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Towards Intelligent Social Robots: Social
Cognitive Systems in Smart Environments

A “smart” environment represents the concept of the environment that
incorporates intelligent systems (e.g., smart home, smart factory, smart
city, etc.) employing heterogeneous devices, such as: sensors, actuators,
cameras,  networks,  and  screens.  Within  such  a  smart  environment,
robots can take on an important mediating role between human users
and the environment if high-level cognitive functions and computational
intelligence  are  employed  to  handle  the  uncertainty  of  the  complex
environment so as to allow agents to act appropriately within diferent
contexts of interaction.

Using robots  in  smart  environments  opens  the door  to  several  socio-
cognitive applications,  such as:  reducing cognitive load for  individuals
interacting with a smart environment, assisting the elderly and people
with  cognitive  disabilities  in  mobility  and  daily  tasks  (which  requires
robots to learn the multimodal characteristics of human behavior and to
spatially perceive the environment containing other smart objects so as
to  decide  the  best  way  to  employ/manipulate  them  in  order  to
successfully  perform  tasks),  and  developing  a  cloud-connected  robot
system to  incrementally  share  knowledge between robots  in  diferent
smart environments about the behavioral characteristics of human users
in order to interact with them adaptively. To meet the requirements of
these target applications, robots need to be able to learn how to use the
capabilities  of  their  smart  environments  so  as  to  better  address  the
needs of the human co-inhabitants.

The proceedings of this workshop included the following 3 contributed
papers: 

1- A. Wasik et al.,  An Institutional Robotics Approach to the Design
of Socially Aware Multi-Robot Behaviors.

2- M.  Kerzel  et  al.,  Effect  of  a  Humaanoida's  Active  Role  dauring
Learning with Emabodaieda Dialogue Systema.

3- E. Dumont et al.,  Robot anda Amabient Systema Collaboration: An
Ontology-Baseda  Approach  for  Multi-User  Activity  Recognition
Platforma.

In addition to a series of important keynote talks: 

1- Prof. Alessandro Safotti: Making Social Robots Proactive.



2-  Dr. Amit Kumar Pandey: Commercializable Use Cases of Social Robots
and Some Key Building Blocks.

3- Prof.  Friederike  Eyssel:  Social  Robotics:  Psychological  Aspects  of
Successful Human-Machine Interaction.

4- Prof. Mohamed Chetouani: Interpersonal Robot Learning



An Institutional Robotics Approach to the Design of Socially Aware
Multi-Robot Behaviors

Alicja Wasik, Alcherio Martinoli and Pedro U. Lima

Abstract— We propose an institutional robotics approach
to the design of socially-aware multi-robot systems, where
cooperation among the robots and their social interactions with
humans are guided using institutions. Inspired by the concepts
stemming from economical sciences, robot institutions serve as
coordination artifacts, which specify behavioral rules that are
acceptable or desirable given the situation and which can be
replaced by other rules to enforce new acceptable or desirable
behaviors without changing the robot’s core code. In this paper
we propose a formal methodology for consistent design of
coordinated multi-robot behaviors intended for use in human-
populated environments. We illustrate theoretical concepts with
practical examples. Graph-based formations serve as a basis
for coordinated multi-robot behaviors and concepts from the
literature on human-aware navigation provide social rules that
are enforced by the institutions. Experiments are carried out
in a high-fidelity robotic simulator to illustrate the application
of the theoretical concepts.

I. INTRODUCTION

Multi-robot cooperative behaviors are becoming increas-
ingly pervasive in real-world applications. To be socially
aware, robots should use social norms devised by humans,
which can differ from culture to culture. Existing methods
allow for successful cooperation of multiple robots, but the
human factor is often ignored or the person is treated as a
moving obstacle. On the other hand, although human-aware
navigation is a widely studied subject, only few studies discuss
multiple robots behaving cooperatively in human-populated
environments. Most works focus on human guidance, where
strategies stem from early research on flocking herds [1], treat
the group of humans as a particle [2] or assume that humans
simply follow the robot [3]. Such solutions are largely over-
simplistic. More realistic studies [4] ensure that the robots
respect personal space of the humans. The state of research in
human-aware navigation is largely mature in the single robot
case. But when it comes to studies of cooperative multi-robot
systems, the presence of a person is handled inappropriately or
even naively, solutions are heuristic or difficult to generalize.
Our intention is to provide a mechanism for abstraction of the
underlying methods and to systematize and unify development
of social-aware, multi-robot behaviors using the concept of
institutions.
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The goal of Institutional Robotics (IR) [5] is to provide a
strategy for specifying complex social interactions. Drawing
inspiration from institutional economics, IR has been proposed
with the aim to address the need for presence of coordination
devices in multi-robot systems and to facilitate integration
of robots in human societies. Since the robots controlled
using the IR approach abide by the norms of institutional
environments created by the humans, the collective perfor-
mance during human-robot interaction is expected to surpass
the existing methods. In the field of multi-robot systems,
institutions have been introduced [5], formalized [6], used
for modelling and implementation [7] of simple robotic
behaviors. They also raised some interest in the social
robotics community [8]. In [5] institutions are defined as
artificial modifications that influence the collective order.
Robot institutions are formally represented in [6] using Petri
nets, which encapsulate the behavioral rules to execute a
desired task and observe the specified social interactions.
Validated in [6] in simulation and in [7] in real-world
implementation, the institutional controller coordinates a
swarm of 40 robots to maintain wireless connectivity. The
predominant reason behind IR was to exceed the collective
performance during human-robot cooperation. To the best of
our knowledge, however, up to now IR has not been exploited
to introduce the social aspect in multi-robot systems.

We propose a new methodology for development of socially
aware multi-robot behaviors based on the IR framework. The
new formalism allows us to deal with both high-level behavior
management, such as decision making and planning, and
low-level reactive coordination, such as formation control.
Institutions introduce social rules inspired by human institu-
tions that guide cooperation between the robots and result in
mutual understanding between the robots and the humans. We
focus on transparency and generality of the formalism, where
its abstract representation allows for the use of miscellaneous
robot behaviors and integration of social constraints of diverse
nature. To illustrate the theoretical concepts, we apply the
formalism to our work on robot formations [9], where we
govern a graph-based formation behavior using one of the
institutions. Proxemics [10] and social forces [11] form a set
of social constraints that change the formation parameters
(geometry, roles, trajectories). For realization of the robotic
controller we use Petri Nets (PN).

This paper is organized as follows. Section II lists the
aspects of social robot behaviors. The role of institutions in
shaping such behaviors is described in Section III. An example
of application is given in Section IV and the case studies are
given in Section V. We draw conclusions in Section VI.



II. SOCIAL ROBOT BEHAVIORS

Consider a team of mobile robots deployed in environments
populated with humans, such as museums or airports. The
robots occasionally are required to perform a cooperative task
without interrupting human activities and taking into account
social rules. For instance, robots may be requested to guide
a group of people, control the movement of the crowd, or
temporarily block a passage. In order to do so in a socially
aware manner, the robots need a basic understanding of the
principles that govern human environments.

A. Behaviors and Actions

The tasks and functionalities that the robots may be
required to perform are called behaviors, B. For the robot
formation, the behaviors may include patrolling or human
guidance. Behaviors are composed of basic building blocks
- actions. Individual actions AO do not involve social
interaction, neither between the robots, nor between robots
and humans. Actions that entail social interaction are social
actions AS . A set of all possible actions is A = {AO ∪AS}. B
provides an ordering for the actions, it assures that the actions
are executed in the correct order, sequentially or concurrently.
More formally, Bi ∈ B = (V,E) is a graph with the nodes V
being the actions in A, V : {a ∈ A}.

B. Rules, Roles and Knowledge

When in a social situation, robots have to comply with the
rules that govern human environments. Such rules include
respecting personal space, giving a way at the door or passing
on a right hand side of a corridor. The set of rules is an
essential element directing behavior of the robots, rules
directly encode social constraints and define what robot should
and should not do. Rules R are operators on the set of actions
that have the power to allow, forbid, select or modify the
actions

Since the rules can allow and forbid actions, they decide
what roles the robots can assume. When a robot plays a role,
it is obliged to perform a set of actions assigned to this role
and forbidden to take actions that are not permitted. Rules
of the formation could allow the robot to take the role of a
leader or a follower, or specify its decision making powers.

In order for the robot to comply with the rules, it must
have knowledge about how to act according to the them.
Types of information contained in the knowledge can range
from parameters and data structures to complex algorithms.
Stating that the rules can modify the actions means that the
rules can change the parameters of the action, encoded by
the knowledge. Knowledge K provides a common grounding
for the robots, for the rules and actions to be based upon
the same type of information. Common knowledge implies
that every participant knows how to act, and knows that
the others know how to act [12]. For the robots to navigate
in a formation, they must know, among many others, each
other’s positions in the environment, what roles are assigned
to whom and what it means to change formation shape from
line to square. More importantly, the knowledge provides
recipes for socially adequate interactions with humans. Thus,

Fig. 1: Social situations activate the corresponding institutions,
which, by evoking their rules, operate on the robot actions.

the knowledge incorporates the facts, beliefs and temporal
information, as long as this information is imperative for the
cooperation and interaction.

III. ROLE OF THE INSTITUTIONS

Common knowledge, common rules and roles known by all
the robots are the pivotal concepts giving rise to socially aware
behaviors. They reduce uncertainty, facilitate decision-making
and promote cooperation, so that the cost of coordinating
and other activities can be lowered [13]. They are the core
of what is known in human environments as institutions. An
institution can be regarded as a set of rules governing social
interactions [14]. By sharing the institutional environment,
the robots attain a good approximation of the situation and
expectation that the others follow the same prescriptions
enforced by the institutional rules.

A. Institutional Grounding

It has been said that the rules and the knowledge are
the central parts of the institutions. Indeed, institutions
encapsulate knowledge and the rules that correspond to a
state of the environment and the participants (humans and
robots) when a social interaction takes place. Such state is
called a social situation S (action situation in [14]). An
institution I is active during a specific social situation it has
been designed for. Since one social situation may occur in
different parts of the environment, involve various participants
and have other dissimilar conditions, the robots must be able
to recognize it. The process of recognition of a social situation
and activation of the corresponding institution is called the
grounding, G : S → I. When a robot activates the institution,
it becomes its actor and is obliged to act according to its
rules. The institutional rules constrain robot actions differently
depending on the social situations, robots do not need to
reason about the rules and do not need to be reprogrammed
every time they join a new instance of social situation.

B. Institutional Rules

A set of rules of institution I is an operator on a set of
actions:

RI : 2AS → 2AS (1)

The institutional rules map the social actions AS according
to a social situation, for which that institution is active (see
Fig. 1). The rules of active institution can evoke, modify, or
constrain the actions. Thus, when in a social situation, the
robots engage in an institutional behavior BI composed of
nodes AI ⊂ AS from a subset of social actions V : {a ∈ AI}.



Fig. 2: Types of relations between the nodes of the RG.

As an example, consider a social situation when the robots
are requested to guide a group of people. The robots are to
approach the group, aapproach, inform humans that they will
be lead to a new location, aspeak, and move together with
them, aguide. Thus, the institutional rules would compose
three actions, aapproach → aspeak → aguide sequentially.

C. Networks of Institutions

An institutional environment of the robot is composed
of one or more institutions. A robot can can be an actor of
multiple institutions, it joins an institution upon recognition of
a social situation and leaves an institution when the situation
concludes. Activation of one institution can be a natural
consequence of termination of another. Multiple institutions
can be active simultaneously as long as the functioning of
one institution does not interfere with the functioning of
another. The order of the institutional environment is assured
by defining how the institutions are allowed to interact. For
this purpose, we propose relational graphs.

Definition 1. Relational graph (RG) is a directed graph
defining the relationship between institutions present in
the institutional environment of the robot. A node of the
graph encapsulates the institutional behavior, Bi ∈ BI , or an
individual behavior Bj ∈ BO. The edge linking two nodes
defines the relation between them.

The relational graph is composed of the institutional
behaviors BI (which in turn are composed of social actions in
AS) and of the individual behaviors (composed of individual
actions in AO). The RG regulates which institutions can
be active at a given time and assures that the actions of
conflicting institutions do not run concurrently. Institutions
can be nested, meaning one general institution can consist
of several specialized institutions. According to its rules,
the general institution can evoke one or a subset the nested
institutions (see Fig. 1).

The RG is a mathematical behavior model used for
forming dependencies between complex behaviors composed
of multiple actions. As such, it can be readily used as the
robot controller. The abstract definition of the RG allows for
the use of a wide range of mathematical tools for building
its representation. Most of the graphical modeling languages,
including finite state automata, behavior trees, Petri nets and
variations thereof are suitable for that purpose. Although the
exact definition of the relations within RG depends on the
choice of the modeling language, we provide an intuitive
guide to building the network of institutions.

1) Roles of the RG nodes: Each node of the RG encap-
sulating the behaviors in B provides a high level compact
representation of more complex compositions of actions. A

node is said to be active when at least one of the actions
it contains is executing. Execution of the node can be
instantaneous, continue for a finite amount of time or continue
until it is ceased by an internal or an external event (similarly
as an institution can be activated or terminated due to the
social situation). Upon completion of the execution, the
node triggers execution of its direct successors. After that it
becomes inactive. The RG can be static or dynamic. Since,
by the definition, the institutions are activated when the robot
recognizes a social situation, it means that the robot must
always perform an action of recognizing social situations.
The outcome of this action triggers activation of the relevant
institution (activates the BI of that institution).

2) Relations between the RG nodes: Fig. 2 shows types
of relations between the nodes of the RG. Fig. 2a) is a
sequence. Fig. 2b) is a self-loop, where after being activated
once, A is always active. Fig. 2c) is simultaneous execution.
Note that B and C should not include actions that have a
potential to interfere with each other. Node C in Fig. 2d)
can only be activated after its predecessors (nodes A and B)
have concluded their execution. Finally, node A in Fig. 2e)
illustrates a nested institution, where internal rules of the
general institution evoke a subset of specialized institutions.
When A is activated, a subset of A1 to An becomes active.

D. Creation, Evolution and Monitoring of Institutions

A human institution is a product of deliberate design or it
arises spontaneously [13]. The creation of a robot institution
is dictated by the presence of a social situation, while the
desired outcome of using that institution is its rationale.

According to [15], rules of human institutions without oblig-
atory sanctions are useless. Such rules are always monitored
and enforced. Robots, as artificial agents, are not motivated
to break rules, nor do they reveal opportunistic behaviors.
However, sanctions and rewards given to the robots can help to
regulate and monitor institutional environments, identify con-
flicting rules and inconsistencies. The sanctions and rewards
for respecting or breaking institutional rules are the payoffs
of the institution: PI = {(sanction, reward) ∀ ri ∈ RI}.

Robot institutions can be modified by cooperative decision
making, or by an individual with a power to do so. Experience
gained by the robots participating in a social situation
can lead to gradual modification of the existing rules. For
this to happen, the performance becomes a part of the
institution and is stored in the memory of that institution:
MI = {(pm1, ..., pmn) ∀ Bi ∈ BI}, where (pm1, ..., pmn) is
a set of relevant performance measures. In this way, the
robots jointly contribute to evolution of the institution. More
importantly, the rules remain consistent among the participants
and retain the power to reduce the cost of coordination [14].

E. Institutional Formalism

The definition of institution is object of discussion among
the economists, where the interpretation of institution, or-
ganization and rule is done according to the purpose they
serve [16]. Similarly, the fields of IR, normative multi-agent
systems [17] and computational organization theory [18]



operate on diverse definitions. Even within the field of
IR, institutions are modeled dissimilarly among different
research groups. Nevertheless, the core concepts, based on
the economic theory, remain the same.

The definition of a robot institution we propose in this
paper is not intended to be a general, one-size-fits-all solution.
Indeed, we believe that similarly as in the social studies, robot
institutions should serve their core purpose - of guiding social
interactions.

Definition 2. Institution is a tuple
�ID, Actors TI , Knowledge KI , Rules RI ,

Behavior BI , Actions AI , Memory MI , Payoff PI �
This definition stems from political economy studies [12]

conducted by Elinor Ostrom, winner of the Nobel Prize in
Economics in 2009:

“Institutions can be defined as the sets of working rules
that are used to determine who is eligible to make decisions
in some arena, what actions are allowed or constrained,
what aggregation rules will be used, what procedures must
be followed, what information must or must not be provided,
and what payoffs will be assigned to individuals dependent
on their actions.”

In summary, ID is a unique identifier of the institution,
composed of its Name and a Rationale, which states what
the desired outcome of the institution is (why the institution
is useful). Actors defines which robots are allowed to activate
the institution, Institutional Behavior provides the ordering
for the actions, while Social Actions are the recipes for
performing the social actions, Knowledge describes what
information the robot must possess in order for it to act,
Rules allow, constrain or modify the actions, Memory retains
robot experience. Payoffs are the rewards and sanctions for
conforming or breaching the rules.

IV. APPLICATION OF THE METHODOLOGY:
INSTITUTIONAL NETWORK FOR FORMATION BEHAVIORS

As a proof of concept, we apply the proposed formalism
to our existing work on reconfigurable multi-robot forma-
tions [9]. The existence of socially adequate cooperative be-
havior relies on a few essential aspects that can be categorized
as social situations. 1) Situational awareness. Robots are able
to localize themselves in the known map, detect obstacles
and distinguish humans. To establish a formation, robots
need to know each other’s positions. 2) Formation control.
Robots running the same formation control algorithm are
capable of changing the formation shape and its connectivity.
They avoid obstacles as a unit or individually. 3) Human-
robot interactions. Robots are aware of the social constraints
present in human environments and modify their behaviors
in order to respect them. 4) Global group objective. A
virtual leader (VL), provides the group objective, a trajectory,
and communicates to the robots its virtual position. VL is
perceived by all the robots as one of the team members and
included in the formation algorithm as if it were a real robot.

We assume that the robots perform a default formation be-
havior, until the robots receive a task that involves interaction

Fig. 3: The PN-based representation of the RG.

with humans, thus indicating a new social situation. Note that
while moving in a formation, the robots interact with each
other, so they are already situated in one social situation.

A. Institutions for Formation Behaviors

Given the above classification, the institutional network is
comprised of four institutions:

1) Environment Monitoring IEM: The IEM assures that all
the robots have means to build consistent world models. The
actors of IEM localize on the known map, communicate with
the other robots and the virtual leader to obtain their positions
and monitor for social situations. Upon recognition of a social
situation, successor nodes of IEM are activated.

2) Collective Behaviors ICB: The ICB offers the robots
a common basis for understanding the specification of the
formation behavior. By knowing and following the rules RCB ,
each robot knows its role in the formation, the roles of the
other robots and parameters of the formation, including shape,
distances and connectivity.

3) Social Planning ISP: ISP is responsible for devising
a social plan for guiding interactions with the humans.
Only one actor can be active at any given time and we
assume that the robot that recognizes the social situation first,
activates ISP. ISP is a nested institution, it delegates control to
specialized institutions. In our case studies, we will consider
two specialized institutions, IBl

SP for a blocking task, and
IAcc
SP for accompanying task. Knowledge of ISP comprises of

methods from the human-aware navigation literature, such
as proxemics and social forces. According to the rules, the
actor plans the behavior of the group, including the shape
and path of the formation, so as to respect social constraints.

4) Virtual Leader IVL: IVL is run by one dedicated actor.
IVL involves a set of planning actions, responsible for
interpretation of the task and planing the path, and execution
actions, which simulate movement of the VL and broadcast
its pose. Since the VL is perceived as one of the formation
members, it guides the formation to achieve its objectives.

B. Relational Graph for Formation Behaviors

We use a Petri net-based representation of the RG. PNs are
sufficiently general to model behaviors of extremely varying
types, such as parallelism, concurrency and synchronization,



Fig. 4: The Webots simulator (Middle), the MBot robot (Left)
and simulated models of child and adult (Right).

while providing a high degree of modularity. A gentle
introduction to PNs can be found in [19]. The PN-based
representation of the RG used for coordination of socially
aware multi-robot behaviors is shown in Fig. 3.

The RG is composed of three nodes that represent in-
stitutional behaviors. BEM that gathers information about
current situation and BCB that controls the formation are
active by default. When one of the robots recognizes a social
situation (passing control from BEM to BSP and BNotifyEvent), it
notifies all the team members to temporarily halt execution of
the current behavior (deactivating BCB and activating BWait).
BSP plans the new formation parameters according to RSP

and passes them to all the other robots in BNotifyBehavior. The
outcome of BSP updates the knowledge of the ICB, setting new
formation parameters and the knowledge of IVL, specifying
a new task. Upon receiving the new parameters, the robots
preempt BWait and resume formation in BCB. Due to lack of
space, we only show structure of one institutional behavior,
BCB. In BCB the robot computes the motion vector in ACMV,
then it moves towards the desired place in the formation in
AMTF, while simultaneously avoiding the obstacles in AAO.

V. CASE STUDIES

The aim of the case studies is to show diversity of the
behaviors that the robots can engage in under the network
of institutions. We illustrate two social situations, where
interactions with humans are of two different sorts: in case
A robots modify behavior of a person, in case B they adhere
to the social conventions. The default behavior is formation
patrolling and the RG graph serves as the robot controller.
Experiments are performed in realistic simulator Webots [20]
(Fig. 4), with holonomic MBot robots [21] developed within
the FP7 European project MOnarCH (Multi Robot Cognitive
Systems Operating in Hospitals) with the goal of introducing
social robots in the pedriatric wing of a hospital1. The robots
are equipped with navigation, perception and low-level safety
sensors, accurately simulated and calibrated using real data.
Robots self-localize using AMCL2 from ROS.

A. Case Study I: Blocking

In the “blocking” task the robots influence behavior of the
humans by blocking a specific passage. To execute the task,
a minimum number of robots required to block the passage
moves towards the designated space and assumes blocking
positions. Upon receiving the “blocking” task, one of the

1MOnarCH, FP7, FP7-ICT-2011-9-601033 (http://monarch-fp7.eu)
2AMCL (http://wiki.ros.org/amcl)

Fig. 5: Case Study I. Trajectories of the robots blocking
narrow (upper) corridor and wide (lower) corridor.

robots becomes an actor of IBl
SP , a nested institution of ISP.

Knowledge of IBl
SP uses social forces model for predicting

the behavior of the person when encountering a number of
robots in the passage. Social forces reflect the psychological
motivation behind the pedestrian behavior, they represent the
influences of the environment and of the other pedestrians on
the human motion [11]. There are two fundamental rules
in RBl

SP : “Dispatch the minimal number of robots” and
“Establish optimal blocking configuration”. According to RBl

SP ,
the actor of IBl

SP finds a minimal repulsive force, required
to drive a person back from the area and the number of
robots NB and their configuration needed to generate that
force. Furthermore, RBl

SP specify how to assign, which NB

robots engage in the blocking behavior, and which robots
remain patrolling. The formation splits into two groups, and
the virtual leader provides two trajectories, one for patrolling
and one leading to the passage to be blocked.

1) Results: We performed two experiments with varied
width areas to be blocked, (i) narrow and (ii) wide, each of
five runs. In all experiments, five robots are patrolling in a
pentagon-shaped formation, upon receiving a task, split into
two formations with (i) NB = 2 and (ii) NB = 4. Trajectories
of the robots are shown in Fig. 5, with the initial patrolling
behavior (A), assignment of the robots upon splitting (B) and
two formations performing patrolling (C) and blocking (D).

B. Case Study II: Accompanying

In the “accompany” task, the robots “accompany” a person
that passes through part of the environment, at the same
time respecting human comfort. Social norms, encoded in the
knowledge of IAcc

SP , are based on proxemics, a study of spatial
separation that people naturally maintain between themselves
and the others [10]. Proxemics serve to constraint motion
of the robots by providing a minimal distance the robot
should keep from a person. The associated rules RAcc

SP state
“Maintain a formation with the person” and “Do not enter
personal space”, where personal space is a circle around
the human, with the diameter depending on his age, gender
and personality. The virtual leader guides the formation to
the person and then, by imitating position of the human,
seamlessly allows for including the human in the formation.
RAcc
SP specify the shape of the formation and the human-robot

distances, proportional to size of the personal space.
1) Results: The accompanying behavior is illustrated in

Fig. 6. Two robots wait until a person, child or an adult,
enters the door (A), keep a triangle formation with the



Fig. 6: Case Study II. (Top) Trajectories of the robots and
the person. (Bottom) Average distances between the robots
and the human.

human (B), and follow until the exit (C). In this example,
the personal space of the child is dchildP = 0.94m and of the
adult is dadultP = 1.77m. Fig. 6 (Bottom) shows the mean
distances dH between the robots and the human averaged
over 5 runs. Since dH is always above dchildP for the child
and dadultP for the adult, robots respect social space of the
person by converging to a formation of appropriate size. The
simple rules of IAcc

SP allow for variability (parametrization) of
the behavior according to the social context.

C. Discussion

The two presented case studies illustrated the degree of
variability associated with multi-robot behaviors situated
in a social context. The institutional approach allowed
for incorporation of the social rules, often of inconsistent
nature (such as proxemics or the social forces), in a unified
methodology. Moreover, variability of the social norms
existing among the individuals and among the cultures was
reflected by adequate parametrization of the institutional rules.
The proposed case studies illustrated only simple instances of
social situations. How the robots recognize social situations
and what perception capabilities are required are the topics
of future work.

VI. CONCLUSIONS

In this paper, we proposed an institutional robotics approach
to the design of socially-aware multi-robot systems, where
cooperation among the robots and their social interactions
with humans are guided by institutions. We introduced a
formal methodology for the design of complex multi-robot
behaviors conforming to social rules that govern human
societies. A network of institutions provided means to
impose social constraints on the robot behavior in a unified
methodology. Formal definition of the institutions allowed
for unambiguous specification of their purpose, responsibility,
and consequences, as well as identification of the relational
ties present in the institutional environments. As a proof
of concept, we applied the formalism to our previous work
on multi-robot formations. We presented a complete system
composed of four institutions and defined the associations

among them. In two case studies we illustrated the diversity
of the behaviors the robots can engage in under the network
of institutions. By requiring the robots to engage with
humans, we have shown that the institutions can govern
social interactions according to well known methods, without
the need to resort to case-specific heuristic solutions.

In the future work, we intend to gain further insight in
the organization of human institutions to further improve the
proposed concepts. We plan to evaluate our approach in more
complex scenarios with multiple humans and perform test
with real robots. As a vital part of our study, we will allow for
modification of the institutional environment by the robots,
investigating the idea of institutional evolution and learning.
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Abstract—When humanoid robots learn complex sensorimotor
abilities from interaction with the environment, often a human
experimenter is required. For a social companion robot, it is
desirable that the learning can also be assisted by non-expert
users. To achieve this aim, we present an embodied dialogue
system which enables a humanoid to take on an active role
during learning by guiding its user with verbal communication
and through the display of emotions. We suggest an experimental
setup for evaluating how the active role affects the learning
result and the subjective evaluation of the humanoid by human
participants.

I. INTRODUCTION

Humanoid robots are designed to operate alongside or to-
gether with humans in complex and unstructured everyday en-
vironments. In contrast to industrial robots, their tasks require
adaptation to novel challenges that can be overcome through
learning. State-of-the-art learning approaches, such as deep
neural networks [1], [2], rely on a large quantity of training
data. Apart from using costly human annotation, these data
can be gathered through interaction with the environment [3]–
[5]. Similar to a child, a humanoid can incrementally develop
complex visuomotor skills through interacting in the physical
world [6]. Due to their human-like appearance, humanoids can
be assisted in this learning by non-expert users in a similar
way these users would teach a child. This proposal of child-
like learning for successful artificial intelligence goes back
to Alan Turing [7]. Recent work, however, has shown that
especially in teaching robots, people find it easier to teach a
robot if it behaves similarly to a child [8]. Human assistance is
often useful, as a humanoid occasionally needs help during the
process, e.g. when objects roll off tables or are out of reach.

However, there are large differences between a child and
a robot. While a child needs to develop all of its cognitive
abilities, we can employ a mixed approach for a humanoid:
some abilities develop through learning and interaction, other
abilities are designed. Moreover, these capabilities can be used
to enable an active role of the humanoid in learning.

In this paper, we present initial work on an embodied
dialogue system that enables a humanoid to guide users
through the training steps for developing visuomotor abilities,
see Figure 1. We aim to evaluate the feasibility of the approach
in guiding non-expert users to successfully collect training

Fig. 1. A robot asks for help from a human assistant to learn grasping.

data and also to observe the effect of the active role of
the humanoid with regard to the users’ subjective perception
of the humanoid. By integrating a state-of-the-art approach
for sensorimotor learning into our human-robot interaction
(HRI) research, we increase the realism of the user interaction.
Participants will take the role of a teacher of a physical robot
in a real developmental task.

II. RELATED WORK

A. Learning Visuomotor Skills

Acquiring visuomotor skills with neural network approaches
has gained interest in recent years. Mnih et al. [9] applied
deep reinforcement learning for human-level control in com-
puter games. Lillicrap et al. [10] extended the approach to
continuous deep reinforcement learning for simplified robot
arms in virtual environments. Neural reinforcement learning
approaches rely on a large number of trial and error attempts
to solve a task. They are successful in virtual environments,
which can provide a large number of training samples in
a short time at a low cost, both in terms of human su-
pervision and damage to the robot (by wear or accidents).



When adapting neural learning approaches to physical robots,
the time it takes the robot to perform actions becomes a
critical factor. As shown by Gupta and Pinto [4], it takes a
robot 700 hours of training to learn grasping positions and
angles. For non-industrial robots, this long training time often
exceeds the life-expectancy of hardware components. Levine
et al. [3] and Kerzel and Wermter [5] suggest approaches
for reducing the necessary training time by transforming the
reinforcement learning into a supervised learning task. Both
approaches rely on generating annotated training data, i.e. it
is not learned through trial and error, but only from correct
examples which leads to a shorter learning time. Levine et
al. employ computation of forward kinematics to make the
robot’s state fully observable during training time. Kerzel and
Wermter use the robot’s ability to autonomously place objects
to generate training samples. Though both of these approaches
combine the advantages of mostly autonomous reinforcement
learning with the short training time of supervised learning,
both approaches ultimately rely on human experts for initiating
the training and assisting the robot in case of errors.

Cruz et al. [11] have demonstrated that learning skills via
accordances is improved by interactive learning versus regular
reinforcement learning. Especially, speech and multimodal
feedback are useful for adding interactivity to the learning
process [12].

B. Spoken Dialogue Systems

Spoken dialogue systems (SDS) [13] are modules in HRI
systems which receive speech as input and produce the corre-
sponding replies [14]. An SDS solves five main tasks: Auto-
matic Speech Recognition, Spoken Language Understanding,
Dialogue Management (DM), Natural Language Generation
and Text-to-Speech Synthesis [14]. In this paper, we focus
on the integration of robot perception into the Dialogue
Management to facilitate learning of visuomotor skills. DM is
a decision-maker in SDS: It integrates information about the
previous dialogue, internal states of the conversation agent,
the robot’s perception and agenda to decide on actions –
which among others can be spoken utterances or motor actions.
There are two main types of the dialogue systems: reactive
and agenda-driven systems [15]. Reactive systems generate
interactive responses based on what the user said with the
purpose of producing a meaningful conversation. Agenda-
driven dialogue systems do not produce output responses
merely from the user’s inputs but changes the context of the
conversation to achieve its goals [15], which in our case is the
realization of sensorimotor ability learning phases.

The variable and open-ended nature of language is now
making data-driven methods more prominent in spoken di-
alogue systems [16] with deep learning approaches now also
being explored [17]. However, state-of-the-art dialogue sys-
tems for HRI are often still built using a pipeline of tools and
are mostly symbolic approaches to a large extent [18], [19].
Knowledge-based approaches are still efficient in restricted
domains when data is not very variable [20] and the cost-
benefit ratio of collecting and annotating data does not lend

itself to a data-dependent approach.

III. RESEARCH QUESTIONS AND EXPERIMENTAL SETUP

We aim to evaluate the effect of an active role during the
learning of a humanoid robot that is assisted by non-expert
users. In our experimental setup for grasp learning, a child-
sized humanoid interacts with non-expert participants to learn
sensorimotor skills for grasping. The grasp learning follows
Kerzel and Wermter [5]: The robot interacts with an object on
a table. It looks at, grasps and places an object repeatedly to
gather samples for training its artificial neural architecture.

This learning process is only partially autonomous: Initially,
the robot can move its hand to random positions on the table
surface. Once the robot has an object in its hand, it places
the object at a randomly chosen position and then associates
the joint values during placing the object with how the scene
looks after placement. Thus, the robot collects samples that
link motor actions to visual inputs for developing hand-eye
coordination. The robot, however, needs human assistance
during the process: It only develops the ability to link its vision
to its actions during training - it lacks this capability at first.
Thus, a human assistant must initially place an object into
the robot’s hand. The robot will then begin its autonomous
learning cycle of placing and picking up the object at random
positions. However, it can happen that the robot accidentally
moves the object during grasping or releasing. This leads to
failed grasps where human assistance is needed.

We will realize the scenario in two conditions: In the
human-guided condition, we will establish a baseline for non-
active learning. A human experimenter will introduce the robot
and the learning scenario, explain all the steps to the user,
openly operate the robot by executing command-line programs
and alert the user to situations that require assistance. To avoid
influencing the participant, pre-recorded instructions in the
same voice as used for the robot can be used. The robot will
remain silent and perform the necessary actions for learning.
It will however express emotions on it’s face to equalize the
experimental conditions.

In the robot-guided condition, the robot will take on an
active role: It will greet the participant and introduce the
learning scenario; it will comment verbally on its actions and
also use emotion expressions to indicate success or problems.
All of the robot’s actions will run autonomously, controlled
by the embodied dialogue system. Both scenarios offer an
authentic human-robot interaction based on a state-of-the-art
neural deep learning approach. Our research is guided by three
main questions:

• Does the embodied dialogue system enable non-expert
users to undergo training with the humanoid? We will
evaluate this objectively by comparing the number of suc-
cessfully collected training samples in the robot-guided
and human-guided experimental conditions.

• How comfortable and easy does the learning scenario
feel to users? We will identify possible problems with
a questionnaire and use this information to improve the



human-robot interaction and the learning scenario in
future iterations.

• How does the humanoid’s active role in learning influence
the user’s subjective perception of the robot? For this,
we will employ the established GODSPEED test from
Bartneck et al. [21] for both experimental conditions. We
will compare these results to former studies that involved
the same humanoid [22].

IV. NICO ROBOT AND GRASP LEARNING

We realize the experimental setup with NICO (Neuro-
Inspired COmpanion), introduced by Kerzel et al. [23].
NICO’s child-like design is aimed to elicit a high user accep-
tance and make users intuitively adopt the role of a teacher.

NICO is primarily endowed with capabilities for human-
like perception and interaction as well as object grasping
and manipulation: Its two arms have six degrees of freedom
and a human-like range of motion. NICO can grasp and
manipulate small objects with its three-fingered hands. The
fingers utilize a tendon mechanism which enables them to
wrap themselves around objects of various sizes. Additionally,
the state of tendons can be used as haptic feedback to evaluate
if a grasping action has been successful.

NICO’s head can perform tilt and yaw movements; it
features two cameras and two microphones. The child-like
design of the head is adapted from the iCub [24]. The head
features LED arrays around the mouth and eye regions that
display stylized facial expressions [22].

A. Neural Grasp Learning

Visuomotor skills are acquired by associating a state of the
environment with the desired action. In this paper, we follow
the approach by Kerzel and Wermter [5], where the state of
the environment is represented by images from the humanoid’s
cameras and the action equals a joint configuration that moves
the humanoid’s arm into a grasp position.

This association is facilitated by a deep neural network that
can generalize from a limited number of training samples. The
network architecture consists of two convolution layers that
process input from the two cameras in the humanoid’s head
and two dense layers that further transform this input into a
joint configuration. The neural network is trained end-to-end,
i.e. the training data consists of images and the output is the
corresponding joint configuration for grasping the objects.

The training data is collected in a semi-autonomous training
cycle, as shown in Figure 2. After the training object is placed
in the humanoid’s hand, it moved to a random position on the
table. The joint configuration that leads to this placement is
memorized. The humanoid releases the object and moves the
hand to the side to record images. These images are saved
along with the memorized joint configuration to form one
training data point. The humanoid then moves back to the
memorized joint configuration to grasp the object again. If the
grasp attempt was successful, the training cycle continues.

The approach takes advantage of the fact that placing an
object is equal to the reversed act of grasping an object. A joint

configuration used to place an object can likely also facilitate
grasping.

V. EMBODIED DIALOGUE SYSTEM

Moore [25] recently remarked that ”many roboticists regard
a speech-enabled interface as a somewhat independent, bolt-on
goody rather than a natural extension of a robot’s perceptuo-
motorsystem”. This is to be viewed as problematic since it is
much more advantageous to treat the language capabilities of
a robot as part of the overall system and it is further much
more in line with what is known about the role of language
in humans. Feldman [26] indeed points out that language and
cognition are best understood as a result of the brain being
shaped for control of a physical body which navigates within
a social world. However, this tighter coupling of the body,
its control, and the dialogue processing system have not been
fully explored in human-robot interaction research with respect
to system design.

In this paper, an embodied dialogue system is implemented
as a command center connecting all components that are
involved in accomplishing visuomotor tasks. The Dialogue
System is embodied as the decision-maker connecting each
component together instead of being an independent module
itself. The agenda-driven dialogue system guides the humanoid
robot in achieving a goal, such as to test its grasping ability
or to perform an object learning training. The goal is achieved
by the joint-task agenda approach [15] in which tasks are
accomplished by collaboration, combining effort from the
humanoid robot and the user. The humanoid robot carries
out its motor actions and reports its progress throughout the
process while the user has hands the object to the robot upon
request and provides assistance in case of errors.

The structured dialogue model is an effective model to
be implemented in our goal-oriented dialogue system, as the
states are atomic and finite, with its structure, position and
information of each state fixed and domain-oriented [27]. The
transition from one state to another is predefined, much like
an if-else function: if object grasping is successful, perform
action A; else, perform action B. This approach is useful in
limiting the search space, thus increasing efficiency. Besides,
the dialogue flow is controlled by restricting the flexibility. As
the goal would require the humanoid robot to perform certain
tasks in sequence, such as loading the neural network before
getting joint values, implementing a finite state approach
simplifies the interaction design.

As a decision-making module, the dialogue system em-
bodies six components in performing tasks: Motion, Vision,
Emotion, Computation, Knowledge and Natural Language
Generation. The Motion component controls the sensorimotor
ability of the humanoid robot such as moving the robot’s hand
towards the object. The Vision component, the eyes of the
humanoid robot, captures stereo images as inputs for the com-
putation. The Emotion component shows facial expressions on
the robot’s face using embedded LED lights, such as happy and
sad expressions. The Computation component loads the trained
model to the neural network and computes respective joint



Fig. 2. Training cycle for grasping: a) A human experimenter places the training object in the humanoid’s hand. b) The humanoid moves the object to a
random position on the table c) The humanoid places the object on the table and moves the hand away to records an image. d) The humanoid’s arm moves
back to the last joint configuration to grasp the object again. Steps b) to e) are repeated to gather more samples.

values for grasping. The Knowledge component stores and
provides information for the tasks, and the Natural Language
Generation component outputs speech response to the user
via text-to-speech synthesis. The Dialogue Manager is imple-
mented using SMACH1, a state machine library developed by
ROS. The Motion and Emotion components are implemented
using NICOmotion, a library to execute the NICO robot, de-
veloped by the Knowledge Technology team [23]. The Vision
component uses a common USB protocol. The Computation
component is a Convolutional Neural Network developed us-
ing Theano and Lasagne2. The Knowledge component is build
using PyKE3, a Python-based knowledge engine. The Natural
Language Generation component is implemented using the
Python Google Text-to-Speech library4.

Combining the components’ functionalities in a specific
order for each task, the embodied dialogue system decides
which action to perform next, according to which task it is
currently doing and which input it has received. There are ten
dialogue states for the system: Control, Perception, Grasp,
Fail, Success, NLG, Train, Relax, and Test, followed by a
termination state at the end (Figure 3). The Control state
receives a command from the user and decides which task is
to be performed by the humanoid robot among four available
ones: test object grasping, train object grasping, release motor
torques or load information. For example, if the train object
grasping task is requested, the Control state executes the
Perception state. In that state, the Motion component is called
to move the robot’s hand and lower the head, followed by
the Vision component to capture and save stereo images to
file. The next state Grasp loads the pre-defined model to the
neural network, computes joint values based on the stereo
images and performs the motion of grasping. Depending on
the grasp outcome, if no grasp object is detected, the Fail
state is executed which passes a dialogue ID to the NLG
state. On the other hand, if a grasp object is detected, the
Success state is executed which passes a different dialogue ID
to the NLG state. The NLG state maps the dialogue ID to the

1http://wiki.ros.org/smach [Accessed: 14.06.2017]
2https://lasagne.readthedocs.io/en/latest/ [Accessed: 14.06.2017]
3http://pyke.sourceforge.net/index.html [Accessed: 14.06.2017]
4https://pypi.python.org/pypi/gTTS [Accessed: 14.06.2017]

Fig. 3. Dialogue States for Object Grasping

respective sentence which is then conveyed to the user through
speech using text-to-speech synthesis. The NLG function can
be executed concurrently while another state is being executed,
for the purpose of reporting progress without interfering with
the executing action.

VI. EXPERIMENTAL PROTOCOL

A grasp-training task will be used to compare the effect
of robot-guided and human.guided learning of a humanoid.
After informing the participants about the experiment and
gaining written consent, we will use a questionnaire to evaluate
their previous experiences with robots. In the next step, the
participants will be randomly assigned to one of the two
conditions. The same protocol will be used for both the
robot-guided and the human-guided learning conditions, with
distinction in the way of interaction: in the robot-guided
learning scenario, the robot will communicate with the user
using Natural Language Generation, gaze, and display of
emotions throughout the process whereas, in the human-guided



Active robot-guided Scenario Human-guided Scenario
I am ready to look. The robot is ready to look.
Please put the learning object onto the table for me. Please put the learning object onto the table for the robot.
I am looking at the object. The robot is looking at the object.
I have loaded the neural network. The robot has loaded the neural network.
I computed the joint values. The robot computed the joint values.
I am ready to grasp. It is ready to grasp.
I grasp the object. The robot grasps the object.
(success) Here you go, this is for you. (success) The robot lifts the object.
(failure) Oh no, I failed to grasp the object. (failure) Oh no, the robot failed to grasp the object.
I will try again. It will try again.

TABLE I
DIALOGUES FOR GRASP EVALUATION OF ACTIVE ROBOT-GUIDED AND HUMAN-GUIDED LEARNING SCENARIO

learning scenario, the same dialogue will be given by the
experimenter to the user. Table I shows the dialogue for both
scenarios. In the human-guided condition, the robot will not
engage in dialogue interaction with the participant. Other than
that, both conditions will have the same steps:

1) Step 1: The learning phase begins by handing the
training object to the humanoid: The humanoid’s hand moves
to the starting position and opens. The participant is asked to

Fig. 4. Top: Failed grasp attempt; the humanoid displays a negative emotion
to alert the human interaction partner. Bottom: Successful grasp attempt; the
humanoid displays a positive emotion and offers the object to its interaction
partner.

place the training object into the hand. The humanoid then
closes its hand and places the object in a random position on
the table. Upon placing the object, the robot moves its hand
away from the table to capture pictures. The hand is then
moved back to re-grasp the object and continue the training
cycle. As described in section IV-A, the learning phase is
mostly autonomous after the participant has initially handed
the training object to the robot. Should an error occur, like
the training object falling off the table or being shoved away
during grasping, the participant is alerted, and instructions
are given to hand the object back to the humanoid before
the training is resumed. In the robot-guided condition, the
humanoid uses haptic perception to detect failed grasps, moves
its head to an upright position to face the participant, displays
a sad face, and requests help. In the human-guided condition,
the experimenter stops the training cycle and instructs the
participant to hand back the object. The learning phase lasts
for 10 minutes; we use a fixed time to evaluate how many
samples are collected in this time frame.

2) Step 2: Next, the participant is asked to evaluate the
learned visuomotor skills by placing the training object re-
peatedly in front of the humanoid. The participant is truthfully
informed that the evaluated sensorimotor skills were trained in
the same way as in the learning phase, but more samples were
necessary and thus an already trained neural model is used. Af-
ter the participant places the object on the table, the humanoid
looks down and records images. Using its neural network,
the robot processes these images to compute joint values
for grasping. In the robot-guided condition, the humanoid
differentiates successful and failed grasps. It reacts accordingly
by looking up, displaying a smiling face and offering the object
to the participant, or by looking up and making a sad face,
see Figure 4. In the human-guided condition, the robot lifts its
hand regardless of the success of the grasp. Table I shows the
dialogue for the robot-guided and human-guided conditions.
This phase lasts for 5 minutes.

3) Step 3: Finally, the participant is asked to evaluate both
the interaction and the humanoid. To evaluate the interaction,
a specialized questionnaire is used.The humanoid is evaluated
with the GODSPEED questionnaire [21]. Participants are
asked to rate the humanoid on 24 five-point scales between
pairs of opposed adjectives, e.g. artificial vs lifelike. The
items cover the five categories anthropomorphism, animacy,



likeability, perceived intelligence, and perceived safety.After
the experiment, participants are debriefed.

VII. CONCLUSION AND FUTURE WORK

We aim at researching the effect of an active role in learning
of a humanoid robot. We want to evaluate how well a learning
scenario that is solely mediated by the humanoid works, how
well users accept such a scenario and how the robot’s active
role in learning influences the participant’s perception of the
robot. To answer these research questions in a principled
way we designed and realized an experimental setup. We
chose the child-sized humanoid NICO [23] which, due to its
appearance, should enable participants to easily adopt the role
of a teacher. NICO’s arms have a human-like range of motion,
which enables it to manipulate an object in front of the body.
A haptic sensing mechanism in the hands informs the robot of
successful grasp attempts. NICO can display emotion on its
face to further enhance the human-robot interaction.

We employ a state-of-the-art approach for visuomotor skill
acquisition based on deep neural learning to increase the au-
thenticity of the scenario. The participants will train the robot
using the same way it has been trained by researchers. All
system components are integrated into an embodied dialogue
system that not only handles the verbal interaction with the
user but also uses knowledge about the learning progress and
haptic sensing to control a multimodal interaction that includes
physical actions and display of emotions.

In future work, we will evaluate the active learning hu-
manoid against a baseline scenario where a human experi-
menter instructs the participants to assist a robot. We will
use the insights gained from this study to improve the entire
experimental setup, ranging from the robotic hardware to the
embodied dialogue system.
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An Ontology-based approach for Robot and Ambient System
collaboration

Emmanuel Dumont1,2, Dan Istrate1 and Mohamed Chetouani2

Abstract— In activity recognition, sensor based errors or
uncertainties induce a wrong statement in the environment
representation. To overcome these issues we introduce our
ontology-based approach where a system, based on a mobile
robot and an ambient system, is able to generate collaborative
tasks when necessary to recognize activities. Using two ontolo-
gies to represent the environment, inconsistencies are detected
and high level data are exchanged between both systems to
correct and clarify ambiguous description of the environment.
This process allows to generate adequate clarifying tasks by
explicitly including knowledge and capabilities of each system.
We expose our approach in two experiments where interaction
between both systems are mandatory to respond a human ”find
an object” request in a first scenario and recognize multi user
activities in a second scenario.

I. INTRODUCTION

Robotic and ambient systems are more and more involved
to improve wellness and health condition. Usability and ac-
ceptance of robotics approaches for Ambient Assisted Living
are increasingly getting investigated [1]. In the field of Active
Assisted Living (AAL), ubiquitous systems are employed
and, sometimes, hardware limitations or uncertainties in data
processing induce wrong statement and inaccurate decision
(i.e. a blind spot on a mobile robot or a low confidence
presence detection in a security system). To overcome those
issues, several systems, such as robots and ambient systems
in a cloud robotics networks, can be used in parallel to com-
plete and reinforce each other environment representation
[2], [3].
In activity recognition, robots or ambient systems are widely
explored ([8]-[12]) combination of these systems, as pro-
posed by Hu in [4], are getting investigated through smart
environment and cloud robotics. In this paper, we intro-
duce a ROS-based interactive platform including a mobile
robot and an ambient system, integrating connected objects
and sensors developed by several companies. Based on
knowledge, perception and action capabilities, the platform
generates adequate collaborative tasks using ontology based
representation. From a user point of view, the interaction
between the robot and the ambient system is transparent, (i.e.
asking to the robot or the ambient system to find an object
does not change the outcome of the scenario). In accordance
with [5], we name ”system of systems” this transparent
global structure composed of the ambient system and the
mobile robot.
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In [6], a human and a robot interact together to find objects.
The robot is able to handle ambiguities (i.e. more than
one object fulfills the given description) using an ontology
approach. Knowledge representation over an ontology grants
a formal naming and description of the classes (Object, Hu-
man, Sensor, etc.), attributes (spatial, temporal and physical
properties), and relationships between everything that phys-
ically or fundamentally exists in an environment allowing
a formal context representation. An ontology grounds the
sensed physical world with natural language, making the
comparison of different types of sensors, and thus different
types of information in a system, easier. Moreover commu-
nication between a system and a human is also facilitated as
an information comes with its context [7]. Finally defining
in an ontology offline classes, properties and relationships,
and using this ontology as an online semantic, thus human
readable, data collection allow to infer and reason on the
stored knowledge, i.e. defining a property ”A recognized
human is in the same room as the sensor used to recognized
him” will automatically infer, when a human is detected by
a camera, ”This human is in the same room as the camera”.
Thereby, from a basic online extracted information and the
offline defined properties, an environment representation can
be described.

II. RELATED WORK

Our work is based on the recent advancements in cloud
robotics network and activity recognition. It relates on a
collaboration between a robot and an ambient system, both
able to detect and clarify inconsistencies in their environment
representation. We tend to recognize activities with this
system of systems and exploit a collaboration mechanism
to perform tasks. Consequently, [8]-[10] introduce ambient
systems composed of a wide set of sensors to recognize
ADL. Tapia in [8] designed a system for complex activity
recognition using ”tape on and forget” state-changes sensors
placed on doors, sinks, light switches, etc. This work demon-
strates that pervasive simple sensors can be used to recognize
activities. Storf is able in [9] to monitor and extract typical
behavior of older person. The system detects deviation by
employing a range of ambient and non intrusive sensors.
Van Kasteren in [10] recorded a dataset in a house where
14 state-change sensors were installed on doors, cup-boards,
refrigerator and a toilet flush sensor. Each activities were
annotated by the subject. Probabilistic models are employed
to determine features for each activity in order to detect
them during future experimentation. Xia in [11] present a
framework and algorithm to recognize ADL from the robot’s



point of view. Two datasets (one using a humanoid robot and
one with a non-humanoid robot) for egocentric robot activity
recognition recorded were registered and analyzed.
Compared with probabilistic approaches, ontologies based
modeling are adjustable and can be easily customized and
scaled up during initialization and in use situation. Chen
in [12] introduce an ontology-based approach; considering
sensors, objects and activities; to model, represent and infer
the current user’s activity. Whereas Riboni in [13] propose
to combine statistical inferencing and ontological reasoning
to recognize ADL.
Finally, an interaction between a robot and an ambient sys-
tem is introduced by Hu in [4]. These two systems perform
a task of user identification: A pervasive camera indicates
users’ position to the robot able to navigate and identify
them. Waibel in [14] introduces a platform where multiple
robots are connected. Each robot collects data during the
execution of a task and share them with others to improve the
overall task performance using a simple learning algorithm.
Manzi in [15] proposes a cloud robotic architecture where
an assistive robot gets data from worn sensor to localize a
human in an apartment. Flexibility in a smart environment
facilitates the user acceptance. Amato in [16] designed a
smart environment composed of a robot and an ambient
system able to adapt itself to a new environmental and/or
user condition.
The contributions of our paper are the implementation of
a platform where a mobile robot and an ambient system
collaborate, when mandatory, to achieve simple activity
recognition tasks. Currently, we do not aim to recognize
Activities of Daily Living (ADL). However as this platform
will tend to recognize them, we emphasize some features of
the system using a basic activity recognition scenario in 3.
An ontology-based data collection approach is used to clarify
ambiguities, by exploiting data exchanges between the two
environment representations.

III. SYSTEM DESIGN AND KNOWLEDGE REPRESENTATION

The system of systems is composed of a robot and an
ambient system. Both interact and collaborate with each
other in order to fulfill a proactive or human-requested
task. In this section, we describe the way the environment
representation is stored and shared.

A. Architecture

In our work, the robot and the ambient system, have
their own perception environment. The global architecture
is detailed in the figure 1. Software wrappers have been
developed under the ROS middleware for each family of sen-
sors integrated. They process received data (such as images,
low level numerical values, etc.) and extract similar features
(i.e. face detection and recognition, location of a detected
movement, etc.) regardless of the platform on which they
are integrated. A data manager software is used to update
the ontology and manage exchanged data (Request) with the
other system using a simple TCP/IP communication over
WiFi. The server/client implemented in the data manager

Fig. 1. Overview of the architecture

exchanges requests and data between the two systems. When
a server receives a request, it transfers the received payload to
the data manager by publishing in the adequate topic. Then
the demand is processed and the answer (which contains
information) is relayed to the client via the server.
Any extracted information is stored semantically in an on-
tology using the open source ORO platform [17]. ”ORO
relies on a dialect of RDF, OWL Description Logic, which
is the decidable part of OWL”. ORO functionalities include
to insert (Add) or delete (Remove) facts (i.e. RDF1 triples),
to look up for concepts (Find) and check consistency: each
time a data is added in an ontology, ORO checks if an
inconsistency occurs. The communication protocol between
ORO and the data manager uses another TCP/IP protocol,
the ontologies are updated by executing standard SPARQL
queries from ORO. The key benefits of this framework are
1) the simplification of expression statement in the ontology
compared to the SPARQL queries. 2) Ontology reasoning
with Pellet [18] on the high level data collection combined
with the predefined properties, builds up the corresponding
system environment representation in real time. So when a
statement is added in the ontology using ORO Server, the
ontology consistency is checked each time: a safe ”add”
option, provided by ORO, allows to safely add a statement
in the ontology and check the consistency using Pellet. If
the resulting ontology is inconsistent, ORO removes this
statement and send back an error message. When a system
adds an information in the ontology via ORO, this safe ”add”
command is employed. If an error is raised, a clarification
process is initiated.
The mobile robot uses the ROS navigation stack for au-
tonomous path planning and Simultaneous Location And

1Resource Description Framework, https://www.w3.org/RDF/



Mapping (SLAM). Before the scenario, a map of the apart-
ment is created using the map service proposed by Xaxxon
and implemented on ROS. Each room and point of interest
is manually labeled on the map as a ”waypoint” which
corresponds to a Cartesian position on the map. Moving to a
specific destination, such as a table, corresponds to navigate
to the specified waypoint.
The ambient system is composed of industrial sensors: In-
frared sensors, used as movement detection to indicate active
human presence in a room (unknown human1 isIn Bedroom)
and power consumption sensors, to specify if an electric
device (oven, microwave, TV) is turned on (kitchen hasAn-
Activated oven) both from Legrand, a Welcome camera,
from Netatmo able to detect and recognize faces. Data are
retrieved and updated in the ontology every minute (human1
isIn livingRoom), some Kinect devices from Microsoft used
as RGB cameras for color detection and face recognition
(human1 isIn livingRoom, redObject isIn bedroom), a sleep-
ing connected object ”Aura” from Withings indicates only
if someone is sleeping every five minutes (unknown human1
isSleepingIn bedroom). Each sensors were provided with an
API. ROS wrappers were developped to be able to update
and nourish the ontology.
The mobile robot is an Oculus Prime platform from
Xaxxon. This robot is composed of a microphone, an RGB
camera, a loudspeaker and an Orbbec Astra depth camera.
In both systems, a new sensor or connected object with a
provided Application Programming Interface (API) can be
easily included just by developing a ROS wrapper to ensure
data compatibility in the ontology.

B. Knowledge Representation

Data representation can be done at two levels. Low level
data (signals) reflect the sensed environment and can only
be compared to an alike low level data (a sound can only
be compared to another sound to recognize it). Robotic
and ambient systems are limited when a low level data
comparison is processed: stored data have to come from the
same kind of sensors which implies that both systems share
the same sensors architecture. High level data (here semantic
data) represents a normalized information, i.e. presence of a
recognized human, here the human recognition could have
been done using a voice recognition, a face recognition or
any human recognition method and thus, does not depend
on the sensors, thereby the ambient system and the robot
does not need to share the same kind of sensors. We chose
to collect semantic high level data in an ontology to be
able, using its already defined properties, to process a more
complex information. A more complex information is an
imbrication of several high level data i.e. the activity cooking
can inferred from the information of the activation of the
oven and the presence of someone in the kitchen.
In this subsection, a formalization of the environment repre-
sentation is done for the robot and the ambient system using
semantic, regardless from which sensor the information is
extracted.

1) Classes, Properties and inference: The ontology used
is slightly inspired from the OpenRobots Common Sense
Ontology [17]. Classes represent the basic concepts of the
apartment environment Objects (Bed, Oven, etc.), Sensors
(Camera, Microphone, etc.) or Systems (Robot or Ambient
system). Spatial properties are defined and spatial chained
properties are set up (i.e. a chain of object properties between
isIn and isNextTo: human1 isNextTo Bed, Bed isIn Bedroom
implies human1 isIn Bedroom).
Activity recognition is a more complex high level of data.
They are established as a triplet [Human hasActivityIn
Location] in the ontology and need to be inferred from
other collected data and a chain of object properties (i.e.
the two statement ”kitchen hasActivated oven” and ”human1
isIn kitchen” infer the next triplet human1 isCookingIn
kitchen; or if the human has not been recognized for the
moment but sensors detects someone is sleeping in the bed:
unknown human1 isSleepingIn bedroom.

2) Spatial Knowledge: When two humans exchange infor-
mation about the localization of an object, relative position
are employed ”on the living room table”, ”close to the com-
puter”, etc. When two systems exchange information about
the localization of an object, absolute and relative position
in a space can be employed when the same perspective is
shared. However ambiguities arise when a system cannot take
the perspective from another point of view, i.e. an overhead
camera has not the same point of view as an embedded
camera on a robot. Here, some specific objects, which are
not supposed to move daily (bed, tables, sofa, etc.), are set
up in every ontology during initialization. When exchanging
spatial knowledge, a global perspective point of view is
adopted and relative properties are used:
[Object] isIn [Room]. An object or a human is detected in

a specific room. This object property is functional ”for each
individual x, there can be at most one distinct individual
y such that x is connected by isIn to y”2. In other words,
a first statement ”human1 isIn aRoom” and the statement
”human1 isIn anotherRoom” will lead to an inconsistency
of the ontology so that, human1 can only be in on room at
a time.
[Object] isOn [Object]. An object, or a human, is on another
object when a sensor detects the first one where a stationary
known object should be (i.e. a bed, a sofa, etc.).
[Object] isNextTo [Object]. An object, or a human, is next to
another human or object when the applied metrics between
them is small.

3) Ontology Fusion: During the achievement of a task by
a system, inconsistencies or uncertainties may occur during
the feature extraction. In this paper, to clarify a situation
means to detect that an inconsistency or an uncertainty
occurred in a system. The system in question requests to the
other to complete or correct the raised problem by sharing
knowledge about a set of data. Here, this interaction, which
consists of an exchange of data between the two systems,
can be done if each system’s environment representation

2See www.w3.org/TR/owl2-syntax/#Functional Object Properties



is semantically stored in its ontology and if necessary sets
of data are shared during a clarification process. In term
of software implementation, when a system request to the
other an information, the request is immediately treated: the
information is sought in the system ontology and if found,
sent back to the requester. If not found, the ambient system
will answer that ”nothing is found” whereas the robot will
seek for the missing information. An information always
depends on a location, i.e. ”Is there someone in the bed
?”. For each location there is a corresponding waypoint on
the robot’s map so that the robot can navigate to this point
autonomously. For every system, when a new request is
received during the process of the previous one, it is put
in a queue (FIFO), and will be put out when the previous
request will be completely treated.

IV. USE CASE SCENARIOS

In the previous section, we proposed an architecture allow-
ing two systems to represent their environment. This paper
focuses on a smart environment working with a mobile robot
to achieve tasks they cannot do alone. This section analyzes
two main situations where interactions between the systems
are mandatory: a system seeks for a missing information in
its ontology ; a system adds an information in its ontology
which leads to an inconsistency. We present two scenarios
selected to address these issues and report the resulting in-
teractions. Figures 2 and 3 describe the interactions between
the ambient system and the robot that occur when one of the
system cannot find any required information to fulfill a task.

A. Scenario 1: Cooperation between the ambient system and
the robot to find an object

In this scenario the cooperation between the ambient
system and the robot is tested in a task where a human
requests and asks to the robot to bring him/her to a specific
object. Here, the robot and the ambient systems does not
have any sensor alike (color detection is only integrated
in the ambient system), moreover, the robot initially has
no information on the object and no way to get some by
itself. So, both systems must collaborate, by exchanging
information, to find the object and reach the goal. Those
interaction are totally transparent for the user which does
not know if the robot is able or not to achieve alone the
requested task.
The first step, as described in the figure 2, consists to launch

the system and set up the goal ”Find and reach the red
object” which is, here a red-colored object. This object is on
a table in sight range for the ambient system’s RGB camera.
In the second step, after initialization, the ambient system,
using its RGB camera, extracts the relative location of the
asked red object :(Object isIn bedroom and Object isOn
table) then pushes corresponding data into its ontology. The
robot, pulls everything about the red object from its ontology.
As the robot has no cameras and cannot find it using its other
sensors, nothing is found (cameras used for color detection
purpose are only integrated in the ambient system; by default
the robot has its own depth cameras only used, here, for a

navigation purpose). As no information of the object was
found in the robot’s ontology, it requests information about
the object to the ambient system. From the ambient system
point of view, as the robot is not seen by the camera, giving
him the object’s absolute coordinates would mean nothing
for it as the perspective of the two systems are different and
thus, the necessary Cartesian system is not common for the
two systems. However, the room and position of some objects
like the table have been set up initially in each system. So,
stored data (Object isIn bedroom and Object isOn table) in
the ambient system’s ontology can be exchanged and directly
stored in the robot ontology as such.
The data just harvested by the ambient system are transferred
to the robot which, in turn, updates its ontology. At this
point, the two ontologies contain the same data concerning
the object. The robot is now able to locate the object and
navigates as close as possible to its position on the table,
so as close as possible to the table. Finally, when the table
is reached, the robot interacts with the human by indicating
”The object is here” with its loudspeakers.

B. Second scenario: Activity recognition

In this scenario the ambient system and the robot try to
recognize humans activities in an apartment. The experiment
takes place in a domestic environment where three people
have an activity: the first one (H1) is sleeping in the bedroom,
the second one (H2) is in the sofa watching TV, the third
one (H3) is in the kitchen cooking. Following ethical rules,
cameras are not installed in rooms where privacy should be
preserved. Thus, cameras and microphone, including those
which equip the robot, are banned in the bedroom, toilets
and the bathroom.
For each human, three data are permanently assessed by
the system of system {Identity; Location; Activity}. As
previously mentioned, the objective for the two systems
is to collaborate to recognize activities and to have in
the ontology: H1 isSleepingIn bedroom, H2 isWatchingTVIn
livingRoom, H3 isCookingIn kitchen. However, this goal
cannot be reached as the sleeping human cannot be identified
due to the ethical rule.
Moreover, at the beginning of the experiment in the ambient
system, H2 and H3 are voluntarily mixed up in order to
observe an ambiguous situation where one person is detected
in two different rooms.
The ambient system is composed of two RGB cameras
(one set up in the living room, one set up in the kitchen),
a power consumption sensor and the Aura sensor in the
bed. The robot is now equipped with an RGB camera for
face detection and recognition and a depth camera for its
navigation system.

First, as detailed in the initialization part in the figure
3, the ambient systems detects: a) An unidentified human
is sleeping in the bedroom (unknown human1 isSleepingIn
bed), b) an identified human is cooking in the kitchen using
the oven (kitchen hasActivated oven, human1 isIn kitchen),
c) an identified human is watching tv in the living room
(livingRoom containsActivated tv, human1 isIn livingRoom).



Fig. 2. Global overview of the system of systems knowledge transfer: Scenario where the robot work in with the ambient system to help a human to
find a red-colored object in the apartment

Voluntarily, the two humans in the living room and in the
kitchen are the same. So, when the system adds the last state-
ment (human1 isIn livingRoom) in its ontology, as someone
cannot be in two different places at the same moment (see the
description of isIn in section III-B.2 for more information),
an alarm is triggered due to the inconsistency and do not add
this last statement in the ontology.
Finally the ambient system requests the robot to check every
data [?who isIn livingRoom] and [?who isIn kitchen]. In other
words, the ambient system requests the robot to share every
information concerning who is in the kitchen and in the living
room.
As the robot’s ontology is initially empty, it navigates from
its position to the living room and the kitchen (in order
of request) to check the human identity. Then, using its
loudspeaker, it asks to the person to look at him to be able
to see the human’s face and be able to recognize him. When
the recognition process ends, the robot stores every extracted
data in its ontology before sending them back to the ambient
system. The same process is repeated again for the next
request from the ambient system.
As the robot is in an ”answering to request” mode, if an
error occurs during this scenario and the robot’s ontology is
also inconsistent (e.g. one more time, if the same human is
recognized in two different room), the robot will not request
to the ambient to share data with him and will not send

the wrong statement but a not found answer instead without
updating its ontology.
After the two identifications have been done, the ambient
systems checks every human triplet. As the sleeping human is
not identified it asks to the robot to get this last information.
The robot is banned from the bedroom, thus it sends back
to the ambient system an not allowed room answer to let
the ambient system knows about the rule concerning the
bedroom. The ambient system will not request again an
identification for the bedroom and thus, avoiding any future
request for information about the human which is sleeping.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed an approach where a mobile
robot and an ambient system platform collaborate to pre-
vent wrong inferences from errors or inconsistencies from
extracted data. The system of systems, designed to recognize
activities of daily living, can use any kind of sensor to infer
an activity as long as a software wrapper is implemented to
ensure compatibility with the system. Features are extracted
as high level data sent to an ontology for classification and
reasoning. Activities are described in the ontology as new
sets of object properties before activating the system.
While our system aims to recognize and analyze activities,
only the approach used for clarification is described here. We
scaled the validating tests corresponding to our needs (see



Fig. 3. Data based transcription of the interaction between the human, the
robot and the ambient system, inconsistencies clarification

the two scenarios proposed in IV). However no evaluation
like activity recognition analysis is done yet. Future works
involve to use this platform to analyze ADL and IADL to
assess the elderly’s dependency. Several improvement are
being investigated: Fuzzy ontologies approach to include
more information about the data itself i.e. confidence coeffi-
cient, degree of truth, etc. Human Robot Interaction is also
a possibility to clarify a situation. Being able to phrase a
question at the end of the process when the global inference
has a low confidence index.
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