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Introduction

In the context of aerial imagery for agricultural and environmental monitoring purposes, the acquisition of radiance data in the near-infrared domain is particularly important. This is due to the spectral response of green vegetation material, which is characterized by a very sharp transition between low reflectance in the visible domain (typically 10 to 20%), and high reflectance in the near-infrared domain (typically 50 to 80%). Indeed, since the early times of remote sensing (RS), observation satellites (such as Landsat and SPOT) have been equipped with multi-spectral sensors including a near-infrared band (typically around 800 nm) associated with visible ones.

One of the most popular usages of this multi-spectral combination is the computation of the normalized difference vegetation index or NDVI, introduced by [START_REF] Rouse | Monitoring vegetation systems in the Great Plains with ERTS[END_REF]. NDVI is defined as the ratio (NIR-R)/(NIR+R), where NIR and R are respectively the near-infrared and red bands. As far as the radiance measurements are corrected for lighting and atmospheric effects (reflectance correction), the NDVI can be considered as a quantitative index for crop assessment [START_REF] Myneni | The interpretation of spectral vegetation indexes[END_REF]. In other cases, it remains a robust tool for the discrimination of vegetation areas in various lighting conditions [START_REF] Torres-Sanchez | Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management[END_REF][START_REF] Rabatel | Getting simultaneous red and near-infrared band data from a single digital camera for plant monitoring applications: theoretical and practical study[END_REF].

Other vegetation indices have also been proposed in various soil and vegetation conditions, with respect to their relationship to agronomic indices such as biomass and LAI (leaf area index) [START_REF] Huete | A comparison of vegetation indices over a global set of TM images for EOS-MODIS[END_REF][START_REF] Jindong | Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies[END_REF]; 2 [START_REF] Zhengwei | Comparison of Vegetation Indices for Corn and Soybean Vegetation Condition Monitoring[END_REF]. However, it is important to notice that most of these indices (such as ratio normalized difference vegetation index (RNDVI), soil-adjusted vegetation index (SAVI) and transformed normalized difference vegetation index (TNDVI) ) rely on the same red and near-infrared bands.

In satellite and airborne technologies, image acquisition is usually based on push-broom sensors, combined with the regular motion of the vehicle to build 2D images. Separate spectral bands can thus be collected using parallel line sensors [START_REF] Petrie | Airborne Pushbroom Line Scan; An Alternative to Digital Frame Cameras[END_REF]. It is quite different with UAV, for which the cost of an accurate inertial unit to control the motion regularity is rarely affordable. Therefore UAV imagery generally relies on 2D image sensors. While Color Filter Arrays (CFA) are nearly universally employed for standard color cameras, CFA including a near-infrared band are presently not available. As an alternative, some camera manufacturers have proposed multi-CCD devices including a near-infrared channel, e.g. the MS-4100 (Geospatial Systems Inc., West Henrietta, NY, USA), or the AD-080 (JAI AS, Copenhagen, Denmark).

However, such devices are characterized by high cost and limited image resolution.

On the other hand, UAV applications to agricultural monitoring are currently increasing dramatically, thanks to their specific advantages compared to aerial or satellite approaches: ease of use, flexibility, low cost, and very short revisit time.

Also, the low flight elevation of UAV provides now access to imagery with centimetric spatial resolution, opening the door to new kinds of applications (e.g. plant counting or adventice detection). However, such applications require low cost acquisition devices to fit with the overall system cost, with high image resolution (typically more than 10 million pixels) in order to compensate for their limited flight duration (low energy autonomy). As a consequence, despite increasing demand, there is still no commercial multi-spectral solution that entirely fulfills the UAV requirements, i.e. combining low cost, low footprint, low weight and high image resolution. Operators usually implement general use still color cameras, either accepting limitation to standard color acquisition, or trying to adapt these cameras to their particular needs. [START_REF] Hunt | Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring[END_REF] proposed the use of a standard color camera where the internal near-infrared-blocking has been removed and replaced by an external red-light-blocking filter, in order to get the G, B and NIR bands instead of R,G,B.

Similarly, [START_REF] Rabatel | Getting simultaneous red and near-infrared band data from a single digital camera for plant monitoring applications: theoretical and practical study[END_REF] obtained R and NIR bands using an external red long-pass filter and a linear combination of the resulting raw channels. However, in both cases, the original color image of the scene is no longer available, and the spectral quality of the bands obtained is limited.

An alternative solution consists in coupling two still cameras, one providing a standard color image, the other being devoted to the near-infrared band. For this purpose, the internal near-infrared-blocking filter of the second camera is replaced with an external near-infrared band-pass filter [START_REF] Lebourgeois | Can commercial digital cameras be used as multispectral sensors? A crop monitoring test[END_REF]. Despite the payload increase due to the implementation of two cameras, this approach remains particularly attractive, as being able to provide a full four-channel multi-spectral image including R,G, B and NIR bands. This kind of solution is also currently proposed by some camera manufacturers or UAV service companies involved in agricultural survey applications. They propose multi-spectral cameras based on 4 to 12 image sensors mounted close to each other, at the price of lower image resolution (Micro-MCA, Tetracam Inc. Chatworth, CA, US; Agrosensor, Airinov, Paris, France). However, multi-camera approaches require a postprocessing step to accurately establish the relationship between the pixel co-ordinates of every camera. As detailed in the following, this processing step, known as image registration, remains a challenge in the case of near-infrared and visible image pairs [START_REF] Dare | Small format digital sensors for aerial imaging applications[END_REF][START_REF] Hunt | Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring[END_REF]. Indeed, image registration has been widely studied in the literature. Basically, it consists in finding local correspondences between two images, in order to identify an image transformation model. According to [START_REF] Zitova | Image registration methods: a survey[END_REF], there are two main approaches to find these local correspondences: i) feature-based methods, which search for salient characteristics in both images (such as edges, lines and corners) and then try to match them in a separate matching Top: original visible and NIR images. Bottom: matching result using VLFeat SIFT tool (www.vlfeat.org/applications/sift-mosaic-code.html) Some authors have proposed a SIFT descriptor variant where the sign of image gradients is not taken into account [START_REF] Firmenich | Multispectral Interest Points for RGN-NIR Image Registration[END_REF]. However the corresponding improvement did not appear to be sufficient for high resolution aerial images.

A more robust solution could be to investigate some of the numerous multimodal registration algorithms mentioned above.

However, the complexity of such algorithms, mainly driven by medical imagery, is not well adapted to the specific context of UAV imagery, for which the availability of user friendly and fully automated software tools is a priority. Indeed, such a requirement for user-friendly tools is currently met in the field of photogrammetry (mosaicking and 3D reconstruction based on unimodal registration): numerous commercial or open source tools based on SIFT point matching (Photoscan1 , ERDAS Imagine2 , MicMac3 , VisualSFM4 ) are able to process automatically hundreds of UAV images in a couple of hours.

Therefore, most UAV users dealing with multi-spectral image registration still try to use the same photogrammetric tools for multimodal registration as well either by: i) registering directly the different bands using the embedded feature point registration algorithm with more or less success and accuracy depending on the image content or by: ii) computing a geo-referenced and ortho-rectified mosaic for both sets of images and then overlaying them based on their geographic co-ordinates, leading to a very limited registration quality.

The objective of the present paper is to propose an intermediate approach for the registration of visible and near-infrared images in the context of UAV imagery, able to provide robust and high quality registration of vegetation scenes while remaining fast and fully automated. The proposed approach involves spatial frequency analysis through the Fourier-Mellin transform (FMT). FMT is a well-known tool that has been widely used for image registration before the emergence of the SIFT algorithm [START_REF] Reddy | An FFT-based technique for translation, rotation, and scale-invariant image registration[END_REF][START_REF] Marcel | Calcul de translation et rotation par la transformation de Fourier (Translation and rotation computation by Fourier Transform)[END_REF]. Because Fourier analysis integrates spatially characteristic features over the whole image, it is robust to contrast inversion (see figure 3), and efficiently registers images of very different kinds. Recently, [START_REF] Jaud | Methods for FMCW radar map georeferencing[END_REF], for instance, have successfully used the FMT to match radar maps with aerial images in the visible domain.

As a counterpart, the main drawback of the FMT approach is that it is only applicable to register images linked through a transformation limited to translation, rotation and scale change. However, as shown further, it remains usable in aerial imaging, as long as the distance between the cameras is negligible compared to the scene distance, and the camera optical axis is nearly vertical. For this purpose, the initial method has been adapted to large size images and homographic transformations, using an iterative implementation based on image partitioning. Lens distortion aspects have been taken

into account as well. Notice that Equation (2) also indicates that F 1 (u,v) and F 2 (u,v) have the same modulus, as the modulus of the multiplicative term e -2 i π (Tx.u + Ty.v) is equal to one. This property will be used further.

Fourier Transform versus Feature Point in vegetation scenes

As stated above, feature point approaches like SIFT are largely used for registering images of the same nature. Now, let consider visible and NIR images of a vegetation scene. As already mentioned, in the NIR band, vegetation reflects almost all the incident light. Thus, vegetation appears much brighter than bare soil in the NIR image, while it will often appear darker in the visible one. A direct consequence, illustrated in Figure 3, is that the direction of grey level gradients will be inverted from one image to the other at the boundaries between vegetation and soil, while remaining the same within one kind of object. SIFT descriptors are based on gradient direction histograms collected over a large neighborhood around the feature point (16x16 pixels). If the vegetation and soil are so blended that most feature point neighborhoods include both of them, gradient inversions will occur within these neighborhoods, and the descriptors will not match between visible and NIR images.

On the other side, the FT identification approach proceeds by enhancing the spatial frequency shifts that are coherent all over the image area (i.e. that correspond to the same translation). In that sense, it accumulates area-extended information.

Within a given kind of object (vegetation or soil), the Fourier transform F 2 (u,v) in the second image will be affected by a multiplicative factor compared to F 1 (u,v), due to a different brightness, but the phase shift information will be preserved.

Finally, both kinds of objects will contribute to the translation identification peak, proportionally to their area. Only edges between them will introduce some perturbation in the Fourier spectra, but this edge contribution will remain limited compared to the image area (1D versus 2D accumulation), and should not jeopardize the translation identification.

Rotation and scale identification by Fourier-Mellin Transform

The Fourier-Mellin Transform (FMT) was first introduced by [START_REF] Casasent | New Optical Transforms for Pattern Recognition[END_REF] in the context of optical image processing. The idea was to combine the Fourier Transform and the Mellin Transform (MT, which can be assimilated to a Fourier transform after logarithmic co-ordinate scaling), in order to get both rotation and scaling invariance. FT and MT are known to have their modulus invariant respectively to translation and scale. By considering a polar representation f(r,) of an image and by applying respectively FT on the  axis and MT on the r axis, the FMT is obtained, which is formally defined as:

Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.564-587. The original publication is available at http://link.springer.com/article/10.1007%2Fs11119-016-9437-x Doi: 10.1007/s11119-016-9437-x
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The FMT is an invertible transform. Its module is invariant to  shift and to r scaling, i.e:
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FMT was initially designed to compare images that differ by scaling and rotation, looking at their FMT module, but not to identify this difference. In a registration context, it is important to notice that FMT can be assimilated to the TF of a logpolar representation of the image, as illustrated in Figure 4. Now, consider two images I 1 (r, ) and I 2 (r, ) in polar representation, which only differ by a centered rotation  and a scaling factor k. When considering the log-polar representation, the rotation corresponds to an image shift equal to  along the  axis, and the scaling factor k corresponds to an image shift equal to Log(k) along the Log r axis. So the two log-polar images will only differ by a 2D translation (, Log(k)). In that sense, the same approach that was described for translation identification can be applied: it consists in computing the ratio of the FT of the two log-polar representations, i.e. the ratio of the FMT of images I 1 (r, ) and I 2 (r, ), and then in searching for the maximum of its inverse Fourier Transform.

Notice that this approach implicitly supposes that the image scaling is isotropic, i.e. that the scaling factor k is independent of the angle  (in other words, the same scaling factor is applied on x and y axes in the original images).

General scheme

Comparing the polar representations of two images through FMT supposes that these polar representations refer to the same image center, which is not the case when a translation is involved. Fortunately, original images can be replaced by the modulus of their Fourier transform, centered on frequency (0,0). As seen above, the FT modulus is invariant to translation.

On the other hand, it preserves rotation and scaling information: a rotation  and a scaling factor k applied to a given image generate a rotation  and a scaling factor 1/k of its FT spectrum. Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.564-587. The original publication is available at http://link.springer.com/article/10.1007%2Fs11119-016-9437-x Doi: 10.1007/s11119-016-9437-x Thus, applying the homographic transformation H to (x 1 ,y 1 ):
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(x 2 ,y 2 ) = (x 2 ,y 2 ) S /u = (x 2 ,y 2 ) S /(1 +  x .x 1 +  y .y 1 ) (10)

As a conclusion, a homographic transformation can be considered as an extension of a similarity transformation where a supplementary scale factor 1/u = 1/(1 +  x .x 1 +  y .y 1 ) is applied, which depends on the position (x 1 , y 1 ) in the initial image.

Application to homographic transformation identification

At this stage, some hypotheses must be introduced concerning the homographic transformation to identify:

-The values of terms  x and  y are small compared to 1, which means that the homographic transformation is close to a similarity transformation.

-

The similarity scaling factor is nearly isotropic (same homothetic factors on x and y axes).

-The image translation is small compared to the image size, in terms of pixels.

Fortunately, all these hypotheses are compatible with usual aerial imaging. More precisely, the first two hypotheses are both related to the angle between the camera optical axis and the vertical. The more the camera orientation will be close to the nadir, the more they will be matched. Of course, it also requires that the viewed scene is nearly planar (compared to the camera-scene distance), otherwise homographic transformations are not applicable at all. Once again, it will be usually verified except in the case of very low flight altitude or very rough or mountainous terrain. The last hypothesis about translation amplitude will be usually matched in a multi-spectral acquisition context where coupled cameras are mounted close to each other.

The first hypothesis  x <<1 and  y <<1 implies that the homographic factor 1/(1 +  x .x 1 +  y .y 1 ) will be slowly varying across the images, so that simple similarity transformations can be considered over large image sub-portions. The second isotropic hypothesis implies that in such sub-portions, the rotation-translation-scale identification scheme described earlier can be applied. Finally, the hypothesis on limited translation amplitude means that matching sub-portions between the two images can be easily defined.

As a consequence, the following scheme can be implemented for complete large size image registration (Figure 7):

-Image partitioning in a set of p small rectangular regions Ri Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.564-587. The original publication is available at http://link.springer.com/article/10.1007%2Fs11119-016-9437-x Doi: 10.1007/s11119-016-9437-x

Material and methods

Image acquisition

Aerial images of wheat were acquired using a couple of Sigma DP2 Merril still cameras (Sigma, Kawasaki, Japan) mounted on a UAV AR 200 (AirRobot® GmbH, Arnsberg, Germany) (see Figure 9). The images were acquired in Arganda, Madrid, May 2013 (40.315421° N, 3.483774 E). Late wheat was specially prepared to be at early stage at this period, for experimentation purposes. One of the cameras was modified for NIR acquisition, i. Images were then converted from raw image format X3F to TIFF Adobe RGB 16 bits, using Sigma proprietary software (SIGMA Photo Pro 5.0). Green channel of the visible TIFF image and red channel of the near infrared TIFF image were respectively selected as 16 bits grey level images for registration input.

For practical reasons, all image pairs are referred to in the following according to the original names of images I 1 and I 2 . As an example, SDIM0861_C2__SDIM0989_C1 indicates the 2 nd channel (green) of the visible image SDIM0861.tif and the 1 st channel (red) of the NIR image SDIM0989.tif.

Image registration

All the registration processes have been implemented according to the theory of operation described above with the following features:

-Before each image matching, the NIR image was rotated by 180° (to compensate for the opposite mounting of the cameras as shown in Figure 9).

-Before every Fourier transform, a hanning window [START_REF] Blackman | B.5: Particular Pairs of Windows[END_REF] was applied to both images, in order to remove image edge artefacts.
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-Before every inverse Fourier transform for maximum peak search, a Gaussian filtering envelop was introduced in order to smooth the peak and allow its sub-pixel location.

-For every peak search, the peak amplitude was compared to the average amplitude of the whole spectrum, and rejected if the ratio was lower than a threshold (set equal to 10).

-In order to overcome sub-image identification failures due to large initial translations in the images (typically more than 100 pixels), the identification process was organized in three steps:

i) an initial FMT registration applied to entire images, after reducing them by a factor of 10, leading to a rough similarity transformation,

ii) an initial partitioning in sub-regions of 600x600 pixels, leading to a first set of about 40 matching points, according to the procedure described in the previous section iii) a second partitioning in sub-regions of 200x200 pixels, leading to a second set of about 300 to 340 matching points, according to the procedure described in the previous section

In the 2 nd and 3 rd steps, the partitioning was made according to the transformation model obtained in the previous step: centers of sub-regions in image I 1 were regularly distributed, and centers of the sub-regions in image I 2 , were defined as the transformation of centers of the sub-regions in image I 1 .

-In the 2 nd and 3 rd steps, the homographic matrix was computed from the set of matching points using a RANSAC algorithm [START_REF] Fischler | Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[END_REF] with 5000 iterations and an error tolerance of respectively 20 pixels on the 2nd step and 5 pixels on the 3 rd step. Images with a number of inliers less than 50% of the number of matching points were rejected.

-

The distortion model was limited to one distortion parameter (n=1), and a loop of 10 iterations of the Gauss-Newton minimization was systematically applied.

As the final result of the whole process, a complete transformation model P = (D 1 , H, D 2 ) was provided (see previous section). This model was then used to geometrically transform the original NIR image, so that it can be exactly matched with the visible one as a new layer.

CUDA implementation

All computations related to Fourier transform and spatial spectrum analyses have been implemented on NVIDIA® GPU using CUDA (Compute Unified Device Architecture) C++ extension language, and the FFT computation library provided in the CUDA package.

Results and discussion

The procedure described above has been successfully applied to the two sets of wheat crop images: 39 image pairs with 

Segments indicate the 308 difference vectors (T 12 -T 12 c) in the visible image, where T 12 is the translation vector between matching point co-ordinates in NIR and visible images, and T 12 c is the T 12 value closest to the image center.

Segments are magnified (x10) for visibility.

Transformation model computation

In the 3 rd step, using the 308 pairs of matching points, a new homographic matrix has been computed by the RANSAC algorithm with a 5 pixel tolerance, giving no outliers. Then the distortion parameters have been adjusted as described earlier.

For each couple (C 1i , C 2i ), where C 1i and C 2i are matching points respectively in visible and NIR images, the error of a transformation model TM has been defined as the distance in the NIR image between C 2i and its estimated position CEst 2i = TM(C 1i ). In the present case, the following error figures have been obtained:

Number of links RMS error Maximal error

Step 2 (200x200 windows) 308 1.2626 3.1953

Step 3 (distortion adjustment) 308 0.205765 1.01606

As expected from Figure 11, the distortion adjustment dramatically reduces the root mean square (RMS) error. In Figure 12, the residual error for every matching point has been plotted as a function of the distance to the image center. It

shows that the largest errors only concern a few points at the borders of the image, while for others the error remains below 0.4 pixels.

Figure 12. Final registration error repartition for image pair SDIM0861_C2__SDIM0989_C1

The final transformation parameters for the image pair SDIM0861_C2__SDIM0989_C1 are given below: 

          

H

Distortion parameters (center: cx, cy ; radial distortion: 1 + a 1 .r² + a 2 .r 4 + a 3 .r 6 ): 

General results for all image pairs

The more significant figures obtained for the two sets of images are reported in Table 2 and Table 3 respectively. These figures are:

-The number of 200x200 windows (NbW) that have been used for the second step of identification. Because the window distribution in the second image depends on the homographic computation issued from the first step, this number can vary from one image pair to another. It ranges between 294 and 345.

-

The number of inliers after RANSAC computation of the homographic matrix in step 3.

-The root mean square error (RMS) and maximal error obtained at the end of the registration process. These values are computed considering all the inliers.

-The translation between visible and NIR images according to the transformation model (terms T x and T y of the homographic matrix)

The set of images at 10 mm resolution provides particularly good results. Only two sub-window identifications have failed (for SDIM0873_C2__SDIM1001_C1 and SDIM0898_C2__SDIM1025_C1) over about 12000 (39 image pairs).

RMS error remains between 0.2 and 0.44 pixels. Maximal error is up to 1.81 pixel (as seen before, it corresponds to the borders of the images).

It is worth noticing that translation values T x and T y are very different from one image pair to the other. It means that most of the translations observed are due to random shooting latency of the two cameras combined with UAV attitude instability, rather than to their mechanical positioning. The set of images at 20 mm resolution provides comparable results except in two cases (pairs SDIM0904_C2__SDIM1031_C1 and SDIM0907_C2__SDIM1034_C1) where respectively 53 and 59 sub-window identifications have failed. For these pairs, maximal errors are up to 5 pixels. When examining the corresponding images, it can be observed that these images are blurred due to camera motion (Figure 18). The main limitation, compared to feature point approaches, is related to some geometric assumptions that are mandatory, i.e. large camera-scene distance and camera orientation close to the nadir. Nevertheless, these assumptions are usually reached in the context of aerial imagery.

Because it is well adapted to images of different nature, beyond the acquisition of high quality NDVI data, the proposed approach could certainly be used in many other registration problem involving several image acquisitions in different optical bands, either simultaneously (multi-sensor cameras) or sequentially (multiple flights).

The registration of thermal and optical images is a particular case that could also be investigated. It would require some software adaptations, in order to deal with images of different native size and resolution.
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Table 2 .

 2 Main results for 10 mm resolution image set

	Couple	NbW Inliers RMS	Max error	Tx	Ty
				(pixels)	(pixels)	
	SDIM0861_C2__SDIM0989_C1 308	308	0.205765 1.01606	141.304	-8.84906
	SDIM0862_C2__SDIM0990_C1 310	310	0.268648 1.61977	206.65	7.2018
	SDIM0863_C2__SDIM0991_C1 309	309	0.248254 1.75487	179.991	6.23115
	SDIM0864_C2__SDIM0992_C1 308	308	0.213607 1.03461	134.235	-70.6822
	SDIM0865_C2__SDIM0993_C1 330	330	0.246042 1.55204	164.918	35.8471
	SDIM0866_C2__SDIM0994_C1 308	308	0.260177 1.01122	216.79	-23.4694
	SDIM0867_C2__SDIM0995_C1 308	308	0.205254 1.08457	127.934	-56.9324
	SDIM0868_C2__SDIM0996_C1 308	308	0.199852 0.993497 135.468	-19.6565
	SDIM0869_C2__SDIM0997_C1 330	330	0.245332 1.49931	172.553	12.098
	SDIM0870_C2__SDIM0998_C1 345	345	0.225745 1.63805	74.4094	21.4359
	SDIM0871_C2__SDIM0999_C1 329	329	0.253018 1.78237	167.997	26.0862
	SDIM0872_C2__SDIM1000_C1 308	308	0.201389 1.01772	112.148	-2.6374
	SDIM0873_C2__SDIM1001_C1 308	307	0.277907 1.20625	190.863	-51.4321
	SDIM0874_C2__SDIM1002_C1 308	308	0.203207 1.13215	140.025	-3.1145
	SDIM0875_C2__SDIM1003_C1 308	308	0.202374 0.657403 -99.231	-2.28731
	SDIM0876_C2__SDIM1004_C1 330	330	0.343585 1.32893	-121.629	20.3692
	SDIM0877_C2__SDIM1005_C1 330	330	0.293634 1.18788	-139.211	0.988007
	SDIM0878_C2__SDIM1006_C1 330	330	0.364554 1.64644	-94.0046	20.0194
	SDIM0879_C2__SDIM1007_C1 308	308	0.263832 1.00428	-195.768	-51.1397
	SDIM0880_C2__SDIM1008_C1 313	313	0.255508 0.869559 -170.886	-28.6676
	SDIM0881_C2__SDIM1009_C1 294	294	0.280621 1.02383	-228.698	-130.32
	SDIM0882_C2__SDIM1010_C1 308	308	0.246351 1	-164.136	-83.1163
	SDIM0883_C2__SDIM1011_C1 325	325	0.282107 1.19546	-154.086	-13.6132
	SDIM0884_C2__SDIM1012_C1 330	330	0.415529 1.70528	-60.063	25.6828
	SDIM0886_C2__SDIM1013_C1 330	330	0.233672 1.6979	106.579	23.3675
	SDIM0887_C2__SDIM1014_C1 330	330	0.235286 1.64073	130.636	42.0943
	SDIM0888_C2__SDIM1015_C1 330	330	0.24275	1.64965	147.942	63.0498
	SDIM0889_C2__SDIM1016_C1 330	330	0.256439 1.75686	151.126	13.9706
	SDIM0890_C2__SDIM1017_C1 330	330	0.239517 1.47383	126.01	105.774
	SDIM0891_C2__SDIM1018_C1 330	330	0.250685 1.69992	109.195	42.9601

Table 3 .

 3 Main results for 20 mm resolution image set

	Couple	NbW Inliers		RMS	Max error	Tx	Ty
				(pixels)	(pixels)		
	SDIM0901_C2__SDIM1028_C1	345	345	0.238231	1.62974	19.837	33.0571
	SDIM0902_C2__SDIM1029_C1	340	340	0.252882	1.81972	17.4474	54.3257
	SDIM0903_C2__SDIM1030_C1	320	320	0.232668	1.29357	-84.5478	-10.915
	SDIM0904_C2__SDIM1031_C1	345	292	0.449388	5.40087	19.6816	17.9849
	SDIM0905_C2__SDIM1032_C1	345	345	0.236375	1.70266	15.3072	38.9054
	SDIM0906_C2__SDIM1033_C1	332	332	0.219682	1.55367	2.05891	11.721
	SDIM0907_C2__SDIM1034_C1	330	271	0.877862	5.55471	-64.2983	27.52
	SDIM0908_C2__SDIM1035_C1	330	330	0.209042 0.938976	1.72416	8.94636
	SDIM0909_C2__SDIM1036_C1	341	341	0.214602	1.52815	10.616	25.1422
	SDIM0910_C2__SDIM1037_C1	336	336	0.212402	1.60552	12.199	45.3367
	SDIM0911_C2__SDIM1038_C1	315	315	0.375712	1.21472	-16.1354	-15.9621
	SDIM0912_C2__SDIM1039_C1	330	330	0.193718	1.15938	2.19996	36.8913
	SDIM0913_C2__SDIM1040_C1	345	345	0.21571	1.55553	32.6721	49.4492
	SDIM0914_C2__SDIM1041_C1	330	329	0.254166	1.14625	-13.2549	30.7771
	SDIM0915_C2__SDIM1042_C1	330	330	0.358858	1.44805	-55.6044	38.0781
	SDIM0916_C2__SDIM1043_C1	345	344	0.33042	1.84099	15.7268	50.7469
	SDIM0917_C2__SDIM1044_C1	340	340	0.714914	2.1673	8.88959	21.606
	SDIM0918_C2__SDIM1045_C1	330	330	0.276748	1.28785	-28.2551	36.5391
	SDIM0919_C2__SDIM1046_C1	329	329	0.273745	1.60227	-27.7507	-2.04273
	SDIM0920_C2__SDIM1047_C1	308	308	0.223654	1.38067	-26.9073	-45.8858

Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.564-587. The original publication is available at http://link.springer.com/article/10.1007%2Fs11119-016-9437-x Doi: 10.1007/s11119-016-9437-x

Photoscan, Agisoft, St. Petersburg, Russia (www.agisoft.com) 

ERDAS Imagine, GEOSYSTEMS France SARL, Montigny-le-Bretonneux, France. (www.geosystems.fr) 

MicMac, IGN, France (http://logiciels.ign.fr/?-Micmac,3-)

VisualSFM (http://ccwu.me/vsfm/) Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.564-587. The original publication is available at http://link.springer.com/article/10.1007%2Fs11119-016-9437-x Doi: 10.1007/s11119-016-9437-x

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Program [FP7/2007[FP7/ -2013] ] under grant agreement n°245986.

Conflicts of Interest

The authors declare that they have no conflict of interest.