋆.

Since z1 6= z2 and since for t ∈ R we have f(z1, z2) = f(z1e
ıt, z2e

ıt), we may assume that
z1 = s ≥ 0. We thus have for z2 = ρe ıθ [0 ≤ ρ < 1, θ ∈ R]

f(s, ρe ıθ) = ln
[

s2 + ρ2 − 2sρ cos θ
]

+ B
[

A ln(1− s2) +A−1 ln(1 − ρ2) + ln(1 + s2ρ2 − 2sρ cos θ)
]

.

We first claim that if s = 0 then ρ > 0 and for ε > 0 we have

f(ε,−ρ) = f(0, ρe ıθ) + ε(ρ−1 + 2βρ) +O(ε2).

Consequently, for ε > 0 sufficiently small we have f(ε,−ρ) > f(0, ρe ıθ). Therefore, if (s, ρe ıθ)
maximizes f , then s ∈ (0; 1). Using a similar argument, we may prove that for s > 0, if (s, ρe ıθ)
maximizes f , then ρ ∈ (0; 1).

On the other hand, from direct checking, for s, ρ > 0, the map θ ∈ [0, 2π] 7→ f(s, ρe ıθ) is
maximal if and only if θ = π.

Consequently, we focus on the map

g : (0; 1)2 → R

(s, t) 7→ f(s,−t) = 2 ln (s+ t) + B
[

A ln(1− s2) +A−1 ln(1 − t2) + 2 ln(1 + st)
] .

We first look for critical points of g:

∇g(s, t) = 0 ⇔















1

s+ t
+ B

( −As
1− s2

+
t

1 + st

)

= 0

1

s+ t
+ B

(−A−1t

1− t2
+

s

1 + st

)

= 0

⇔
{

(1 − s2)(1 + st) + B
[

−As(1 + st)(s+ t) + t(1− s2)(s+ t)
]

= 0

(1 − t2)(1 + st) + B
[

−A−1t(1 + st)(s+ t) + s(1 − t2)(s+ t)
]

= 0
.(64)

By considering the difference of both lines in (64) we get:

(t2 − s2)(1 + st) + B
[

(A−1t−As)(1 + st)(s+ t) + (t− s2t− s+ st2)(s+ t)
]

= 0

⇐⇒ (1 + st)(s+ t)
[

t− s+ B((A−1 + 1)t− (A+ 1)s)
]

= 0

[s,t>0]⇐⇒ [1 + B(A−1 + 1)]t− [1 + B(A+ 1)]s = 0

⇐⇒ t = λs with λ :=
1 + B(A+ 1)

1 + B(A−1 + 1)
. (65)

.

Remark 33. It is important to note that 0 < λ ≤ 1. Moreover λ = 1 if and only if p = q.
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Using (65) in the first line of (64) we have

(1− s2)(1 + λs2) + B
[

−As2(1 + λs2)(1 + λ) + λs2(1− s2)(1 + λ)
]

= 0. (66)

Thus, letting σ = s2, we get the following equation:

[λ+ (A+ 1)Bλ(1 + λ)]σ2 + [1− λ+ (A− λ)B(1 + λ)]σ − 1 = 0. (67)

We let ∆ := [1 − λ + (A − λ)B(1 + λ)]2 + 4[λ + (A + 1)Bλ(1 + λ)]. Note that ∆ > 0 and√
∆ > 1− λ+ (A− λ)B(1 + λ).
We obtain immediately that

σ0 =
−[1− λ+ (A− λ)B(1 + λ)] +

√
∆

2[λ+ (A+ 1)Bλ(1 + λ)]
(68)

is the unique positive solution of (67).
Consequently

s0 =

√

−[1− λ+ (A− λ)B(1 + λ)] +
√
∆

2[λ+ (A+ 1)Bλ(1 + λ)]
(69)

is the unique positive solution of (66).
In conclusion, the set of global minimizers of Wmicro[·, (p, q)] is

{(

s0e
ıθ;−λs0e ıθ

)

∈ (D2)⋆ | θ ∈ R
}

(70)

where s0 is given by (69) and λ by (65).

Remark 34. It is interesting to note that if ((z1, z2), (p, q)) ∈ (D2)⋆ × (N∗)2 is a minimizers for
Wmicro, then we have:

|z1| ≤ |z2| ⇐⇒ p ≥ q

and
|z1| = |z2| ⇐⇒ p = q.

A Proof of Lemma 12

The key ingredient to get Lemma 12 is Proposition C.4 in [Dos13] previously proved for W 2,∞

weights by Sauvageot in [Sau11] [in fact Sauvageot’s article treats the anisotropic case which is
more general than Proposition 35 below].

For the convenience of the reader we state this proposition:

Proposition 35. [Proposition C.4 in [Dos13]]
Let α ∈ L∞(R2, [B2;B−2]) and R > r > 0 we denote:

• µDir(BR \Br) := inf

{

1

2

ˆ

BR\Br

α|∇w|2
∣

∣

∣

∣

w ∈ H1(BR \Br, S1) s.t. , w(re ıθ) = e ıθ,

w(Re ıθ) = e ı(θ+θ0), θ0 ∈ R

}

,

• µ(BR \Br) := inf

{

1

2

ˆ

BR\Br

α|∇w|2
∣

∣

∣

∣

w ∈ H1(BR \Br, S1)
s.t. deg(w) = 1

}

.

There exists a constant CB depending only on B s.t.

µ(BR \Br) ≤ µDir(BR \Br) ≤ µ(BR \Br) + CB.

Remark 36. In [Dos13], Proposition C.4, was initially stated for α̃ ∈ L∞(R2, [b2; 1]) and b ∈ (0; 1).
Some obvious modifications allow to get the aforementioned formulation.
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Lemma 12 is equivalent to

1

2

ˆ

ΩR

α|∇uR′ |2 − 1

2

ˆ

ΩR

α|∇uR|2 ≤ CB,ω. (71)

Recall that R0 := max{1; 102 · diam(ω)}, thus ω ⊂ BR0
.

We let

Cω :=
1

2

ˆ

BR0
\ω

∣

∣

∣

∣

∇
(

x

|x|

)∣

∣

∣

∣

2

. (72)

It is easy to check, e.g. using the direct method of minimization, that the minima µDir(BR′ \BR)
and µDir(BR \ BR0

) are reached. Let u1 [resp. u2] be a minimizer of µDir(BR′ \ BR) [resp.
µDir(BR \BR0

)]. Up to multiply u1 by a constant rotation we may assume tr∂BR(u1) = tr∂BR(u2).
We are now in position to define

u =















u1 in BR′ \BR
u2 in BR \BR0

x

|x| in BR0
\ ω

.

It is clear that u ∈ H1(ΩR′ , S1) and deg(u) = 1. Consequently

1

2

ˆ

ΩR′

α|∇uR′ |2 ≤ 1

2

ˆ

ΩR′

α|∇u|2

= µDir(BR′ \BR) + µDir(BR \BR0
) +

1

2

ˆ

BR0
\ω
α

∣

∣

∣

∣

∇
(

x

|x|

)∣

∣

∣

∣

2

[Prop. 35& Eq. (72)] ≤ µ(BR′ \BR) + µ(BR \BR0
) + 2CB +B−2Cω .

Since µ(BR′ \BR) ≤
1

2

ˆ

BR′\BR

α|∇uR′ |2 and µ(BR \BR0
) ≤ 1

2

ˆ

ΩR

α|∇uR|2 we obtain:

1

2

ˆ

ΩR

α|∇uR′ |2 ≤ 1

2

ˆ

ΩR

α|∇uR|2 + 2CB +B−2Cω.

Letting CB,ω := 2CB +B−2Cω the above inequality is exactly (71).
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