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Lattès maps and the interior of the bifurcation locus

We show the existence of open sets of bifurcations near Lattès maps of sufficiently high degree. In particular, every Lattès map has an iterate which is in the closure of the interior of the bifurcation locus. To show this, we design a method to intersect the limit set of some particular type of IFS with a well-oriented curve. Then, we show that a Lattès map of sufficiently high degree can be perturbed to exhibit this geometry.

Introduction

Context

In the article [START_REF] Mañe | On the dynamics of rational maps[END_REF], Mañé, Sad and Sullivan, and independently Lyubich in [START_REF] Lyubich | An analysis of stability of the dynamics of rational functions[END_REF], introduced a relevant notion of stability for holomorphic families (f λ ) λ∈Λ of rational mappings of degree d on the Riemann sphere P 1 (C), parameterized by a complex manifold Λ. The family (f λ ) λ∈Λ is J-stable in a connected open subset Ω ⊂ Λ if in Ω the dynamics is structurally stable on the Julia set J. It can be shown that this is equivalent to the fact that periodic repelling points stay repelling points inside the given family. The bifurcation set is the complementary of the locus of stability. A remarkable fact is that the J-stability locus is dense in Λ for every such family. Moreover, parameters with preperiodic critical points are dense in the bifurcation locus.

In higher dimension, less is known. We will only discuss the 2-dimensional case in this paper. The research in this field mostly takes inspiration from two different types of maps with different behaviour : polynomial automorphisms of C 2 and holomorphic endomorphisms of P 2 (C). Knowledge about bifurcations of polynomial automorphisms is growing quickly. Let us quote the work of Dujardin and Lyubich ([9]) which introduces a satisfactory notion of stability and shows that homoclinic tangencies, which are the 2-dimensional counterpart of preperiodic critical points, are dense in the bifurcation locus.

From now on, we are interested in the case of holomorphic endomorphisms of P 2 (C). The natural generalization of the one-dimensional theory was designed by Berteloot, Bianchi and Dupont in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P 2[END_REF]. Their notion of stability is as follows : let (f λ ) λ∈Λ be a holomorphic family of holomorphic maps of degree d on P 2 (C) where Λ is simply connected. Then the following assertions are equivalent:

1. The function on Λ defined by the sum of Lyapunov exponents of the equilibrium measure µ f λ : λ → χ1(λ) + • • • + χ k (λ) is pluriharmonic on Λ. 2. The sets (J * (f λ )) λ∈Λ move holomorphically in a weak sense, where J * (f λ ) is the support of the measure µ f λ . 3. There is no (classical) Misiurewicz bifurcation in Λ. 4. Repelling periodic points contained in J * (f λ ) move holomorphically over Λ. If these conditions are satisfied, we say that (f λ ) λ∈Λ is J * -stable. If (f λ ) λ∈Λ is not J * -stable at a parameter λ0, we will say that a bifurcation occurs at λ0.

A major difference with the one-dimensional case is the existence of open sets of bifurcations. Recently, several works have shown the existence of persistent bifurcations near well-chosen maps. By [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P 2[END_REF], to obtain open subsets in the bifurcation locus, it is enough to create a persistent intersection between the postcritical set and a hyperbolic repeller contained in J * . Dujardin gives in [START_REF] Dujardin | Non density of stability for holomorphic mappings on P k[END_REF] two mechanisms leading to such persistent intersections. The first one is based on topological considerations and the second uses the notion of blender, which is a hyperbolic set with very special fractal properties. Both enable to get persistent bifurcations near maps of the form (z, w) → (p(z), w d + κ). The results of Dujardin have been improved by Taflin in [START_REF] Taflin | Blenders near polynomial product maps of C 2[END_REF]. Taflin shows that if p and q are two polynomials of degree bounded by d such that p is a polynomial corresponding to a bifurcation in the space of polynomials of degree d, then the map (p, q) can be approximated by polynomial skew products having an iterate with a blender and then by open sets of bifurcations. Note that the idea of blender arised in the work of Bonatti and Diaz on real diffeomorphisms ( [START_REF] Bonatti | Persistent nonhyperbolic transitive diffeomorphisms[END_REF]) and already appeared in holomorphic dynamics in the work of the author ( [START_REF] Biebler | Persistent homoclinic tangencies and infinitely many sinks for residual sets of automorphisms of low degree in C 3[END_REF]).

Lattès maps are holomorphic endomorphisms of P 2 (C) which are semi-conjugate to an affine map on some complex torus T (see [START_REF] Feng | Lattes maps on P 2[END_REF] for a classification and [START_REF] Berteloot | Une caracterisation des exemples de Lattès par leur mesure de Green[END_REF] for a characterisation of Lattès maps in terms of the maximal entropy measure). It is natural to be interested in these maps in the context of bifurcation theory because their Julia set is equal to the whole projective space P 2 (C). This property seems to have a great potential to create persistent intersection between the postcritical set and the Julia set even after perturbation. Berteloot and Bianchi proved in [START_REF] Berteloot | Perturbations d'exemples de Lattès et dimension de Hausdorff du lieu de bifurcation[END_REF] that the Hausdorff dimension of the bifurcation locus near a Lattès map is equal to that of the parameter space.

Main result

Dujardin asked in [START_REF] Dujardin | Non density of stability for holomorphic mappings on P k[END_REF] if it was possible to find open sets of bifurcations near any Lattès map. In this article we give a partial answer to this question. Here is our main result :

Theorem. For every two-dimensional complex torus T, there is an integer d (depending on the torus T) such that every Lattès map defined on P 2 (C) of degree d > d induced by an affine map on T is in the closure of the interior of the bifurcation locus in Hol d .

Let us remark that the degree d is unknown (the situation here is similar to Buzzard's article [START_REF] Gregery | Infinitely many periodic attractors for holomorphic maps of 2 variables[END_REF]). Moreover, d depends on the torus T. This is due to the necessity of making only holomorphic perturbations. Let us also point out that it is always possible to find Lattès maps of arbitrarily high degree associated to a given torus T (see the remark after Proposition 3.1.6). As an immediate consequence of the theorem we get :

Corollary. For every Lattès map L of degree d, there is an integer n(L) such that for every n ≥ n(L), the iterate L n is in the closure of the interior of the bifurcation locus in Hol d n .

Outline of proof

To prove this result, we create persistent intersections between the postcritical set and a hyperbolic repeller contained in the Julia set. Our proof has two main parts : first, we create a toy-model which allows to obtain intersections between the limit set of some particular type of IFS, called correcting IFS, and a curve that is "well-oriented". Then, in a second time, we perturb the Lattès map to create both the correcting IFS and the well-oriented curve inside the postcritical set.

In a first part, we develop an intersection principle (see Proposition 2.1.6). A grid of balls G in C 2 is the union of a finite number of balls regularly located at N 4 vertices of a lattice defined by a R-basis of C 2 . If we consider a line C, a pigeonhole argument ensures that if C is well oriented and G has a sufficient number of balls N = N (r) (where r is the relative size of a ball compared to the mesh of the grid) then C intersects a ball of G. We consider a class of IFS such that each inverse branch is very close to a homothety. When we iterate them, a drift can appear : the iterates become less and less conformal. Our class of IFS (called correcting IFS) is designed so that they have the property of correcting themselves from the drift. A linear correction principle is given in Proposition 2.1.10. In subsections 2.2 and 2.3, we treat the case of a curve close to a line and an IFS close to be linear. Our interest in such IFS is that any welloriented quasi-line C intersects the limit set of a correcting IFS. To prove this result, which is Proposition 2.3.1, we ensure that at each step the quasi-line C intersects a grid of ball G j which is dynamically defined with the inverse branches of the IFS. Then we use inductively the intersection and the correction principles to ensure that at the next step, C intersects a grid of balls G j+1 with bounded drift. The intersection of the grids G j is in the limit set, so we produce an intersection between C and the limit set of the IFS. Since the property of being correcting is open, this intersection is persistent.

In the second part, we make three successive perturbations of a Lattès map L, denoted by L , L and L , in such a way that L has a robust bifurcation. We work in homogenous coordinates and do explicit perturbations of the following form :

[P1 : P2 : P3] → [P1 + R1P3 : P2 + R2P3 : P3]
where R1 and R2 are rational maps. An important technical point (Proposition 3.2.1) is that we can choose the coordinates so that P3 splits. Then if R1 and R2 are well chosen the degree does not change. The first perturbation L (Propositions 4.4.4 and 4.4.5) is intended to create a correcting IFS in a ball B in C 2 . Another important technical point is that we can find some critical point c which is preperiodic, with associated periodic point pc such that both the preperiod nc and the period npc of the preperiodic critical orbit are bounded independently of L (see Proposition 3.3.1). Then we want to create a well-oriented quasi-line inside the postcritical set which intersects B. The second perturbation L in Lemma 4.5.10 ensures that the postcritical set at pc is not singular. The third and last perturbation L is given in Lemma 4.5.11. It is intended to control the differential at pc. This allows us to fix the orientation of the postcritical set at pc and then we use the linear dynamics of the Lattès map L on the torus T in order to propagate this geometric property up to B (see Proposition 4.5.3). Note that the periodic point need not lie in B. At this stage we have both a correcting IFS and a well-oriented quasi-line so we are in position to conclude in section 5.

Plan

In section 2, we develop the theory of intersection between a quasi-line and the limit set of a correcting IFS : the intersection principle and the correction principle are stated in subsection 2.1 and we prove the intersection result in subsection 2.3. In section 3, we provide background on Lattès maps and prove a few properties which will be useful later. Some complications arise from Lattès maps whose linear part is not the identity. In section 4, we develop the perturbative argument. After giving some preliminaries (subsection 4.1) and fixing many constants (subsections 4.2 and 4.3), we create a correcting IFS in subsection 4.4. In subsection 4.5, we create a well oriented curve inside the postcritical set. Finally, we conclude in section 5 by applying the formalism of subsection 2.3 to the perturbed map L .
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2 Intersecting a curve and the limit set of an IFS

Linear model

In this section, we will work with an IFS, whose maps are small perturbations of homotheties of the form 1 a • Id with a ∈ R * and |a| > 1. This IFS will be obtained by perturbating a Lattès map and its limit set will have persistent intersections with a curve.

Definition 2.1.1. Given a R-basis (u1, u2, u3, u4) ∈ (C 2 ) 4 , a point o ∈ C 2 ,
an integer N and r ∈ (0, 1), by a grid of balls we mean the union of the balls of radius r. min 1≤i≤4 ||ui|| centered at the points o + iu1 + ju2 + ku3 + klu4 where -N ≤ i, j, k, l ≤ N . We will denote it by G = (u, o, N, r). The middle part of G is the set {o

+ xu1 + yu2 + zu3 + wu4, 0 ≤ |x|, |y|, |z|, |w| ≤ N 2 }. The hull of G is the set {o + xu1 + yu2 + zu3 + wu4, 0 ≤ |x|, |y|, |z|, |w| ≤ N }. The size of G is size(G) = 2N • max 1≤i≤4 ||ui||.
In the following, the parameter r will be bounded from below and we will let max 1≤i≤4 ||ui|| → 0 so that the radius of the balls r.min 1≤i≤4 ||ui|| will tend to 0. The integer N will be taken sufficiently large to satisfy some conditions depending on the degree of the Lattès map. Herebelow the notions of "opening" and "slope" are relative to the standard euclidean structure of C 2 . Notation 2.1.2. For a non zero vector w ∈ C 2 and θ > 0, we will denote C w,θ the cone of opening θ centered at w. Notation 2.1.3. For any quadruple of non zero vectors w1, w2, w3, w4 in C 2 , we will denote w = (w1, w2, w3, w4) its projection onto P(R 8 ). For any matrix U ∈ GL2(C), we simply denote by U • the induced action on P(R 8 ). Definition 2.1.4. The middle part of a ball (resp. the 3 4 -part) is the ball of same center and 1 2 times its radius (resp. 3 4 times its radius). Here is our "intersection principle" : Proposition 2.1.6. For every u ∈ (C 2 ) 4 , r > 0, η > 0 and w0 ∈ C 2 , there exists a neighborhood N (u) of u in P(R 8 ), there exists θ > 0, N (r) > 0 and a vector w ∈ C 2 with ||w -w0|| < η such that the following property (P) holds :

Definition 2.1.5. A holomorphic curve C is a (ε, w)-quasi-line if C is a graph upon a disk in C • w of
(P) For every grid of balls G = (u, o, N, r) such that u = (u1, u2, u3, u4) ∈ N (u) and N > N (r), for every (θ, w)-quasi-line of direction in C w,2θ intersecting the middle part of the grid of balls G, there is a non empty intersection between the line and the middle part of one of the balls of the grid.

Moreover, property (P) stays true for w sufficiently close to w.

Proof. Let us first prove the result in the case of a line intersecting the grid of balls. After composition by a real linear isomorphism if necessary, we can suppose (u1, u2, u3, u4) = (e1, ie1, e2, ie2) where e1 = (1, 0) and e2 = (0, 1) so that the centers of the balls of the grid have integer coordinates. Let us take w1

= α 1 β e1+ α 2 β ie1+ α 3 β e2+ α 4
β ie2 such that ||w1 -w0|| < η with rational coordinates α1, α2, α3, α4, β ∈ Z. We take m = 10 r . Then, let us take the vector w = w1

+ 1 mβ e1 + 1 m 2 β ie1 + 1 m 3 β e2 + 1 m 4 β ie2 and N > 10βm 5 = N (r).
We can increase m if necessary so that w satisfies ||w -w0|| < η. Lemma 2.1.7. There is a non empty intersection between any line of direction in C w,2θ intersecting the middle part of the grid of balls G and the middle part of one of the balls of the grid of balls if θ is sufficiently small. Proof. We divide each mesh of the lattice into m 4 hypercubes. To each of these hypercubes, we can assign the quadruple of integers given by the coordinates of a given corner. Taking new coordinates by making a translation if necessary, we can suppose that the union of the middle parts of the balls of the lattice contains the union of the hypercubes whose four coordinates are all equal to 0 modulo m. Let us take a point x0 of the line inside the middle part of the lattice, and for every k ∈ N, we denote : x k = x0 + k • w. Then, we have that :

x k+βm,1 ≡ x k,1 + 1 (mod m) and x k+βm 2 ,2 ≡ x k,2 + 1 (mod m)

x k+βm 3 ,3 ≡ x k,3 + 1 (mod m) and x k+βm 4 ,4 ≡ x k,4 + 1 (mod m) Since N > 10βm 5 = N (r), the previous relations imply there exists some xn which intersects some hypercube of integer coordinates congruent to (0, 0, 0, 0) inside the grid of balls. This implies that the line intersects the middle part of one of the balls of the grid.

This intersection persists for any line of direction in C w,2θ and for any (u1, u2, u3, u4) in a small neighborhood N (u) of u. Then, the result stays true if we take (θ, w)-quasilines for θ sufficiently small since property in (P) is open for the C 1 topology and w sufficiently close to w.

The following corollary gives the same conclusion as the previous result but this time with more than one possible direction for the quadruple of vectors of the lattice.

Corollary 2.1.8. For every finite subgroup M ⊂ Mat2(C), for every u ∈ (C 2 ) 4 , there exists a neighborhood N (u) of u in P(R 8 ) such that for every r > 0, there exists θ > 0, N (r) > 0 and a vector w ∈ C 2 such that the following property (P) holds :

(P) For every U ∈ M, for every grid of balls

G = (u, o, N, r) such that u ∈ N (u) ∪ U • N (u) ∪ • • • ∪ U ord(U )-1 • N (u)
and N > N (r), for every (θ, w)-quasi-line of direction in C w,2θ intersecting the middle part of the grid of balls G, there is a non empty intersection between the line and the middle part of one of the balls of the grid.

Moreover, this proposition remains true for w sufficiently close to w.

Proof. We just have to apply ord(M) times Proposition 2.1.6. Notation 2.1.9. We will denote by Mat2(C) the metric space of (2, 2) complex matrices with the distance induced by the norm ||.|| = ||.||2,2.

In the following, x will be a real positive parameter. We remind that in a first reading it is advised to assume that U = I2. The following proposition is the "linear correction principle" we discussed in the introduction. Proposition 2.1.10. For every finite subgroup M ⊂ Mat2(C), there exists an integer n > 0, (n + 1) balls

V 0 , V 1 , ..., V n ⊂ Mat2(C) such that for every 0 < x < 1, there exists a neighborhood Ux of I2 in GL2(C), two open sets U x ⊂ U x ⊂ GL2(C) which are union of balls U x = 1≤p≤n (U x ) p and U x = 1≤p≤n (U x ) p such that : (U x ) p ⊂ (U x ) p
for each 1 ≤ p ≤ n with the following properties :

(i) If M ∈ Ux, U ∈ M and j ∈ N, then for every M0 ∈ (x • V 0 ) : U j M U (I2 + M0) ∈ U j+1 • U x (ii) If M ∈ U x , U ∈ M
and j ∈ N, then there exist two integers 1 ≤ p, p ≤ n such that M ∈ (U x ) p with the property that for every M0 ∈ (x•V 0 ) and for every M p ∈ (x• V p ), we have :

U j M U (I2 + M0) ∈ U j+1 • (U x ) p U j M U (I2 + M0)U (I2 + M p ) ∈ U j+2 • Ux
Proof. We consider the vector space Mat2(C) R 8 . Let us consider a covering of the sphere of center 0 of radius r (which will be chosen later) S(0, r) by n balls B(Xi, 1 20 r) of radius 1 20 r. The following geometrical lemma is trivial : Lemma 2.1.11. For every 1 ≤ p ≤ n, X ∈ B(Xi, 1 10 r), we have : ||X -Xi|| < 1 2 r Now, let us call U1 = B(I2, 9 10 r), (U 1 ) p = B(I2 + Xi, 1 20 r) and (U 1 ) p = B(I2 + Xi, 1 10 r) for each 1 ≤ p ≤ n, U 1 = 1≤p≤n (U 1 ) p and U 1 = 1≤p≤n (U 1 ) p . Increasing the number n of open sets (U 1 ) p if necessary, we can suppose that for every U ∈ M and for each p ≤ n, there exists p ≤ n such that

(U 1 ) p • U = U • (U 1 ) p and (U 1 ) p • U = U • (U 1 ) p .
Lemma 2.1.12. There exists r0 > 0 such that if r < r0, for every Y ∈ (U 1 ) p : Y (I2 -Xi) ∈ B(I2, 1 2 r). Proof. The first assertion is an easy consequence of the previous lemma. Then, the Taylor formula gives us that at 0 at the first order in X :

(I2 + X)(I2 -Xi) = I2 + X -Xi + O(r 2 )
Then, if r is sufficiently small, the following lemma implies that for every X ∈ B(Xi, 1 10 r) :

(I2 + X)(I2 -Xi) ∈ B(I2, 1 2 r) 
This means that for every

Y ∈ (U 1 ) p : Y (I2 -Xi) ∈ B(I2, 1 2 r).
Now, it is clear it is possible to take a sufficiently small balls V 0 , V 1 , ..., V n centered at 0, -X1, ..., -Xn such that : -If M ∈ U1, then for every M0 ∈ V 0 , we have : M (I2 + H0) ∈ U 1 -If M ∈ U 1 , then there exists 1 ≤ p ≤ n such that M ∈ (U 1 ) p and for every M0 ∈ V 0 , we have : M (I2 + H0) ∈ (U 1 ) p .

The previous lemma implies that if M ∈ (U 1 ) p and M0 ∈ V 0 are such that M (I2 + M0) ∈ (U 1 ) p , then for every Mp ∈ V p , we have that : M (I2 + M0)(I2 + Mp) ∈ U1. Then, properties (i) and (ii) are verified for x = 1 and U = I2. For each 0 < x < 1, let us take the balls x • V 0 , x • V 1 , ..., x • V n ⊂ Mat2(C) and let us apply the homothety of factor x of center I2 to the sets U1, U 1 , U 1 , (U 1 ) p and (U 1 ) p to get the sets Ux, U x , U x , (U x ) p and (U x ) p such that properties (i) and (ii) are verified for x < 1 and U = I2.

Let us now suppose that U = I2. The two inclusions U j M U (I2 + M0) ∈ U j+1 • U x and U j M U (I2 + M0) ∈ U j+1 • (U x ) p are still true by reducing V 0 a finite number of times if necessary. Let us take p ≤ n and p ≤ n such that (U 1 ) p • U = U • (U 1 ) p and M p ∈ V p . Then :

U j • (U x ) p • U (I2 + M p ) = U j • U • (U x ) p • (I2 + M p ) = U j+1 • (U x ) p • (I2 + M p ) ⊂ U j+1 • Ux
This implies that for every M0 ∈ (x • V 0 ) and for every M p ∈ (x • V p ), we have

U j M U (I2 + M0) ∈ U j+1 • (U x ) p and U j M U (I2 + M0)U (I2 + M p ) ∈ U j+2 • Ux, which concludes the proof of the result.
Let us point out the following obvious result for later reference.

Proposition 2.1.13. For every u ∈ (C 2 ) 4 , there exists a positive number x(u) > 0 such that for every 0 < x < x(u), for every M ∈ U x , then M • u belongs to N (u).

Quasi-linear model

Here we slightly perturb the linear maps we used before but we show we can keep results on persistent intersections. Let us recall that the integer n was defined in Proposition 2.1.10. Let us remind that M ⊂ Mat2(C) is a finite subgroup. Definition 2.2.1. Let f be a linear map defined on an open subset of C 2 . We say that f is of type (x, p) for any

0 ≤ p ≤ n if f can be written f = 1 a f (A f + h) with a f ∈ C * , A f ∈ M and h ∈ x • V p (where V p was defined in Proposition 2.1.10). The modulus |a f | is called the contraction factor of f . Let f be a smooth map defined on an open subset of C 2 . We say that f is quasi- linear of type (x, p) if f = f + 1 a f ε1 with f = 1 a f (A f + h) linear of type (x, p
) and we have :

||ε1|| C 2 < 1 1000 • ||h||
The following can be seen as a consequence of Proposition 2.1.10 in the quasi-linear setting. Remember that x(u) > 0 was defined in Proposition 2.1.13. Proposition 2.2.2. Let M ⊂ Mat2(C) be a finite subgroup of unitary matrices. Reducing x(u) if necessary, for every grid of balls G = (u, o, N, r), for every quasilinear map f of type (x, p) such that x < x(u) and

2|a f | • size(G) • ||f || C 2 < r 2 , there is a grid of balls G = (u , o , N, r ) included inside f (G) with u = (Df )o • u and : r = r -2|a f | • size(G) • ||f || C 2 Proof. We just have to take o = f (o), u = (Df )o • u with Dfo linear of type (x, p). Remind that by definition, the size of G is size(G) = 2N • max 1≤i≤4 ||ui||. When ||f || C 2 = 0, the image of G under f is a grid of balls G of same relative size r = r, each of ball of G is the image of a ball of G under f = 1 a f (A f + h).
Since A f is unitary and h is of type (x, p), reducing x(u) > 0 (independently of f ) if necessary, we have that the radius of a ball of G is between 1 2|a f | and 2 |a f | times the radius of a ball of G.

If ||f || C 2 = 0, the image of each ball of G under f still contains a ball of G but this time by the Taylor formula there is an additive term smaller than size(G) • ||f || C 2 in the differential of f . Then the relative size r is such that :

r ≥ r - size(G) • ||f || C 2 1 2|a f | ≥ r -2|a f | • size(G) • ||f || C 2

Intersecting a curve and the limit set of an IFS in C 2

In this subsection, we give an abstract condition ensuring the existence of an intersection (robust by construction) between a holomorphic curve in C 2 and the limit set of an IFS. This will be the model for robust bifurcations near Lattès maps. Remind that n was defined in Proposition 2.1.10, N , w, θ in Proposition 2.1.6. Remind that the middle part and the 3 4 -part of a ball were defined in Definition 2.1.4, the middle part and the hull of a grid of balls were defined in Definition 2.1.1. In the following, for a holomorphic map G defined on a (closed) ball B ⊂ C 2 , we will denote

||G|| C 2 = max B ||D 2 G||.
Proposition 2.3.1. Let (G1, ..., Gq) be a IFS given by q maps defined on a ball B ⊂ C 2 of radius R > 0 satisfying the following properties :

1. 1≤j≤q Gj(B) contains a grid of balls G 1 = (u 1 , o 1 , nG, r 1 ) with q = (2nG + 1) 4 such that each Gj(B) contains a ball of G 1

2. the contraction factor of the IFS (G1, ..., Gq) is |a| ≥ 2

3. there exist (n + 1) balls B0, B1, ..., Bn ⊂ B of radius larger than ν • R (0 < ν < 1), such that the 3 4 -parts of B0, B1, ..., Bn are included in the hull of G 1 , and satisfying the following property : for each 1 ≤ j ≤ q such that Gj(B) ⊂ Bp, Gj is quasi-linear of type (x, p) with x < x(u 1 ) and :

Gj = gj + 1 a εj = 1 a (A+hj)+ 1 a εj with : ||εj|| C 2 < 1 1000 • ||hj||. Moreover, 1≤j≤q Gj(Bp) contains a grid of balls Γ 1 p = (u 1 , o 1 p , nG, s 1 ) for each 0 ≤ p ≤ n with s 1 ≥ ν • r 1 4. nG > 10 ν • N ( ν•r 1 10 ) 5. |a| • R • max 1≤j≤q (||Gj|| C 2 ) < ν•r 1 100 Let C be a (θ, w)-quasi-line of direction in C w,2θ such that C intersects the middle part of G 1 .
Then C intersects the limit set of the IFS (G1, ..., Gq).

When the conditions 1 to 5 are satisfied, we summarize them by saying that (G1, ..., Gq) is a correcting IFS. The proposition will be the immediate consequence of the following lemma : Lemma 2.3.2. There exist (n + 2) sequences of grids (G j ) j≥1 = (u j , o j , nG, r j ) j≥1 and (Γ j p ) j≥1 = (u j , o j p , nG, s j ) j≥1 with 0 ≤ p ≤ n such that we have the following properties :

1. For every j > 1, G j is included inside a ball of G j-1 and for every j > 1, there are i1, ..., ij-1 ≤ q such that :

G j ⊂ (Gi 1 • ... • Gi j-1 )(G 1 ) 2. For every j > 1, 0 ≤ p ≤ n : Γ j p ⊂ (Gi 1 • ... • Gi j-1 )(Γ 1 p ) 3. For every j ≥ 1, D(Gi 1 • ... • Gi j-1 ) o 1 ∈ A j-1 • U x and for j ≥ 2 : r j ≥ r 1 -2|a|•R• max 1≤j≤q (||Gj|| C 2 ) j-2 l≥0 1 |a| l and s j ≥ s 1 -2|a|•R• max 1≤j≤q (||Gj|| C 2 ) j-2 l≥0 1 |a| l
4. For every j > 1, there exists 1 ≤ pj ≤ n such that the quasi-line C intersects the middle part of a ball of Γ j p j

Proof. The proof of this lemma is based on an induction procedure. We begin by an initialisation called Case 0 where we pick the grids of balls at the first level G 1 and Γ 1 p for 0 ≤ p ≤ n. We intersect for the first time the quasi-line C with a ball and we construct the grids at the second level. Case 0 is somewhat different from the rest of the demonstration because we do not not control the initial position of C. Then, Case 1 has to be thought as the most frequent situation : C intersects a grid of balls whose geometry is good enough, and we can intersect C with a new grid whose geometry is very close to the previous one. Then, it may happen a time when the geometry of this grid is too deformed. Then we apply a "correction" (Cases 2 and 3), which leads back to Case 1.

Case 0 : initialization By hypothesis, 1≤j≤q Gj(B) contains a grid of balls G 1 = (u 1 , o 1 , nG, r 1 ) and similarly 1≤j≤q Gj(Bp) contains a grid of balls Γ 1 p = (u 1 , o 1 p , nG, s 1 ) for each 0 ≤ p ≤ n with s 1 ≥ ν • r 1 . So, for the first step j = 1, the (n + 2) grids of balls are already constructed.

By Corollary 2.1.8, C intersects in its middle part a ball of

Γ 1 0 : indeed, Γ 1 0 is a grid of balls such that u 1 ∈ A • Ux ⊂ A • U x , we have s 1 ≥ ν • r 1 > ν•r 1 10 and nG > 10 ν • N ( ν•r 1 10 ) > N ( ν•r 1 10
) (beware that the matrix A corresponds to the matrix denoted by U in Corollary 2.1.8 ). Then it intersects the middle of the ball Gi 1 (B) of G 1 which contains this ball of Γ 1 0 . According to Proposition 2.2.2, there exists a grid of balls

G 2 = (u 2 , o 2 , nG, r 2 ) included in Gi 1 (G 1 ). We have u 2 ∈ A • N (u 1 ) and r 2 ≥ r 1 -2|a|•size(G 1 )•max 1≤j≤q (||Gj|| C 2 ) ≥ r 1 -2|a|•R•max 1≤j≤q (||Gj|| C 2 ) > ν•r 1 10 . Apply- ing Proposition 2.2.2 to the grids of balls Γ 1 p (0 ≤ p ≤ n), there exist (n+1) grids of balls Γ 2 p = (u 2 , o 2 p , nG, s 2 ) included in Gi 1 (Γ 1 p ) for 0 ≤ p ≤ n. We have : u 2 ∈ A • N (u 1 ) and s 2 ≥ s 1 -2|a| • size(Γ 1 p ) • max 1≤j≤q (||Gj|| C 2 ) ≥ s 1 -2|a| • R • max 1≤j≤q (||Gj|| C 2 ) > ν•r 1 10 .
Let us now suppose by induction that the (n + 2) sequences of grids of balls satisfying ( 1),( 2),( 3) and ( 4) are constructed up to step j with the additional properties that C intersects in its middle part a ball of Γ j-1 p j-1 and that the following property is verified :

(Q) For every i such that (Gi 1 • ... • Gi j-1 • Gi)(G 1 ) ⊂ Γ j-1
p j-1 , we have :

D(Gi 1 • ... • Gi j-1 • Gi) o 1 ∈ A j • U x
Let us construct the grids of balls at the next step. The proof is inductive, at each step of the proof we are in one of the three cases we are going to discuss, which differ by two parameters. We have a quasi-line intersecting a grid of balls and we have to make a different choice to intersect a ball corresponding to one of the (n + 1) types of differentials we introduced earlier. Note that after Case 0, we will necessarily be in Case 1.

Case 1 :

D(Gi 1 • ... • Gi j-1 ) o 1 ∈ A j-1 • Ux and pj-1 = 0
By construction, C intersects in its middle part a ball B j-1 0 of the grid of balls Γ j-1 0 . Since Γ j 0 = (u j , o j 0 , nG, s j ) is a grid of balls such that

Γ j 0 ⊂ (Gi 1 • ... • Gi j-1 )(Γ 1 0 ) and D(Gi 1 • ... • Gi j-1 ) o 1 ∈ A j-1
• Ux, we have according to Proposition 2.1.13 that u j ∈ A j-1 • N (u 1 ). The relative size of B0 compared to B is equal to ν, the 3 4 -part of B0 is included in the hull of G 1 and nG > 10 ν • N ( ν•r 1 10 ). Then it is possible to take an union of balls of Γ j 0 included in B j-1 0 which form a grid of balls Γ of basis u j , relative size s j and with ( 1 10 ν • nG) 4 balls. By construction, we can take Γ such that C intersects the middle part of Γ . Since u j ∈ A j-1 • N (u 1 ), s j > ν•r 1 10 and 1 10 ν • nG > N ( ν•r 1 10 ) we have according to Corollary 2.1.8 that C intersects in its middle part a ball of Γ j 0 . This ball is included inside (Gi 1 • ... • Gi j )(B) with Gi j quasi-linear of type 0.

In particular, C intersects the middle part of a grid of balls

G j+1 ⊂ (Gi 1 • ... • Gi j )(G 1 ). According to Propositions 2.1.10, 2.2.2 and Property (Q), G j+1 is a grid of balls G j+1 = (u j+1 , o j+1 , nG, r j+1 ) with D(Gi 1 • ... • Gi j ) o 1 ∈ A j • U x and : r j+1 ≥ r j -2|a| • size(G j ) • max 1≤j≤q (||Gj|| C 2 ) ≥ r j -2|a| • R |a| j-1 • max 1≤j≤q (||Gj|| C 2 ) r j+1 ≥ r 1 -2|a| • R • max 1≤j≤q (||Gj|| C 2 ) j-2 l≥1 1 |a| l > ν • r 1 10
Still according to Propositions 2.1.10, 2.2.2 and Property (Q), there exist (n + 1) grids of balls

Γ j+1 p (for 0 ≤ p ≤ n) included in (Gi 1 • ... • Gi j )(Γ 1 p
) such that :

s j+1 ≥ s j -2|a| • size(Γ j p ) • max 1≤j≤q (||Gj|| C 2 ) ≥ s j -2|a| • R |a| j-1 • max 1≤j≤q (||Gj|| C 2 ) s j+1 ≥ s 1 -2|a| • R • max 1≤j≤q (||Gj|| C 2 ) j-2 l≥1 1 |a| l > ν • r 1 10
The grids of balls G j+1 and Γ j+1 p (for 0 ≤ p ≤ n) satisfy ( 1),( 2),( 3),(4). In particular, C intersects in its middle part a ball of Γ j 0 .

Since

D(Gi 1 • ... • Gi j ) o 1 ∈ A j • U x and pj = 0, by Proposition 2.1.10, if (Gi 1 • ... • Gi j • Gi)(G 1 ) ⊂ Γ j p j for some i, then (Gi 1 •...•Gi j •Gi)(G 1 ) is a grid of balls (u j,i , o j,i , nG, r j,i )j such that D(Gi 1 • ... • Gi j • Gi) o 1 ∈ A j+1 • U x , this means that (Q) is verified.
Then, after Case 1 and according to Proposition 2.1.10, only two cases can occur. If

D(Gi 1 • ... • Gi j ) o 1 ∈ A j • Ux and we can apply Case 1 once again. If D(Gi 1 • ... • Gi j ) o 1 ∈ A j • (U x -(U x ∩ Ux)), there exists 1 ≤ p ≤ n such that D(Gi 1 • ... • Gi j ) o 1 ∈ A j • (U ) p .
In this case, we are going to "correct" the next grids in a procedure given by Cases 2 and 3.

Case 2: D(Gi 1 • ... • Gi j-1 ) o 1 ∈ A j-1 • (U x ) p and pj-1 = 0
By construction, C intersects in its middle part a ball of the grid of balls Γ j-1 0 . We have according to Proposition 2.1.13 that u j ∈ A j-1 • N (u 1 ). Then, using the same argument as in Case 1, we have according to Corollary 2.1.8 that C intersects in its middle part a ball of Γ j p j included inside (Gi 1 • ... • Gi j-1 )(B) where Gi j-1 is quasilinear of type 0 and pj = p is chosen according to Proposition 2.1.10. In particular, C intersects the middle part of a grid of balls

G j+1 ⊂ (gi 1 • ... • gi j )(G 1 ). According to Propositions 2.1.10 and 2.2.2, G j+1 is a grid of balls G j+1 = (u j+1 , o j+1 , nG, r j+1 ) with D(Gi 1 • ... • Gi j ) o 1 ∈ A j • (U x ) p , there exist (n + 1) grids of balls Γ j+1 p (for 0 ≤ p ≤ n) included in (Gi 1 • ... • Gi j )(Γ 1
p ) and r j+1 , s j+1 satisfy the inequalities of property 3. The grids of balls G j+1 and Γ j+1 p (for 0 ≤ p ≤ n) satisfy ( 1),( 2),( 3), [START_REF] Biebler | Persistent homoclinic tangencies and infinitely many sinks for residual sets of automorphisms of low degree in C 3[END_REF].

Since |a| • R • max 1≤j≤q (||Gj|| C 2 ) < ν•r 1
100 we have for every 0 ≤ p ≤ n, for every j ≥ 1 the following bounds : r j , s j p > ν•r 1 10 . Since D(Gi 1 •...•Gi j ) o 1 ∈ A j •(U x ) p and pj = p is chosen according to Proposition 2.1.10 (see Proposition 2.1.10 for the definition of p ), we have for every i such that (Gi

1 • ... • Gi j • gi)(G 1 ) ⊂ Γ j p j that (Gi 1 • ... • Gi j • Gi)(G 1 ) is a grid of balls (u j,i , o j,i , nG, r j,i )j such that D(Gi 1 • ... • Gi j • Gi) o 1 ∈ A j+1 • Ux, this means that (Q) is verified.
After Case 2, it follows from Proposition 2.1.10 that necessarily the two conditions of the following Case 3 are satisfied.

Case 3: D(Gi 1 • ... • Gi j-1 ) o 1 ∈ A j-1 • (U x ) p and pj-1 = 0
Induction shows that pj-1 had been chosen to get special composition properties (see Case 2, beware that the number denoted here by pj-1 corresponds to the number denoted by "pj" in Case 2), let us pick pj = 0. By construction, C intersects in its middle part a ball of the grid of balls Γ j-1 p j-1 . Once again :

u j ∈ A j-1 • N (u 1
) and we have according to Corollary 2.1.8 that C intersects in its middle part the ball of Γ j 0 included inside (Gi 1 • ... • Gi j )(B) with Gi j quasi-linear of type pj-1. In particular, C intersects the middle part of a grid of balls G j+1 ⊂ (Gi 1 • ... • Gi j )(G 1 ). Once again, we can construct grids of balls G j+1 and Γ j+1 p (for 0 ≤ p ≤ n) which satisfy (1),( 2),(3),(4) but this time with

D(Gi 1 • ... • Gi j ) o 1 ∈ A j • Ux.
In particular, C intersects in its middle part a ball of Γ j p j . Moreover, Proposition 2.1.10 still insures that (Q) is verified.

Since D(Gi 1 • ... • Gi j ) o 1 ∈ A j
• Ux, we are now in Case 1 once again.

Proof of Proposition 2.3.1. According to the previous lemma, for each j ≥ 1, C intersects

Γ j p j ⊂ (Gi 1 • ... • Gi j-1 )(Γ 1 p j ). But Γ 1 p j ⊂ 1≤j≤q Gj(Bp j ) ⊂ 1≤j≤q Gj(B)
. This shows that for each j ≥ 1, there exist q ≥ i1, ..., ij ≥ 1 such that C intersects (Gi 1 • ... • Gi j )(B). This implies that C intersects the limit set of the IFS (G1, ..., Gq).

3 Preliminaries on Lattès maps 

T L / / Π T Π P 2 (C) L / / P 2 (C)
where T is a complex torus of dimension 2, Π is a ramified covering of the projective space P 2 (C) by the torus T and L is an affine map. Proposition 3.1.2. The periodic points of any Lattès map are dense in P 2 (C). The Julia set of any Lattès map is equal to P 2 (C). Notation 3.1.3. In the following, for every τ ∈ C such that Im(τ ) > 0, we will denote L(τ ) the lattice in C given by : L(τ

) = Z + τ • Z and by L 2 (τ ) the associated product lattice L 2 (τ ) = L(τ ) • 1 0 + L(τ ) • 0 1
. We also let ξ = e i 2π 6 .

The following proposition can be found in [START_REF] Kaneko | Complex crystallographic groups II[END_REF].

Proposition 3.1.4. If an affine map on a torus T induces a Lattès map L on P 2 (C), then the torus T is of the form C 2 /Λ where Λ is one of the six following lattices and the projection Π : T → P 2 (C) is given (in some affine chart for Cases 1,2,3,4) by the following formulas :

Case 1 Λ = L 2 (τ ), (x, y) → [℘(x) + ℘(y) : ℘(x)℘(y) : 1] Case 2 Λ = L 2 (ξ), (x, y) → [℘ (x) + ℘ (y) : ℘ (x)℘ (y) : 1] Case 3 Λ = L 2 (i), (x, y) → [℘ 2 (x) + ℘ 2 (y) : ℘ 2 (x)℘ 2 (y) : 1] Case 4 Λ = L 2 (ξ), (x, y) → [(℘ ) 2 (x) + (℘ ) 2 (y) : (℘ ) 2 (x)(℘ ) 2 (y) : 1] Case 5 Λ = L 2 (i), (x, y) → [(℘(x)℘(y) + e 2 1 ) 2 : (℘(x) + ℘(y)) 2 : (℘(x)℘(y) -e 2 1 ) 2 ] Case 6 Λ = L(τ ) • -1 1 + L(τ ) • ξ 2 ξ , (x, y) → [℘ (x1) -℘ (y1) : ℘(x1) -℘(y1) : ℘ (x1)℘(y1) -℘(x1)℘ (y1)]
where τ ∈ H, e1 = ℘( 1 2 ) and (x1, y1) is the function of (x, y) given by :

x1 -1 1 + y1 ξ 2 ξ = x y
In the following, we will denote π the projection from C 2 to T 2 = C 2 /Λ. Definition 3.1.5. A Ueda map is a holomorphic map on P 2 (C) such that there exists a Lattès example L on P 1 (C) such that we have :

L • η = η • ( L, L)
where η is the map between P 1 (C) × P 1 (C) and P 2 (C) which is just the projectivization of (x, y) → (x + y, xy), given by :

η : ([x : x ], [y : y ]) → [xy + x y : xy : x y ]
Such a map L is semi-conjugate to an affine map on the complex torus T and is a Lattès map.

Lattès maps corresponding to Cases 1,2,3 and 4 of Proposition 3.1.4 are Ueda maps.

The following is an easy consequence of Propositions 3.1 to 3.6 of [START_REF] Feng | Lattes maps on P 2[END_REF].

Proposition 3.1.6. Let Λ, Π be one of the lattices and associated coverings defined in Proposition 3.1.4. There exists a finite group of unitary matrices GLattès = GLattès(Λ, Π) of finite order such that every Lattès map has its linear part of the form aA where a ∈ C * , |a| ≥ 1 and A ∈ GLattès.

Remark. Here, the scaling factor a takes discrete values. Moreover, arbitrarily large values of |a| can be obtained (it can be easily seen by taking the composition of a Lattès map with itself ). The equality of the two topological degrees gives :

(d ) 2 = |a| 4 • |det(A)| 2
where d is the algebraic degree of L.

Since according to the previous result, there are only finitely many possible linear parts A for a Lattès map (up to multiplication by the factor a) which are all of finite order, we can define the following integer. Definition 3.1.7. We denote by ordLattès the product of all the orders of the possible linear parts A for a Lattès map.

It can be found in [START_REF] Feng | Lattes maps on P 2[END_REF] that ordLattès is equal to 6 2 • 8 2 • 12 • 24. In a first reading, we encourage the reader to consider only the case where the linear part of the Lattès map is equal to Id. In the other cases, the dynamical ideas are the same but with a few additional technicalities from algebra. In particular, it is sufficient in order to prove in some cases the corollary of the main result (see subsection 1.2).

An algebraic property of Lattès maps

The goal of this subsection is to prove the following result. Proposition 3.2.1. For every torus T, there exists an integer i = i(T 2 ) such that for any k > 0, there exists an integer d k > 0 such that for any Lattès map L of algebraic degree d > d k , coming from an affine map on T, there exists a homogenous change of coordinates ϕ on P 2 (C) such that : ϕ -1 • L • ϕ is a holomorphic endomorphism of P 2 (C) of the form [P 1 : P 2 : P 3] where the polynomial P 3 is a product of irreducible factors P 3,j such that at least k factors P 3,j are of degree bounded by i. Definition 3.2.2. Let v be a vector of C 2 which belongs to a lattice Λ and v0 ∈ C 2 . We suppose that the action of Λ upon C • v by translation is cocompact. Let T 2 = C 2 /Λ and π : C 2 → T 2 be the natural projection. Then, then we say that π(v0 +C•v) is a compact line of the torus T of direction v. It is compact and π(v0

+ C • v) π(v0) + C/Λ • v for some subgroup Λ ⊂ Λ.
The family of compact lines of the torus T of direction v is the family of all the compact lines of the torus of direction v obtained by varying v0.

Let us point out the fact that v ∈ Λ is not sufficient to conclude that the action of Λ upon C • v by translation is cocompact. Proposition 3.2.3. Let Λ, Π be one of the lattices and associated coverings defined in Proposition 3.1.4. Let v be a vector of C 2 which belongs to Λ such that the action of Λ upon C • v by translation is cocompact. The family of images under Π of compact lines of direction v on the torus T is a family of algebraic curves of P 2 (C) of degree bounded by i = i(v, T 2 ).

Proof. Let F be the family of images of compact lines of direction v on the torus T under Π. The family F is a holomorphic compact family of compact curves so that by the GAGA principle it is an algebraic family of curves and in particular their degree is bounded by some i = i(v, T 2 ) Proposition 3.2.4. Let Λ, Π be one of the lattices and associated coverings defined in Proposition 3.1.4. Then, there exists a line δ in P 2 (C) such that Π -1 (δ) contains at least one compact line D of T.

Proof. In each case, the following compact lines are convenient for δ and we give the preimage compact lines D. The first four cases cover the case of a Ueda map.

Case 1 : δ = {Y = 0} Indeed, Y = 0 if and only if ℘(x)℘(y) = 0. Π -1 ({Y = 0}) is an union of compact lines of the torus of the form {x0} × T 1 and T 1 × {y0} where the x0, y0 are in ℘ -1 ({0}).

Case 2: δ = {Y = 0} Indeed, Y = 0 if and only if ℘ (x)℘ (y) = 0. Π -1 ({Y = 0}
) is an union of compact lines of the torus of the form {x 0 } × T 1 and T 1 × {y 0 } where the x 0 , y 0 are in (℘ ) -1 ({0}).

Case 3: δ = {Y = 0} Indeed, Y = 0 if and only if ℘ 2 (x)℘ 2 (y) = 0. Π -1 ({Y = 0}) is an union of compact lines of the torus of the form {x0} × T 1 and T 1 × {y0} where the x0, y0 are in ℘ -1 ({0}).

Case 4: δ = {Y = 0} Indeed, Y = 0 if and only if (℘ (x)) 2 (℘ (y)) 2 = 0. Π -1 ({Y = 0}) is an union of compact lines of the torus of the form {x 0 } × T 1 and T 1 × {y 0 } where the x 0 , y 0 are in (℘ ) -1 ({0}). In all the cases, the preimage of δ by Π contains a compact line of the torus. Proposition 3.2.5. If an affine map L of linear part aA on a torus T induces a Lattès map L on P 2 (C) and D is the preimage under Π of the compact line δ given by Proposition 3.2.4, then the preimage of D under L is a finite union of compact lines of the torus. Moreover, the number of possible directions is finite. For each k > 0, there exists d k > 0 such that for every Lattès map L of algebraic degree greater than d k induced by an affine map L on T, there exist at least k distinct irreducible components of degree bounded by i which are preimages of δ by L.

Proof. From Proposition 3.1.6, we know that the linear part of L is of the form aA with A ∈ GLattès. Let v ∈ Λ be the direction of L. Since (aA) -1 (v) ∈ Λ (because L induces a Lattès map), any preimage of D by L is a compact line of the torus. GLattès is finite and so the possible number of directions is finite. Let D be a preimage of D by L.

We have the following straightforward property : for every lines ∆1, ∆2 of direction v in C 2 , if π(∆1) = π(∆2), then every two points respectively in ∆1 and ∆2 are joined by a vector which lies in (0, 1) • v + (0, 1) • i • v + Λ. Let us take λ1, λ2 ∈ Λ non R-colinear such that A -1 λ1 and A -1 λ2 are not colinear to D . Then, there is some constant a k > 0 such that if |a| > a k , then at least 100k vectors in the set Z • (aA) -1 (λ1) + Z • (aA) -1 (λ2) won't belong to (0, 1) • v + (0, 1) • i • v + Λ and then at least 100k images of D by translations of vectors in Z • (aA) -1 (λ1) + Z • (aA) -1 (λ2) are distinct preimages of D by L.

Their images under Π are irreducible components of degree bounded by i. If |a| > a k , at least k (this term k is not optimal and we get it by projection of the previous 100k lines) of them are distinct preimages of δ by L. But |a| > a k if deg(L) is superior to some value d k,Λ,A . Then, it suffices to take for d k the maximal value of d k,Λ,A when varying Λ and A in the finite sets they belong (see Propositions 3.1.4 and 3.1.6).

Proof of Proposition 3.2.1. Let δ be a line in P 2 (C) as in Proposition 3.2.4. The result is a consequence of Proposition 3.2.5 because after a suitable change of coordinates, we can take δ = {Z = 0}. Then {P 3 = 0} contains at least the k irreducible components of degree bounded by i which are preimages of δ by L.

A periodic orbit in the postcritical set

Remind that the integer ordLattès was defined in Definition 3.1.7. Beware that in the following, the period of a periodic point is the exact period. Proposition 3.3.1. There exists an integer K > 0 such that for every Lattès map L defined on P 2 (C), there exists a point c in the critical curve of L which is sent after nc iterations on a periodic point pc of period npc such that :

1. nc + npc ≤ K 2. np c is a multiple of ordLattès
Proof. Let us start with the case of one dimensional Lattès maps. Lemma 3.3.2. Let L be a one-dimensional Lattès map. There exists a critical point c of L which is sent after ñc ≤ 12 iterations on a periodic point pc of period ñpc ≤ 12.

Proof. The Lattes map L, according to Lemma 3.4 of [START_REF] Milnor | On Lattès maps[END_REF], is such that the postcritical set PL of L is entirely included inside the set of critical values of the covering Θ of P 1 (C) by the complex torus T 1 . This implies that every critical point of L is sent after one iteration inside the set of the critical values of Θ. Moreover, let us bound from above the number of critical values. This number cr is bounded from above by the number of critical points (counted with multiplicity). Still according to [START_REF] Milnor | On Lattès maps[END_REF], Θ can only be a covering of orders ord(Θ) = 2, 3, 4 or 6. The Riemann-Hürwitz formula gives us that : χ(T 1 ) = ord(Θ)χ(P 1 (C)) -cr which implies cr = 2 • ord(Θ). In particular, this means that the image of every critical point c of L is sent after ñc ≤ 12 iterations on a periodic point pc of period ñpc ≤ 12 .

Lemma 3.3.3. Let L be a Ueda map. There exists a point c in the critical curve of L which is sent after nc ≤ 12 iterations on a periodic point pc of period npc ≤ 24•ordLattès which is a multiple of ordLattès. In particular, we have : nc + npc ≤ 12 + 24 • ordLattès.

Proof. We take a critical point c of L given by the previous lemma. We take a periodic point p of L of period 2 • ordLattès (it can be found in [START_REF] Baker | Fixpoints of polynomials and rational functions[END_REF] that such a point actually exists because any rational map on P 1 (C) of degree greater than 2 has a point of strict period 2 • ordLattès > 4 ). Then the point c = η(c, p) is a critical point of L. It is sent after nc ≤ 12 iterations on a periodic orbit η(pc, Lnc (p)). The period of pc is ñpc ≤ 12 and p is of period 2 • ordLattès. This implies that in P 1 (C) × P 1 (C), the periodic point (pc, Lnc (p)) for ( L, L) is of period a multiple of 2 • ordLattès bounded by 24 • ordLattès. Since the map η is a two-covering, in P 2 (C), the periodic point η(pc, Lnc (p)) for L is of period npc which is a multiple of ordLattès bounded by 24 • ordLattès. Then nc + npc ≤ 12 + 24 • ordLattès.

Let us now prove 3.3.1. It was shown in [START_REF] Feng | Lattes maps on P 2[END_REF] (Theorems 4.2 and 4.4) that :

1. Either one map in {L, L 2 , L 3 } is a Ueda map. In this first case, the previous lemma shows that one of the maps in {L, L 2 , L 3 } has a point of its critical curve which is sent after at most 12 iterations onto a periodic orbit of period a multiple of ordLattès bounded by 24 • ordLattès. This implies that there exists a critical point of L which is sent after nc iterations onto a periodic orbit of period npc which is a multiple of ordLattès with nc + npc ≤ 3 • (12 + 24 • ordLattès).

2. One of the maps L k in {L, L 2 , L 3 , L 6 } is preserving an algebraic web associated to a smooth cubic (see [START_REF] Dabija | Algebraic webs invariant under endomorphisms[END_REF] for this notion). This implies (see the remark after Theorem A in [START_REF] Dabija | Algebraic webs invariant under endomorphisms[END_REF]) that the critical set of L k is sent after one iteration into the set of critical values of Π which is a curve PC. In this second case, we have that L k (PC) ⊂ PC and L k induces by restriction a map on PC. Taking the normalization of PC if necessary, we can suppose that PC is regular. There are two possibilities. Either PC is isomorphic to P 1 (C) and L k induces a rational map so it has a periodic point of period ordLattès(again, it can be found in [START_REF] Baker | Fixpoints of polynomials and rational functions[END_REF] that such a point actually exists). Either PC is isomorphic to a complex torus and L k induces a multiplication on this torus which also has a periodic point of period ordLattès. In both cases, we see that L has a critical point which is sent after at most 6 iterations on a point of period a multiple of ordLattès bounded by 6 • ordLattès.

Then, taking K = max(3 • (12 + 24 • ordLattès), 6 + 6 • ordLattès), the proof of the proposition is done.

Perturbations of Lattès maps

Some useful lemmas

In this subsection, we prove two lemmas about complex analysis. The constants which are involved in these lemmas will be fixed in the two next subsections. Lemma 4.1.1. For every m > 0, for every ball B, for every 1 > f1 > 0, 1 > f2 > 0, there exist constants ρ = ρ(m, B) > 0, σ = σ(m, B) > 0 such that for rational function h of degree equal to m, there exists a ball B ⊂ B ⊂ C 2 of radius larger than ρ such that

∀z ∈ B, ||Dh(z)|| |h(z)| ≤ σ (1) ∀(z, z ) ∈ B 2 , |h(z)| |h(z )| ≤ 1 + f1 (2) ∀(z, z ) ∈ B 2 , arg(h(z)) -arg(h(z )) ≤ f2 (3) 
The proposition will be a consequence of the following lemma.

Lemma 4.1.2. For every m > 0, for every ball B, there exist constants ρ = ρ(m, B) > 0, τ = τ (m, B) > 0 such that for rational function h of degree m, there exists a ball B ⊂ B ⊂ C 2 of radius larger than ρ such that :

inf B |h| sup B |h| ≥ τ
Proof. Let us denote Rnorm the set of rational maps of degree m which can be written h = h 1 h 2 where h1 and h2 are two polynomials whose coefficients (aij) and (bij) are such that : max(aij) = max(bij) = 1. Rnorm is a compact set. For a given h ∈ Rnorm, since h = 0, there exists

ρ h > 0, τ h > 0, a ball B h ⊂ B ⊂ C 2 of radius ρ h such that : inf B h |h| sup B h |h| ≥ τ h
The constants ρ h and τ h can be chosen locally constant for rational functions in Rnorm near h. Since Rnorm is compact, if we choose ρ = ρ(n, B) the minimum of the ρ h and τ = τ (n, B) the minimum of the τ h for a finite covering of Rnorm, we have : for rational map h ∈ Rnorm of degree m, there exists a ball B ⊂ B ⊂ C 2 of radius larger than ρ such that :

inf B |h| sup B |h| ≥ τ
Since every rational map h of degree m can be written h = C ste • h with h ∈ Rnorm, the result is true for every rational map of degree m.

Proof of Proposition 4.1.1. We fix such a ball B. Up to multiplying h by a constant, which does not affect (1), we can suppose that |h|∞ = 1. We denote 1 τ = σ. Then by the Cauchy inequality we have : [START_REF] Berteloot | Perturbations d'exemples de Lattès et dimension de Hausdorff du lieu de bifurcation[END_REF]. Then ( 2) and ( 3) are simple consequences of (1). The proposition is proven.

||Dh(z)|| |h(z)| ≤ 1 τ = σ, this is
Let us point out for further the following interpolation result. Remind that the integer n was defined in Proposition 2.1.10. Lemma 4.1.3. Let us take n balls V1, ..., Vn ⊂ Mat2(C). There exists an integer d = d(V1, ..., Vn) and two real numbers 1 > f1 > 0 and 1 > f2 > 0 such that for every ξ > 0, there exists a constant ν = ν(n, ξ) > 0 such that : for every ball B ⊂ C 2 of radius bounded by 1, for every θ0 ∈ R, there exist a polynomial map H = H(V1, ..., Vn, B, θ0) of C 2 of degree d and (n + 1) balls B0, ..., Bn ⊂ B of radius greater than ν • rad(B) such that on each Bj :

∀t ∈ (1 -f1, 1 + f1), ∀θ ∈ (θ0 -f2, θ0 + f2) : -e iθ • t • DH ∈ Vj and 2 • |H|∞ < ξ
Proof. We call ṽ1, ..., ṽn the centers of the balls V1, ..., Vn ⊂ Mat2(C). Let us take the ball B = B(0, 1). For a given θ0 ∈ [0, 2π], there exists H having its differentials at n points pi ∈ B(0, 1) satisfying H(pi) = 0 and DHp i = e -i.θ 0 • ṽj by interpolation. Taking sufficiently small balls B1, ..., Bn of radius ν around the points pi, this gives the result for a given θ0 ∈ [0, 2π] and t = 1. Moreover, since the required condition are open, H can be taken uniform on a small interval of values of θ and a small interval (1 -f1, 1 + f1) of values of t. Then d, ν and f1 can be taken locally constant in θ. Since [0, 2π] is compact, we take the maximal value of d and the minimal values of ν and f1 on a finite covering of [0, 2π] by intervals where d, ν and f1 can be taken constant on each interval of the covering. In particular, since this covering is finite, there exists f2 > 0 such that for each θ0 ∈ [0, 2π], it is possible to find constant H, m, ν, f1 for every θ ∈ (θ0 -f2, θ0 + f2). This gives us the result for the fixed ball B(0, 1). Then, the result follows for any ball B(γ, r) with r ≤ 1 by taking the map

H = (r•Id+γ)•H •( 1 r •Id-γ). It is easy to check that : -e iθ 0 •t•D H = -e iθ 0 •t•DH ∈ Vj and 2 • | H|∞ < 2 • r • |H|∞ < ξ.
4.2 Fixing the constants relative to the torus T and the matrix of the linear part A

In the two next subsections, we fix some notation and define a certain number of constants and objects in the following specified order. As a guide for the reader objets denoted in roman letters are relative to P 2 (C), and gothic letters are relative to the torus.

1. We fix a torus T and euclidean coordinates π : C 2 → T. We fix the projection Π : T → P 2 (C) as in Proposition 3.1.4. We fix the group GLattès = GLattès(T, Π) given by Proposition 3.1.6.

2. We fix a Fubini-Study metric ||.||F S on P 2 (C).

3. We fix the matrix of the linear part A with A ∈ GLattès. We fix a line δ as in Proposition 3.2.5. We fix affine coordinates [z1, z2, z3] on P 2 (C) as in Proposition 3.2.1 in which δ = {z3 = 0}. In the following, we dehomogenize by working in the chart {[z1, z2, z3] : z3 = 0} on P 2 (C).

4. We first need a proposition.

Notation 4.2.1. We will denote : V j = vj + rj • B(0, 1) (remind the balls V j were defined in Proposition 2.1.10). 1 4 • V j will denote the ball of same center as V j and with quarter of radius.

We fix p0 ∈ T such that Π(p0) ∈ {[z1, z2, z3] : z3 = 0} and DΠp 0 is invertible. There exist invertible matrices M1, ..., Mn such that for every j :

(DΠ -1 ) Π(p 0 ) • DΠp 0 •A•(DΠ -1 ) Π(p 0 ) -1 •Mj• DΠp 0 •A•(DΠ -1 ) Π(p 0 ) -1 •DΠp 0 = vj
Then, by continuity we have : 

∀pi ∈ B, (DΠ -1 ) Π(p 1 ) • DΠp 2 •A•(DΠ -1 ) Π(p 3 ) -1 •Vj • DΠp 4 •A•(DΠ -1 ) Π(p 5 ) -1 •DΠp 6 ∈ 1 4 •V j Lemma 4.2.3.
Reducing B if necessary, there exists a constant σ = σ (T, A) > 0 such that for every w with ||w|| = 1, we have :

inf p∈ B ||D(Π • A • Π -1 ) Π(p) (w)|| ≥ σ • (sup p∈ B ||DΠp||) • ||A|| • (sup p∈ B ||(DΠ -1 ) Π(p) ||)
Proof. We take :

σ = 1 2 • inf(Sp((D(Π • A • Π -1 ) Π(p 0 ) ) (sup p∈ B ||DΠp||) • ||A|| • (sup p∈ B||(DΠ -1 ) Π(p) ||)
and the condition holds reducing the size of the ball B around p0 if necessary.

We fix such a ball B, a constant σ > 0 and n balls V1, ..., Vn ⊂ Mat2(C) of centers ṽ1, ..., ṽn.

5. We will use the following notation : 

We fix B = B(T, A, B) a ball included in Π( B).

There exists some constant ι > 0 such that for every ball B ⊂ B of radius r, Π -1 (B) ∩ B contains a ball of radius ι • r. We fix such a constant ι. We take the restriction of ||.||F S on B. Since B {[z1, z2, z3] : z3 = 0}, this restriction is equivalent to the euclidean metric on {[z1, z2, z3] : z3 = 0}.

7. We fix the integer m = d and the reals f1, f2 > 0 given by Lemma 4.1.3 associated to the balls V1, ..., Vn ⊂ Mat2(C).

8. We fix the constants ρ = ρ(m) > 0, σ = σ(m) > 0 given by Lemma 4.1.1 associated to the integer m = d, the ball B and the two reals f1, f2.

9. We take a constant ξ = ξ(T, Π, Vi, A, σ, σ ) satisfying the following inequality : 11. Corollary 2.1.8 gives us a constant N ( νρ 10 ). 12. We fix a constant d 1 defined as follows. Let us point out that for any Lattès map L of algebraic degree d coming from an affine map L on T, of linear part aA, the equality of the two topological degrees gives :

0 < ξ < 1 4 • min 1≤j≤n rj • min( σ • ||A|| 2 2||Π -1 || C 2 • ||DΠ|| , ||A|| 2 2σ • ||DΠ|| 3 • ||DΠ -1 || 3 ) 10.
(d ) 2 = |a| 4 • |det(A)| 2 .
There are

(d ) 2 = |a| 4 • |det(A)| 2 disjoint preimages of the torus T by the affine map L of volume vol(T) |a| 4 •|det(A)| 2 .
Let us denote volr the volume of a ball of radius r. Let us take d 1 such that both

(d 1 ) 2 • volι•ρ 10•vol(T) > ( 1 ν • N ( νρ 10 
)) 4 and

(d 1 ) 2 • ≥ 100 • maxA∈G Lattès |det(A)| 2 .
In particular, this last condition implies that for any Lattès map of algebraic degree d ≥ d 1 , we have |a| ≥ 2.

13. i was defined in Proposition 3.2.1 and K in Proposition 3.3.1, we fix nH = E( m+2K i ) + 1. We fix d 2 = dn H +100 (this integer was also defined in Proposition 3.2.1). We fix d 3 = 2K.

14. We fix d = max(d 1 , d 2 , d 3 ).

Fixing the constants relative to the Lattès map

15. Let L be a Lattes map L = [P 1 : P 2 : P 3] of degree d > d associated to an affine map on T of linear part aA.

16. According to Proposition 3.2.1, in the coordinates [z1, z2, z3] which were fixed in 3. we have that :

P 3(z1, z2, z3) = 1≤j≤J P 3,j (z1, z2, z3)
with P3,j irreducible and deg(P

3,i) ≤ i = i(T 2 ) for J ≥ j ≥ J -m -2K + 1
(remind that K was defined in Proposition 3.3.1). In plain words, the last factors of the product have degree bounded by a constant i depending only on the chosen torus T. We will consider the restriction of

L to {[z1, z2, z3] : z3 = 0} ∩ L -1 ({[z1, z2, z3] : z3 = 0}).
We have :

L(z1, z2) = ( P1(z1, z2, 1) P3(z1, z2, 1) , P 2(z1, z2, 1) P3(z1, z2 , 1) ) 
We denote Pi(z1, z2) = P i(z1, z2, 1).

17. There exists a periodic point pc of period npc (which is a multiple of ordLattès) which belongs to the postcritical set of L, according to Proposition 3.3.1, we fix it once for all. We call c the point of the critical curve such that pc is in the orbit of c and we have nc + npc ≤ K according to Proposition 3.3.1, where K is independent of the choice of T and L. Since pc is repelling, we can suppose that c is the only critical point in {c, L(c), ..., pc, ..., L npc-1 }. We choose homogenous polynomials of degree 1 denoted by Q1, ..., Qn c +npc-1 such that :

Q1(c) = Q2(L(c)) = ... = Qn c (pc) = Qn c +npc-1(L npc-1 (pc)) = 0 (4) 
It is possible to take these polynomials such that at least one of the coefficients of z1 and z2 is non equal to 0 so we take the polynomials with this property.

Putting

P3(z1, z2) = J-2(nc+npc)-m+1≤j≤J
P3,j(z1, z2), let us denote by h the rational function defined by :

h(z1, z2) = 1≤j≤nc+npc-1 (Qj(z1, z2, 1)) 2 P3(z1, z2) 19. We denote : h(Π(p0)) = |h(Π(p0))|e iθ 1 .
20. We choose the ball B ⊂ B of radius larger than ρ according to Lemma 4.1.1 applied to the ball B chosen in 4.2.6 and to the the constants m, f1, f2 chosen in 4.2.7. We pick a ball B ⊂ Π -1 (B) ∩ B. According to 4.2.6, B can be taken with its radius equal to ι • ρ and this bound on its radius (not the ball itself, but the bound on its radius) is independent of

L. Since d ≥ d ≥ d 1 with (d 1 ) 2 • volι•ρ 10•vol(T) > ( 1 ν • N ( νρ 10 
)) 4 , there are at least

( 1 ν • N ( νρ 10 
)) 4 preimages of B by the affine map L inside B which form a grid of balls. 

rad(B) = ι•(ν•ρ) ι•ρ = ν.
Let us point out that this bound on the radius is still independent of L.

Creating a correcting IFS

Notation 4.4.1. In the following we construct three holomorphic families of holomorphic maps of P 2 (C) which are successive perturbations of L :

L = L ε 1 , L = L ε 1 ,ε 2 and L = L ε 1 ,ε 2 ,ε 3 where ε1, ε2, ε3 ∈ D. We have L 0 = L, L ε 1 ,0 = L ε 1 and L ε 1 ,ε 2 ,0 = L ε 1 ,ε 2 .
We often forget the εi and just denote L , L , L for simplicity when there is no risk of confusion. Notation 4.4.2. We consider the q = q(d) preimages of Π(B) under L included inside Π(B) and the corresponding local inverses (gj) 1≤j≤q which form an IFS. We denote by (Gj) 1≤j≤q the corresponding maps on B. For further perturbations L , L , L of L, we consider the analogous objects and we call them (g j ) 1≤j≤q , (g j ) 1≤j≤q , (g j ) 1≤j≤q and (G j ) 1≤j≤q , (G j ) 1≤j≤q , (G j ) 1≤j≤q . Notation 4.4.3. In the following, we will consider the continuation p(L ) (resp. p(L ), p(L )) of the periodic point pc. This one is well defined according to the implicit function Theorem since pc is repelling. In fact, for the successive perturbations that we will consider, we will always have p(L ) = p(L ) = p(L ) = pc. Proposition 4.4.4. Let L be a Lattès map of degree d > d coming from an affine map on T, of linear part aA. Let L = ( P 1 P 3 , P 2 P 3 ) be the expression of L in the chart {[z1, z2, z3] : z3 = 0} defined in 4.2.3. Then the family of rational maps (L ε 1 )ε 1 where

L = L ε 1 = ( P 1 P 3 , P 2
P 3 ) defined by : P 1 (z1, z2) = P1(z1, z2) + ε1h(z1, z2)P3(z1, z2)H1(z1, z2)

P 2 (z1, z2) = P2(z1, z2) + ε1h(z1, z2)P3(z1, z2)H2(z1, z2)

where h was defined in 4.3.18, H in 4.3.21 and ε1 ∈ D is such that :

1. For every ε1 ∈ D, L = L ε 1 extends to a holomorphic map of P 2 (C) of the same degree as L and (L ε 1 )ε 1 is a holomorphic family of holomorphic maps of P 2 (C)

2. p(L ) = pc is periodic for L and is in the forward orbit of c : pc = (L ε 1 ) nc (c) and

(L ε 1 ) npc (pc) = pc. Moreover D(L ε 1 )c = D(L)c, • • • , D(L ε 1 ) (L 1 
) npc -1 (pc) = DL L npc -1 (pc) for every ε1 ∈ D Proof. Let first remark that since P3 admits at least nH = (E( m+2K) i ) + 1) factors of degree bounded by i, the degrees of hP3H1 and hP3H2 are bounded by deg(P1) = deg(P2). Since the property of being a holomorphic mapping is open, L is a holomorphic mapping for sufficiently small values of ε1. For simplicity we will suppose that this is true for ε1 ∈ D after rescaling if necessary. Since ε1 is just a linear factor, (L ε 1 )ε 1 is a holomorphic family of holomorphic maps of P 2 (C). Thus item 1 is proven. Item 2 is a consequence of the quadratic terms Q 2 j in h (see 4.3.18).

Proposition 4.4.5. Let a Lattès map L of degree d > d coming from an affine map on T, of linear part aA. We are working in the chart {[z1, z2, z3] : z3 = 0} defined in 4.2.3. In this chart, L = ( P 1 P 3 , P 2 P 3 ). Let L as in Proposition 4.4.4. Then there exists t > 0 such that for every 0 ≤ p ≤ n, for every real 0 < ε1 < 1, there exists a ball Bp ⊂ B ⊂ C 2 of radius rad(Bp) ≥ ν • rad(B) and a neighborhood Xε 1 of L in Hol d such that for every L ∈ Xε 1 , if j is such that G j (B) ⊂ Bp then G j is of type (tε1, p).

Proof. In the following, we omit the index j on gj, g j , Gj and G j and we take 0 < ε1 < 1. Let us remind we work in the chart : [z1, z2, z3] → ( z 1 z 3 , z 2 z 3 ) on P 2 (C). We first show the result for L . We have for every p ∈ B ∩ G (B) :

DG p -DGp = DΠ -1 g (Π(p)) • Dg Π(p) • DΠp -DΠ -1 g(Π(p)) • Dg Π(p) • DΠp = (DΠ -1 g (Π(p)) -DΠ -1 g(Π(p)) ) • Dg Π(p) • DΠp + DΠ -1 g(Π(p)) • (Dg Π(p) -Dg Π(p) ) • DΠp with : Dg Π(p) -Dg Π(p) = I2+(DL g(Π(p)) ) -1 •D(ε1.h.H) g(Π(p)) -1 •(DL g(Π(p)) ) -1 -(DL g(Π(p)) ) -1 = -(DL g(Π(p)) ) -1 • ε1D(h.H) g(Π(p)) (DL g(Π(p)) ) -1 + o(ε1) D(h.H) g(Π(p)) = h(g(Π(p))) • DH g(Π(p)) + H(g(Π(p))) • Dh g(Π(p))
Then we have :

Dg p -Dgp = η1+η2-DΠ -1 g(Π(p)) •(DL g(Π(p)) ) -1 •ε1•h(g(Π(p)))•DH g(Π(p)) •(DL g(Π(p)) ) -1 •DΠp+o(ε1)
where η1 = (DΠ -1 g (Π(p)) -DΠ -1 g(Π(p)) ) • Dg Π(p) • DΠp and :

η2 = -DΠ -1 g(Π(p)) • (DL g(Π(p)) ) -1 • ε1 • H(g(Π(p))) • Dh g(Π(p)) • (DL g(Π(p)) ) -1 • DΠp
Lemma 4.4.6. For any p ∈ B ∩ G (B) we have :

-DΠ -1 g(Π(p)) •(DL g(Π(p)) ) -1 •ε1•h(g(Π(p)))•DH g(Π(p)) •(DL g(Π(p)) ) -1 •DΠp ∈ 1 4|a| 2 •ε1•|h(Π(p0))|•V j
Proof. This is due to the fact that H has been taken so thath(Π(p)) 

||g (Π(p)) -g(Π(p))|| ≤ ε1 • |h(g(Π(p)))|.ξ inf ||w||=1 ||D(Π • aA • Π -1 )(w)|| < ε1 • |h(g(Π(p)))| • ξ σ • |a| • ||A|| • ||DΠ|| • ||DΠ -1 ||
Then we have : 

||η1|| = ||(DΠ -1 g (Π(p)) -DΠ -1 g(Π(p)) ) • Dg Π(p) • DΠp|| ≤ ||DΠ -1 g (Π(p)) -DΠ -1 g(Π(p)) || • ||Dg Π(p) || • ||DΠ|| < ε1 • |h(g(Π(p)))| • ξ σ • |a|||A|| • ||DΠ|| • ||DΠ -1 || • ||Π -1 || C 2 • ||Dg Π(p) || • ||DΠ|| < ε1 • 2|h(Π(p0))| • ξ σ • |a| • ||A|| • ||DΠ|| • ||DΠ -1 || • ||Π -1 || C 2 • ( 1 |a| • ||A|| • ||DΠ|| • ||DΠ -1 ||) • ||DΠ|| < 1 4|a| 2 • ε1 • |h(Π(
||η2|| ≤ ||DΠ -1 || • ||DL -1 || • ε1 • ||H|| • ||Dh|| • ||DL -1 || • ||DΠ|| ≤ ||DΠ -1 || • 1 |a| • ||A|| • ||DΠ|| • ||DΠ -1 || 2 • ε1 • ξ • ||Dh|| • ||DΠ|| = 1 |a| 2 • ε1 • ξ • 1 ||A|| 2 • ||DΠ|| 3 • ||DΠ -1 || 3 • ||Dh|| ≤ 1 4|a| 2 • ε1 • |h(Π(p0))| • min 1≤j≤n rj
by the inequality on ξ and because :

∀z ∈ B, ||Dh(z)|| ≤ σ •|h(z)| ≤ σ •2|h(Π(p0))|.
The three previous lemmas imply that on B ∩ G (B),

DG p -DGp belongs to t • V j with t = ε 1 •|h(Π(p 0 ))| |a| 2
. Then by continuity, for a given ε1 (and then a given L ), there exists a neighborhood Xε 1 of L in Hol d such that for every sufficiently small perturbation L ∈ Xε 1 of L , if j is such that G j (B) ⊂ Bp then G j is of type (tε1, p). This proves the first item of Proposition 4.4.5. The proof of Proposition 4.4.5 is complete.

Well oriented postcritical set

Notation 4.5.1. We fix pc a point of Π -1 (pc). Notation 4.5.2. We denote by PCrit(L) the postcritical set of L, this is the set PCrit(L) = n≥0 (L) n (Crit(L)) where Crit(L) is the critical set of L. The notation will be the same for perturbations L , L , L .

We pick a vector w1 and a value θ given by Corollary 2.1.8 corresponding to the 4-tuple u of the four vectors of a basis of Λ. Still according to Corollary 2.1.8, there exists an open set of admissible values for w1 so we choose to take it in the following way. The map L npc•ord(A) is an affine map on the torus T of linear part

a npc•ord(A) • A npc•ord(A) = a npc•ord(A) • I npc 2 = a npc•ord(A) • I2 with |a| ≥ 2 (see 3.2.

12).

Points with dense forward orbit for L npc•ord(A) are dense in T. Moreover, since npc divides npc • ord(A), pc is a fixed point of L npc•ord(A) . We pick w1 such that pc + w1 is a point of dense forward orbit for L npc•ord (A) . Since the linear part of L npc•ord(A) is a npc•ord(A) • I2 and pc is a fixed point of L npc•ord(A) , we have that the whole forward orbit of pc + w1 by L npc•ord(A) is contained in the line going through pc and pc + w1. In particular, this line is dense in the torus T. We pick w2 such that (w1, w2) is a basis of C 2 and w2 is not tangent to Π -1 (PCrit(L)) at pc.

Here is the main result of this subsection : 

L ε 1 ,ε 2 ,ε 3 = L in W(L) such that there exists a component Γ ⊂ Π -1 (PCrit(L ))
whose restriction to B is a (θ, w1)-quasi-diameter (remind that this notion was defined in Definition 2.1.5).

The following lemma is well known. Lemma 4.5.4. Let L be a linear automorphism of C 2 and Γ ⊂ C 2 a complex submanifold through 0 such that :

1. the eigenvalues λ, µ of L are such that |λ| > |µ| > 1. Let w λ and wµ be the respective eigenvectors.

2. wµ is transverse to Γ at 0 Then, (L k (Γ)) k≥0 converges uniformly to the line C • w λ in the C 1 -topology.

Proof. We can take w λ = e1 and wµ = e2. The eigenvector wµ of µ is transverse to Γ at 0. Then locally Γ is a graph γ over a small disk Dγ ⊂ D :

{(t, γ(t)) : t ∈ Dγ)}. For every k ∈ N, L k ({(t, γ(t)) : t ∈ Dγ)}) = {(λ k • t, µ k • γ(t)) : t ∈ Dγ}. Since |λ| > 1, for large k, we have D ⊂ λ k • Dγ. Then L k ({(t, γ(t)) : t ∈ Dγ)}) contains {(s, µ k • γ( s λ k )) : s ∈ D}. But there exists Cγ > 0 such that |γ(t)| < Cγ • t near 0. Then µ k • γ( s λ k ) < Cγ • ( µ λ )
k converges uniformly to 0 on Dγ. Then, for every θ > 0, there exists k such that Proof. Since GLattès is a finite group, we have that A is of finite order. In particular, A ord(G Lattès ) = I2. Then R(A) = 0 where R(X) = X ord(G Lattès ) -1 has simple roots. Then A is diagonalizable.

L k ({(t, γ(t)) : t ∈ Dγ)}) contains {(s, γ(s)) : s ∈ D} = {(s, µ k • γ( s λ k ) : s ∈ D} with |γ(s)| ≤ θ .
Lemma 4.5.7. Let (fε) ε∈D 3 be a holomorphic family of holomorphic germs defined in a neighborhood U of 0 such that for every ε ∈ D 3 , D(fε)0 is diagonalizable and 0 is a repelling fixed point for fε. We denote by λ(ε) and µ(ε) the eigenvalues of fε at 0 and w λ and wµ be associated eigenvectors. We suppose that in the family (fε) ε∈D 3 , w λ = w1 and wµ = w2 are constant. We suppose that |λ(0)| 2 > |µ(0)| ≥ |λ(0)|. Then there exists a neighborhood U ⊂ U of 0 and a neighborhood V of 0 in D 3 such that for every ε ∈ V, fε is holomorphically linearizable in U : there exists a holomorphic map ϕ fε defined on U such that :

Diag λ(ε),µ(ε) • ϕ fε = ϕ fε • fε
Moreover, ϕ fε varies continuously with ε in the C 0 topology.

The proof will be based on the following well known result (see Theorem 6.2.3 in [START_REF] Morosawa | Holomorphic dynamics[END_REF]). Proposition 4.5.8. Let F be an invertible map with repulsive fixed point 0. Suppose that the eigenvalues λ, µ of DF0 satisfy the condition |λ| 2 > |µ| ≥ |λ| > 1. Then F is holomorphically conjugate to Diag λ,µ .

For the resonant case we use the following lemma : Lemma 4.5.9. Let F be an invertible map in a neighborhood of 0 with a repelling fixed point at 0. Let us denote the eigenvalues of DF0 by λ, µ. Let us suppose that ϕ1 and ϕ2 are two holomorphic maps conjugating F to Diag λ,µ . Then ϕ

-1 1 • ϕ2 is linear. Proof. Let us write χ = ϕ -1 1 • ϕ2 = (χ 1 , χ 2 ) and χ j (z) = k≥1 χ j k • z k where z k = z k 1 1 • z k 2
2 and j ∈ {1, 2}. We have that χ commutes with L λ,µ . Then :

λ • |k|≥1 χ 1 k • z k = |k|≥1 χ 1 k • (Diag λ,µ (z)) k and µ • |k|≥1 χ 2 k • z k = |k|≥1 χ 2 k • (Diag λ,µ (z)) k
In particular, since λ, µ = 1 this implies that χ 1 k = χ 2 k = 0 for every |k| > 1.

We now prove Lemma 4.5.7.

Proof of Lemma 4.5.7. We take a neighborhood V of 0 in D 3 such that for every ε ∈

V we have that |λ(ε)| 2 < |µ(ε)| and |µ(ε)| 2 < |λ(ε)|.
It is a consequence of Theorem 6.2.3 of [START_REF] Morosawa | Holomorphic dynamics[END_REF] (this result goes back to Poincaré) that for every ε ∈ V, fε is holomorphically linearizable at 0 in some neighborhood U ε of 0. We show here that the linearizing map ϕ fε varies continuously with ε in the C 0 topology. This will imply in particular that the neighborhood U ε can be taken uniform U in ε.

For this we follow the proof of Theorem 6.2.3 of [START_REF] Morosawa | Holomorphic dynamics[END_REF] and its notations. The proof is divided into 3 steps.

The first step itself is divided into two steps. The first one is a linear change of coordinates that we will denote by ϕ lin . ϕ lin is not unique but it becomes unique if w1 is sent on e1 and w2 is sent on e2. Thus this map ϕ lin = ϕ lin (fε) is uniquely defined and varies continuously in the C 0 topology. The second one is a change of coordinates that we will denote ϕ1

(z) = (ϕ 1 1 (z1), z2) such that ϕ 1 1 (z1) = z1 + +∞ k=0 1 λ k+1 •A(f k ε (z1))
. There exists a constant K such that |A(z1)| ≤ K|z1| 2 for every map fε with ε ∈ V (reducing V if necessary). Since ϕ 1 1 is the sum of a normally convergent series whose terms all vary continuously, ϕ 1 1 and then ϕ1 •ϕ lin vary continuously in the C 0 topology. After these two changes of coordinates, fε is reduced to the form (z1, z2) → (λ • z1, g(z1, z2)) with g varying continuously.

In the second step, one defines some infinite product γ(z) = +∞ k=0 (1 + B(F n (z)). We have |B(z)| ≤ K |z| 2 and reducing V if necessary, we can suppose this estimate is true for every ε ∈ V. Then γ is normally convergent and varies continuously. The map ψ such that ∂ψ ∂z 2 then still varies continuously, just as ϕ2(z) = (z1, ψ(z)). After this third change of coordinates, fε is reduced to the form (z1, z2) → (λ • z1, µ • z2 + h(z1)) with h varying continuously.

Finally, the last change of coordinates ϕ3 is of the form (z1, η(z)) with η(z) = z2 +q(z1) and q(z1) = q1 • z1 + q2 • z 2 1 + ... with qj = h j µ-λ j for each j ≥ 2. Since h varies continuously, so do the coefficients qj for j ≥ 2. Since ϕ = ϕ3 • ϕ2 • ϕ1 • ϕ lin for every ε ∈ V, we have that q1 is uniquely defined by Lemma 4.5.9 and varies continuously. Finally, q and then η and ϕ3 vary continuously. This implies that for every ε ∈ V, fε is holomorphically linearizable by ϕ fε = ϕ3 • ϕ2 • ϕ1 • ϕ lin . Moreover, ϕ fε varies continuously in the C 0 topology.

Remind that c is a point of P 2 (C) which was defined in 4.3.17 and that the notation p(L ) was introduced at the beginning of section 4.4. In the following lemma, we perturb L = L ε 1 into L = L ε 1 ,ε 2 to ensure that the critical point c is not singular. Lemma 4.5.10. There exists a holomorphic family of holomorphic maps of P

2 (C) denoted by (L ε 1 ,ε 2 ) (ε 1 ,ε 2 )∈D 2 such that : 1. for every ε1 ∈ D, L ε 1 ,0 = L ε 1 2. pc is in the postcritical set of L ε 1 ,ε 2 and the postcritical set is not singular at pc for ε2 = 0 3. p(L ε 1 ,ε 2 ) = pc is periodic for L ε 1 ,ε 2 and is in the forward orbit of c : pc = (L ε 1 ,ε 2 ) nc (c) and (L ε 1 ,ε 2 ) npc (pc) = pc 4. D((L ε 1 ,ε 2 ) npc )p c = D(L npc )p c
Proof. We first make an invertible linear change of coordinates so that in the new coordinates [x1, x2, x3], the point c is equal to [0, 0, 1] and the point L(c) is in the chart {x3 = 0}. We choose homogenous polynomials of degree 1 in the variables x1, x2, x3 denoted by R2, . . . , Rn c +npc-1 such that :

R2(L(c)) = • • • = Rn c -1(L nc-1 (c)) = Rn c (pc) = • • • = Rn c +npc-1(L npc-1 (pc)) = 0 (7) R2(c) = 0, • • • , Rn c -1(c) = 0 , Rn c (c) = 0, • • • , Rn c +npc-1(c) = 0 (8) 
This is possible since c, . . . , L npc-1 (pc) are distinct. We denote :

γ1(x1, x2) = 2≤k≤nc+npc-1 (R k (x1, x2, 1)) 2
In {x3 = 0}, the critical set of L is the set {Jac(P ) = 0} where Jac(P ) is equal to

∂P 1 ∂x 1 • ∂P 2 ∂x 2 - ∂P 1 ∂x 2 • ∂P 2 ∂x 1 .
The critical set at c is not singular if the gradient of the map

(x1, x2) → ∂P 1 ∂x 1 • ∂P 2 ∂x 2 - ∂P 1 ∂x 2 • ∂P 2 ∂x 1 is non zero at c, in particular if : ∂ ∂x1 (Jac(P ))(c) = ∂ 2 P 1 ∂x 2 1 • ∂P 2 ∂x2 + ∂P 1 ∂x1 • ∂ 2 P 2 ∂x1∂x2 - ∂ 2 P 1 ∂x1∂x2 • ∂P 2 ∂x1 - ∂P 1 ∂x2 • ∂ 2 P 2 ∂x 2 1 = 0
If this is the case, there is nothing to do and we can take L = L . Let us suppose this is not so. We distinguish two cases.

First case : we suppose that ∂P 2 ∂x 2 = 0. For every ε2 ∈ C we consider the following perturbation of L defined by L ε 1 ,ε 2 = L = ( ∂x 2 . Then, it is non zero for ε2 ∈ D * . This implies that the critical set is not singular at c. Then there is a component of the postcritical set at c which is not singular. Since DLc, • • • ,DL L npc (pc) are not singular, there is a component of the postcritical set at pc which is not singular. Thus item 2 is true.

Second case : we suppose that ∂P 2 ∂x 2 = 0. For every ε2 ∈ C we consider the following perturbation of L defined by L ε 1 ,ε 2 = L = ( ∂x 1 = 0, this implies that we still have Jac(P )(c) = 0 and the point c is still critical. The only second order partial derivative which depends on ε2 is :

∂ 2 P 2 ∂x 1 ∂x 2 (c) = ∂ 2 P 2
∂x 1 ∂x 2 (c)+γ1(c)• ε2 with γ1(c) = 0. Then the map ε2 → ∂ ∂x 1 (Jac(P ))(c) is a polynomial of degree 2 in ε2 of non zero coefficient of degree 2 equal to (γ1(c)) 2 . Then, rescaling if necessary, it is non zero for ε2 ∈ D * . As in case 1, we conclude that item 2 is satisfied. This concludes the proof of the proposition.

Remind that w1 and w2 were defined just at the beginning of this subsection. The notation p(L ) was introduced at the beginning of section 4.4. In the following lemma, we perturb the periodic orbit pc in such a way that we can choose the two eigenvalues at this periodic point . For every ε3, κi ∈ C we consider the following perturbation of L defined by L ε 1 ,ε 2 ,ε 3 = L = ( 

Dp c (L ) np c = a np c • I2 + ε3 • γ2(pc) • κ 1 κ 2 κ 3 κ 4 • (Dp c L) -1
Let us denote by M the matrix whose two columns are DΠpc(w1) and DΠpc(w2). We choose :

κ 1 κ 2 κ 3 κ 4 = 1 γ2(pc) • M • 1 0 0 0 • M -1 • (Dp c L)
Then :

Dp c (L ) np c = a np c • M • 1 + 3 0 0 1 • M -1
This equality implies that items 3,4 and 5 are satisfied and this ends the proof of the proposition.

  slope bounded by ε relative to the projection onto w. A (ε, w)-quasidiameter of a ball B is a (ε, w)-quasi-line C intersecting the ball of same center as B and of radius1 10 times the radius of B.

3. 1 Definitions

 1 Definition 3.1.1. A Lattès map is a holomorphic endomorphisms of P 2 (C) which is semi-conjugate to an affine map on the torus. For such a map, we have the following commutative diagram :

Case 5 : 1 ℘ 1 ) 2 = 1 ,

 51121 δ = {X = Z} Indeed, X = Z if and only if ( ℘(x)℘(y)+e 2 (x)℘(y)-e 2 this means if and only if 4e2 1 ℘(x)℘(y) = 0. Π -1 ({X = Z}) is an union of compact lines of the torus of the form {x0} × T 1 and T 1 × {y0} where the x0, y0 are in ℘ -1 ({0}).

Case 6 :

 6 δ = {Z = 0} Indeed, Z = 0 if and only if ℘ (x1)℘(y1) -℘(x1)℘ (y1) = 0. Π -1 ({Z = 0}) contains the compact line of the torus {x1 = y1} (in the coordinates x1, y1).

Lemma 4 . 2 . 2 .

 422 There exists a ball B = B(T, A) ⊂ T (remind we have fixed euclidean coordinates on T) where Π is invertible such that Π( B) {[z1, z2, z3] : z3 = 0}, a constant σ = σ (T, A) > 0 and n balls V1, ..., Vn ⊂ Mat2(C) with :

Notation 4 . 2 . 4 .

 424 In the following, we still denote ||M || the norm ||.||2,2 of a fixed matrix. We will denote ||DΠ|| = sup p∈ B ||DΠp|| and ||DΠ -1 || = sup p∈ B ||(DΠ -1 ) Π(p) ||.

  From 4.2.7 and 4.2.8 Lemma 4.1.3 gives us a new constant ν = ν(m, ξ) > 0.

  21. We fix the polynomial map H = H(V1, ..., Vn, B, θ0) of C 2 of degree m = d and (n + 1) balls B0, ..., Bn ⊂ B given by Lemma 4.1.3 and corresponding to this ball B and the value θ0 = θ1 -2 arg(a) where θ1 was defined in 4.3.19. Each of them has its radius larger than ν times the radius of B. We take (n + 1) balls B0 ⊂ B ∩ Π -1 (B0), ..., Bn ⊂ B ∩ Π -1 (Bn) of radius ι • (ν • rad(B)). Then the quotient rad(B j ) rad(B) is equal for each j ∈ {1, ..., n} to ι•(ν•rad(B))

a 2 • 2 •

 22 D(H) g(Π(p)) belongs to |h(Π(p 0 ))| |a| Vj and by the definition of Vj (see Lemma 4.2.2). Lemma 4.4.7. We have : ||η1|| < 1 4|a| 2 • ε1 • |h(Π(p0))| • min 1≤j≤n rj Proof. Since 2 • |H|∞ ≤ ξ and by Lemma 4.2.3 for every p ∈ B ∩ G (B) we have :

  p0))| • min 1≤j≤n rj by the inequality on ξ. Lemma 4.4.8. We have : ||η2|| < 1 4|a| 2 .ε1.|h(Π(p0))|. min 1≤j≤n rj, Proof.

Proposition 4 . 5 . 3 .

 453 Let B be as in 4.3.20. There exists a neighborhood W(L) of L in Hol d such that : every map L = L ε 1 as in Proposition 4.4.4 is accumulated by maps

Lemma 4 . 5 . 6 .

 456 Then by the Cauchy inequality this implies that |(γ) (s)| ≤ θ . Notation 4.5.5. We denote for every (λ, µ) ∈ (C * ) 2 by Diag λ,µ the following map from C 2 to C 2 : Diag λ,µ : (z1, z2) → (λ • z1, µ • z2) The linear part A ∈ GLattès of L is diagonalizable.

3 ) 2 1

 32 with P 2 = P 2 , P 3 = P 3 and : P 1 (x1, x2) = P 1 (x1, x2) + ε2 • γ1(x1, x2) • x Because of the choice of the degree d in 4.2.13 and 4.2.14, we have deg(P 1 ) ≤ deg(P 1 ). Since the property of being a holomorphic mapping is open, L is a holomorphic mapping on P 2 (C) for sufficiently small values of ε2. Then, item 1 is obvious. Because of the quadratic terms R 2 k in the definition of γ1, c stays preperiodic (with the same periodic orbit p(L ε 1 ,ε 2 ) = pc) for L ε 1 ,ε 2 , this implies item 3. Still because of the quadratic terms R 2 k in γ1 we have that D L(c) (L ε 1 ,ε 2 ) = D L(c) (L ε 1 ) = D L(c) L, • • • , D (L) npc -1 (pc) (L ε 1 ,ε 2 ) = D (L) npc -1 (pc) (L ε 1 ) = D (L) npc -1 (pc) L,so we both have that pc is in the postcritical set of L ε 1 ,ε 2 and that item 4 is true. Moreover we have DcL = DcL so c is still critical. The only second order partial derivative which depends on ε2 is : + 2 • γ1(c) • ε2 with γ1(c) = 0. Then the map ε2 → ∂ ∂x 1 (Jac(P ))(c) is an affine map in ε2 of non zero coefficient equal to 2•γ1(c)• ∂P 2

3 ) 2 ∂x 2

 322 with P 3 = P 3 and :P 1 (x1, x2) = P 1 (x1, x2) + ε2 • γ1(x1, x2) • x1 P 2 (x1, x2) = P 2 (x1, x2) + ε2 • γ1(x1, x2) • x1x2Because of the choice of the degree d in 4.2.13 and 4.2.14, we have deg(P 1 ) ≤ deg(P 1 ) and deg(P 2 ) ≤ deg(P 2 ). Since the property of being a holomorphic mapping is open, L is a holomorphic mapping for sufficiently small values of 2. Then, item 1 is obvious. As in the first case, items 3 and 4 are true and pc stays postcritical. We have :DcL = DcL + ε2 • γ1(c)Since at the point c, we have both ∂P = 0 and Jac(P )(c) =

Lemma 4 . 5 . 11 .

 4511 There exists a holomorphic family of holomorphic maps of P 2 (C) denoted by(L ε 1 ,ε 2 ,ε 3 ) (ε 1 ,ε 2 ,ε 3 )∈D 3 such that : 1. for every ε1, ε2 ∈ D, L ε 1 ,ε 2 ,0 = L ε 1 ,ε 2 2. p(L ) = pc is periodic for L ((L ) npc (pc) = pc) and is in the postcritical set of L (pc = (L ) nc (c))3. if ε3 > 0, then the eigenvalues λ, µ of the periodic point pc are such that :|µ| 2 > |λ| > |µ|4. the eigenvector wµ associated to µ at pc is equal to DΠpc(w2) and then transverse to the postcritical set at pc 5. the eigenvector w λ associated to λ at pc is equal to DΠpc(w1)Proof. We first make an invertible linear change of coordinates so that in the new coordinates [y1, y2, y3], the point pc is equal to [0, 0, 1] and the point L(pc) is in the chart {y3 = 0}. We choose homogenous polynomials of degree 1 in the variables y1, y2, y3 denoted by S1, . . . , Sn c -1, Sn c +1, . . . , Sn c +npc-1 such that :S1(c) = S2(L(c)) = • • • = Sn c -1(L nc-1 (c)) = Sn c +1(L(pc)) = • • • = Sn c +npc-1(L npc-1 (pc)) = 0 (9) S1(pc) = 0 , S2(pc) = 0, • • • , Sn c -1(pc) = 0 , Sn c +1(pc) = 0, • • • , Sn c +npc-1(pc) = 0(10) This is possible since c, . . . , L npc-1 (pc) are distinct. We denote : γ2(y1, y2) = j =nc (Sj(y1, y2, 1))2 

3 )κ 2 κ 3 κ 4 with

 34 with P 3 = P 3 and :P 1 (y1, y2) = P 1 (y1, y2) + ε3 • γ2(y1, y2) • (κ1y1 + κ2y2) P 2 (y1, y2) = P 2 (y1, y2) + ε3 • γ2(y1, y2) • (κ3y1 + κ4y2)Because of the choice of the degree d in 4.2.13 and 4.2.14, we have deg(P 1 ) ≤ deg(P 1 ) and deg(P 2 ) ≤ deg(P 2 ). Since the property of being a holomorphic mapping is open, L is a holomorphic mapping on P 2 (C) for sufficiently small values of ε3. Then, item 1 is obvious. Then, because of the quadratic terms S 2 j in γ2, it is clear that c stays preperiodic (with the same periodic orbit pc) for L and D L(pc) L = D L(pc) L, • • • , D L npc -1 (pc) L = D L npc -1 (pc) L.This shows item 2. In the chart {y3 = 0}, we have :Dp c L = Dp c L + ε3 • γ2(pc) • κ 1 γ2(pc) = 0. We have D L(pc) L = D L(pc) L, • • • , D L npc -1 (pc) L = D L npc -1 (pc)L. We also have the equality : Dp c L • ... • D L npc -1 (pc) L = a np c • I2 because the period np c is a multiple of the order of A (see Proposition 3.3.1). Then we have :

We are now able to prove Proposition 4.5.3.

Proof of Proposition 4.5.3 . We consider the holomorphic family of holomorphic maps (L ε 1 ,ε 2 ,ε 3 ) (ε 1 ,ε 2 ,ε 3 )∈D 3 . According to Lemma 4.5.11, every L ε 1 ,ε 2 ,ε 3 is diagonalizable and admits w1 and w2 as eigenvectors. Then according to Lemma 4.5.7, we can take some uniform open set set B lin ⊂ P 2 (C), some ball B lin , such that there exists ϕ L defined on B lin with values in B lin ⊂ C 2 such that L is linearizable by ϕ L : B lin → B lin . Moreover ϕ L varies continuously with L . We denote by B lin some ball in Π -1 (B lin ) ⊂ T. Lemma 4.5.12. Let Γ be the diameter of B lin of direction w1. Then there exists n0 such that 1≤n≤n 0 L n (Γ ) contains a (0, w1)-quasi-diameter of B.

Proof. 1≤n≤+∞ L n (Γ ) is dense in T by the choice of w1. Then there exists n0 such that 1≤n≤n 0 L n (Γ ) contains a (0, w1)-quasi-diameter of B.

From Lemma 4.5.9, we know that ϕL • Π is linear. Rewriting this result in P 2 (C) we have : Corollary 4.5.13. Let Γ be the diameter of B lin of direction (ϕL • Π)(w1). Then there exists n0 such that

By continuity of L → ϕ L (see Lemma 4.5.7), we have the following perturbation result : Corollary 4.5.14. There exists θ > 0, some neighborhood W2(L) of L in Hol d and an integer n0 such that for every (θ , (ϕL

Remind that w2 is not tangent to Π -1 (PCrit(L)) at pc. We can take a neighborhood W3(L) of L such that every map in W3(L) for which pc is in the postcritical set still satisfies this condition. We consider W(L) = W1(L) ∩ W2(L) ∩ W3(L). Since the conclusions 1,2,3 and 4 of Lemma 4.5.11 are satisfied, according to Lemma 4.5.4, there exists a disk Γ included in the postcritical set of L such that Π -1 ( Γ) contains a (θ , w1)-quasi-diameter of B lin (remind θ was defined in Lemma 4.5.14). According to Lemma 4.5.14, 1≤n≤n 0 (L ) n (Π -1 ( Γ)) contains a (θ, w1)-quasi-diameter of B so the conclusion follows.

Proof of the main result

We consider the perturbations L in W(L) as in the previous subsection and such that L = L ε 1 ,ε 2 ,ε 3 ∈ Xε 1 (the neighborhood Xε 1 of Lε 1 was introduced in Proposition 4.4.5, all maps in Xε 1 have a correcting IFS). Let us consider the union of all the sets G j (B) ⊂ B for 1 ≤ j ≤ q. Reducing W(L) if necessary, by continuity it contains a grid of balls

Proposition 5.0.15. There exists an integer d (depending only from T) such that for every Lattès map L inducing an affine map on T of linear part aA, every map L as given in Proposition 4.5.3 is such that :

1. 1≤j≤q G j (B) contains a grid of balls G 1 = (u 1 , o 1 , nG, r 1 ) with q = (2nG + 1) 4 such that each G j (B) contains a ball of G 1

2. the contraction factor of the IFS (G 1 , ..., G q ) is |a| ≥ 2

3. there exist (n + 1) balls B0, B1, ..., Bn ⊂ B of relative size larger than ν, such that the 3 4 -parts of B0, B1, ..., Bn are included in the hull of G 1 , and satisfying the following property : for each 1 ≤ j ≤ q such that G j (B) ⊂ Bp, G j is quasilinear of type (x, p) with x < x(u 1 ) and :

Proof. The first item was stated before the proposition. The second one comes from 4.2.12 and the fourth one from 4.3.20. The fifth one can be obtained from a reduction of W(L) if necessary. The last one is a consequence of Proposition 4.5.3. We show the third item. The existence of the balls Bp of relative size ν is a consequence of Proposition 4.4.5. The inclusions B0, B1, ..., Bn ⊂ B and the inequality on nG ensure that there are sufficiently many G j (B) so that the 3 4 -parts of B0, B1, ..., Bn are included in the hull of G 1 . Let us now consider the (n + 1) sets j≤q G j (Bp) ⊂ B for 0 ≤ p ≤ n. Reducing W(L) a last time if necessary, by continuity each of them contains a grid of balls Γ 1 p = (u 1 , o 1 p , nG, s 1 ) with s 1 ≥ ν•r 1 2 . The property stated in item 3 is also a consequence of Proposition 4.4.5.

The intersection j≥1 Gj(Π(B)) is in the Julia set of L. Since j≥1 Gj(Π(B)) is a basic repeller, it is a consequence of Lemma 2.3 of [START_REF] Dujardin | Non density of stability for holomorphic mappings on P k[END_REF] that j≥1 G j (Π(B)) is in the Julia set of L for sufficiently small perturbations L of L. According to Proposition 2.3.1 (beware that the maps G j in our case correspond to the maps Gj of the proposition), we can conclude this gives us persistent intersections between the Julia set and the postcritical set. This is true for every L defined as before and we know that L is accumulated by such maps inside Hol d . By [START_REF] Berteloot | Perturbations d'exemples de Lattès et dimension de Hausdorff du lieu de bifurcation[END_REF] (see Proposition 2.5 of [START_REF] Dujardin | Non density of stability for holomorphic mappings on P k[END_REF] for a result in our case), we know that persistent intersections between the postcritical set and a hyperbolic repeller inside the Julia set imply the presence of open sets inside the bifurcation locus. Since they are only finitely many A ∈ GLattès for a given torus T, d is well defined. This proves the final result.