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Asymptotic behavior for the Vlasov-Poisson
equations with strong external magnetic field.

Straight magnetic field lines

Mihäı BOSTAN ∗

(January 14, 2018)

Abstract

The subject matter of this paper concerns the Vlasov-Poisson equations in
the framework of magnetic confinement . We study the behavior of the Vlasov-
Poisson system with strong external magnetic field, when neglecting the curva-
ture of the magnetic lines. The arguments rely on averaging techniques. We
intend to determine second order approximations and to retrieve the usual elec-
tric cross field drift, the magnetic gradient drift, etc.

Keywords: Vlasov-Poisson system, two-scale analysis, averaging, homogenization.

AMS classification: 35Q75, 78A35, 82D10.

1 Introduction

Let f = f(t, x, v) be the presence density of a population of charged particles of
mass m, charge q, depending on time t, position x and velocity v. Motivated by the
magnetic confinement, we study the Vlasov-Poisson equations, with a strong external
non vanishing magnetic field. Neglecting the curvature of the magnetic lines, we assume
that the external magnetic field is orthogonal to Ox1, Ox2. In the two dimensional
setting x = (x1, x2), v = (v1, v2), the Vlasov equation writes

∂tf
ε+v ·∇xf

ε+
q

m

{
E[f ε(t)](x) +Bε(x) ⊥v

}
·∇vf

ε = 0, (t, x, v) ∈ R+×R2×R2. (1)

Here the notation ⊥(·) stands for the rotation of angle −π/2, i.e., ⊥v = R(−π/2)v =
(v2,−v1), v = (v1, v2) ∈ R2 and the magnetic field writes Bε(x) = (0, 0, Bε(x)) =
(0, 0, B(x)/ε), where B(x) is a given function and ε > 0 is a small parameter. The
electric field E[f ε(t)] = −∇xΦ[f ε(t)] derives from the potential

Φ[f ε(t)](x) = − q

2πε0

∫
R2

∫
R2

ln |x− x′|f ε(t, x′, v′) dv′dx′ (2)
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satisfying the Poisson equation

−ε0∆xΦ[f ε(t)] = q

∫
R2

f ε(t, x, v) dv, (t, x) ∈ R+ × R2

whose fundamental solution is z → − 1
2π

ln |z|, z ∈ R2 \ {0}. Here ε0 represents the
electric permittivity. For any presence density f = f(x, v), the notation E[f ] stands
for the Poisson electric field

E[f ](x) =
q

2πε0

∫
R2

∫
R2

f(x′, v′)
x− x′

|x− x′|2
dv′dx′ (3)

and ρ[f ], j[f ] are the charge and current densities respectively

ρ[f ] = q

∫
R2

f(·, v) dv, j[f ] = q

∫
R2

f(·, v)v dv.

We complete the above system by the initial condition

f ε(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2. (4)

We intend to investigate the asymptotic behavior of the problem (1), (3), (4) when ε
goes to 0. We refer to [17, 18, 19, 24, 25, 11, 13, 15, 22, 3, 5, 6, 7] for previous results
on this topic where, most of the time, the authors studied the case of uniform magnetic
fields (see also [20] for results with magnetic field of constant direction but variable
strenght and with magnetic field of constant strenght but variable direction).

Solving numerically (1), (2), when ε becomes small, requires a huge amount of
computations. For example, when explicit numerical methods are used, CFL stability
conditions apply, leading to a small time step of order ε. One alternative is to construct
suitable numerical schemes, preserving the asymptotic cf. [14, 16, 12]. Here we have in
mind another possibility. Instead of solving the problem (1), (2), which appears in a
singular form, due to the large magnetic field, we are looking for a regular reformulation
of it, whose numerical resolution is not penalized anymore by the smallness of the
parameter ε. Certainly, the new problem will not be equivalent to the original one,
but up to a second order term with respect to ε, the solutions will coincide. Therefore,
when ε becomes small we can obtain very good approximations for the Vlasov-Poisson
system with large external magnetic field, with a numerical cost not depending on ε.

The derivation of the regular formulation follows by averaging with respect to the
fast cyclotronic motion, whose invariants are the Larmor center and radius. Its well
posedness is established : a classical solution exists globally in time and it is unique.
For any k ∈ N, the notation Ck

b stands for k times continuously differentiable functions,
whose all partial derivatives, up to order k, are bounded.

Theorem 1.1
Consider a non negative, smooth, compactly supported initial presence density f̃in ∈
C1
c (R2×R2) and a smooth magnetic field Bε = B

ε
∈ C2

b (R2) such that infx∈R2 |Bε(x)| =
Bε

0 > 0 (that is Bε
0 = B0

ε
, infx∈R2 |B(x)| = B0 > 0). There is a unique presence density

f̃ ∈ C1(R+×R2×R2) whose restriction on [0, T ]×R2×R2 is compactly supported for
any T ∈ R+, whose Poisson electric field belongs to C1(R+ × R2)

E[f̃(t)](x) =
q

2πε0

∫
R2

∫
R2

f̃(t, x′, ṽ′)
x− x′

|x− x′|2
dṽ′dx′, (t, x) ∈ R+ × R2 (5)
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satisfying

∂tf̃ +

(
⊥E[f̃(t)]

Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
· ∇xf̃ +

1

2

(
⊥E[f̃(t)]

Bε
· ∇xB

ε

Bε

)
ṽ · ∇ṽf̃ = 0 (6)

f̃(0, x, ṽ) = f̃in(x, ṽ), (x, ṽ) ∈ R2 × R2.

Moreover, if for some integer k ≥ 2 we have f̃in ∈ Ck
c (R2 × R2), Bε ∈ Ck+1(R2), then

f̃ ∈ Ck(R+ × R2 × R2) and E[f̃ ] ∈ Ck(R+ × R2).

We prove that the solution of the previous model approximates the solution of the
Vlasov-Poisson system (1), (2) up to a second order term with respect to ε.

Theorem 1.2
Let B ∈ C3

b (R2) be a smooth magnetic field, such that infx∈R2 |B(x)| = B0 > 0. Con-
sider a family of non negative, smooth, uniformly compactly supported presence densi-
ties (gε)ε>0 ⊂ C2

c (R2 × R2)

∃ Rx̃, Rṽ > 0 : supp gε ⊂ {(x̃, ṽ) ∈ R2×R2 : |x̃| ≤ Rx̃ and |ṽ| ≤ Rṽ}, sup
ε>0
‖gε‖C2 < +∞.

We assume that the presence densities are well prepared i.e.,

sup
ε>0

‖⊥ṽ · ∇ṽg
ε‖L2(R2×R2)

ε2
< +∞.

We denote by (f ε)ε>0 the solutions of the Vlasov-Poisson equations with external mag-
netic field (1), (2) corresponding to the initial conditions

f ε(0, x, v) = gε
(
x+ ε

⊥v

ωc
, v − ε

⊥E[gε]

B

)
, (x, v) ∈ R2 × R2, ε > 0.

Then for any T ∈ R+, there is εT > 0 and CT > 0 such that for any 0 < ε ≤ εT

sup
t∈[0,T ]


∫
R2

∫
R2

[
f ε(t, x, v)− f̃

(
t, x+ ε

⊥v

ωc
, v − ε

⊥E[f̃(t)]

B

)]2
dvdx


1/2

≤ CT ε
2

where f̃ is the solution of (6), (5) corresponding to the initial condition f̃(0) = 〈gε〉
(here the notation 〈·〉 stands for the average along the characteristic flow of the vector
field ωc(x) ⊥v · ∇v, see Proposition 3.1).

When the magnetic field is uniform, we obtain second order approximations indepen-
dently of the initial conditions being well prepared or not, see also [25].

Theorem 1.3 Let fin ∈ C2
c (R2 × R2) be a non negative, smooth, compactly supported

presence density. We denote by (f ε)ε>0 the solutions of the Vlasov-Poisson equations
(1), (2) with uniform external magnetic field B

ε
6= 0, corresponding to the initial con-

dition fin. Then for any T ∈ R+, there is a constant CT > 0 such that for any ε > 0

sup
t∈[0,T ]


∫
R2

∫
R2

[
f ε(t, x, v)− F̃

(
t, x+ ε

⊥v

ωc
,R(ωc

t

ε
)

(
v − ε

⊥E[F̃ (t)]

B

))]2
dvdx


1/2

≤ CT ε
2
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where F̃ is the solution of

∂tF̃ +ε
⊥E[F̃ (t)]

B
·∇XF̃ +ε

⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ )

2ε0B
·∇Ṽ F̃ = 0, (t,X, Ṽ ) ∈ R+×R2×R2

corresponding to the initial condition

F̃ (0, X, Ṽ ) = fin

(
X − ε

⊥Ṽ

ωc
, Ṽ + ε

⊥E[fin](X)

B

)
, (X, Ṽ ) ∈ R2 × R2.

The above results extend to the three dimensional Vlasov-Poisson system, when the
curvature of the magnetic lines is not neglected anymore. The regular reformulations
of this problem will be the topic of a future work [10].

Our paper is organized as follows. In Section 2 we discuss the well posedness of
the Vlasov-Poisson problem with external magnetic field. The regular reformulation of
the Vlasov-Poisson problem is derived by formal computations in Section 3. Its well
posedness is established in Section 4. The error estimate, when the initial conditions
are well prepared, is shown in Section 5 and relies on the construction of a corrector
term. More general results, for initial conditions not necessarily well prepared, are
discussed in the last section, for uniform magnetic fields.

2 Strong solutions for the Vlasov-Poisson problem

with external magnetic field

The well posedness of the Vlasov-Poisson problem is well known. We refer to [1] for
weak solutions, and to [26, 21, 23] for strong solutions. Using essentially the same
arguments, leads to global existence and uniqueness for the strong solution of the
Vlasov-Poisson problem with external magnetic field. More exactly we prove the fol-
lowing result, see Appendix A for the main lines of the proof.

Theorem 2.1
Consider a non negative, smooth, compactly supported initial presence density fin ∈
C1
c (R2 × R2) and a smooth magnetic field B ∈ C1

b (R2). There is a unique presence
density f ∈ C1(R+ × R2 × R2), whose restriction on [0, T ] × R2 × R2 is compactly
supported for any T ∈ R+, whose Poisson electric field is smooth E[f ] ∈ C1(R+×R2),
satisfying

∂tf + v · ∇xf +
q

m

(
E[f(t)] +B ⊥v

)
· ∇vf = 0, (t, x, v) ∈ R+ × R2 × R2 (7)

E[f(t)](x) =
q

2πε0

∫
R2

∫
R2

f(t, x′, v′)
x− x′

|x− x′|2
dv′dx′, (t, x) ∈ R+ × R2 (8)

f(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2. (9)

Moreover, if for some integer k ≥ 2 we have fin ∈ Ck
c (R2 × R2), B ∈ Ck

b (R2), then
f ∈ Ck(R× R2 × R2) and E[f ] ∈ Ck(R+ × R2).
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Remark 2.1
1. The solution constructed in Theorem 2.1 satisfies the conservation of the particle
number and total energy

d

dt

∫
R2

∫
R2

f(t, x, v) dvdx = 0, t ∈ R+

d

dt

{∫
R2

∫
R2

m|v|2

2
f(t, x, v) dvdx− 1

4πε0

∫
R2

∫
R2

ρ[f(t)](x)ρ[f(t)](x′) ln |x− x′| dx′dx
}

= 0.

2. Notice also that we have the following balance for the total momentum

d

dt

∫
R2

∫
R2

f(t, x, v)mv dvdx− q
∫
R2

∫
R2

f(t, x, v)B(x) ⊥v dvdx =

∫
R2

ρ[f(t)]E[f(t)] dx

= ε0

∫
R2

1supp ρ[f(t)] divxE[f(t)] E[f(t)] dx

= ε0

∫
R2

1supp ρ[f(t)] divx

(
E[f(t)]⊗ E[f(t)]− |E[f(t)]|2

2
I2

)
dx = 0.

When the magnetic field is uniform, we obtain

d

dt

∫
R2

∫
R2

f(t, x, v)mv dvdx =
qB

m
⊥
(∫

R2

∫
R2

f(t, x, v)mv dvdx

)
saying that the total momentum rotates at the cyclotronic frequency ωc = qB

m∫
R2

∫
R2

f(t, x, v)mv dvdx = R(−ωct)
∫
R2

∫
R2

fin(x, v)mv dvdx, t ∈ R+.

3. By direct computation, when the magnetic field is uniform, we obtain[
v · ∇x +

q

m
(E[f ] +B ⊥v) · ∇v

](1

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 − 1

2

|v|2

ω2
c

)
= −E[f ]

B
· ⊥x.

Therefore, after integration by parts, we deduce

d

dt

∫
R2

∫
R2

f(t, x, v)

(
1

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 − 1

2

|v|2

ω2
c

)
dvdx = −

∫
R2

∫
R2

f
E[f ]

B
· ⊥x dvdx

= − ε0
Bq

∫
R2

1supp ρ[f(t)] divxE[f(t)] E[f(t)] · ⊥x dx

= − ε0
Bq

∫
R2

1supp ρ[f(t)] divx

(
E[f(t)]⊗ E[f(t)]− |E[f(t)]|2

2
I2

)
· ⊥x dx

=
ε0
Bq

∫
R2

1supp ρ[f(t)]

(
E[f(t)]⊗ E[f(t)]− |E[f(t)]|2

2
I2

)
: ∂⊥x x dx = 0.

3 Asymptotic analysis by formal arguments

We are interested on the asymptotic behavior of the presence densities (f ε)ε>0 satisfying
(1), (2), (4) when ε > 0 becomes small. We assume that the initial presence density
and the external magnetic field Bε(x) = B(x)/ε are smooth

fin ≥ 0, fin ∈ C1
c (R2 × R2), B ∈ C1

b (R2). (10)
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Under the above assumptions, we know by Theorem 2.1 that for every ε > 0, there is
a unique strong solution f ε ∈ C1(R+×R2×R2) (whose restriction on [0, T ]×R2×R2

is compactly supported for any T ∈ R+), Eε := E[f ε] ∈ C1(R+ × R2) for the Vlasov-
Poisson problem with external magnetic field Bε = B/ε. By the arguments in the
proof of Theorem 2.1 we also have uniform estimates with respect to ε > 0 for the L∞

norm of the electric field Eε and the size of the support of the presence density f ε. Let
us denote by (Xε, V ε)(t; t0, x, v) the characteristics associated to (1)

dXε

dt
=V ε(t; t0, x, v),

dV ε

dt
=
q

m

[
Eε(t,Xε(t; t0, x, v)) +Bε(Xε(t; t0, x, v)) ⊥V ε(t; t0, x, v)

]
Xε(t; t0, x, v) = x, V ε(t; t0, x, v) = v.

Clearly, the strong external magnetic field induces a large cyclotronic frequency ωεc =
qBε/m = ωc/ε, ωc = qB/m, and therefore a fast dynamics. The key point is to find
out quantities which are left invariant with respect to the fast motion. For example,
Xε(t) + ε ⊥V ε(t)/ωc(X

ε(t)) has small variations in time

d

dt

[
Xε(t) + ε

⊥V ε(t)

ωc(Xε(t))

]
= ε

[⊥Eε(t,Xε(t))

B(Xε(t))
−
⊥V ε(t)⊗ V ε(t)

ωc(Xε(t))2
∇xωc(X

ε(t))

]
.

Another quantity having small variations is R
(∫ t

0
ωc(Xε(σ))

ε
dσ
)

[V ε(t) − ε
⊥Eε(t,Xε(t))
B(Xε(t))

].

Indeed, notice that

d

dt

[
V ε(t)− ε

⊥Eε(t,Xε(t))

B(Xε(t))

]
=
ωc(X

ε(t))

ε
⊥
[
V ε(t)− ε

⊥Eε(t,Xε(t))

B(Xε(t))

]
− ε d

dt

[⊥Eε(t,Xε(t))

B(Xε(t))

]
and therefore

d

dt

{
R
(∫ t

0

ωc(X
ε(σ))

ε
dσ

)[
V ε(t)− ε

⊥Eε(t,Xε(t))

B(Xε(t))

]}
(11)

= −εR
(∫ t

0

ωc(X
ε(σ))

ε
dσ

)
d

dt

[⊥Eε(t,Xε(t))

B(Xε(t))

]
.

Certainly, the above quantities are not exactly left invariant. The idea will be to split
the advection field appearing in the Vlasov equation (1) into a fast and slow dynamics
in such a way that the previous quantities become invariant. First of all, in order
to simplify our computations, we perform a change of coordinates. Motivated by the
calculation in (11), we introduce the relative velocity with respect to the electric cross
field drift

ṽ = v − ε
⊥Eε(t, x)

B(x)
. (12)

Accordingly, at any time t ∈ R+, we consider the new presence density

f̃ ε(t, x, ṽ) = f ε
(
t, x, ṽ + ε

⊥E[f ε(t)](x)

B(x)

)
, (x, ṽ) ∈ R2 × R2. (13)
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Notice that this change of coordinates, which depends on the presence density through
the electric field, does not change the charge density

ρ[f̃ ε(t)] = q

∫
R2

f̃ ε(t, ·, ṽ) dṽ = q

∫
R2

f ε(t, ·, v) dv = ρ[f ε(t)], t ∈ R+.

Therefore the Poisson electric fields corresponding to the presence densities f ε, f̃ ε co-
incide

E[f ε(t)] = E[f̃ ε(t)], t ∈ R+

and we can use the same notation Eε(t) for denoting them. We add to (10) the
hypothesis

B0 := inf
x∈R2
|B(x)| > 0 or equivalently ω0 := inf

x∈R2
|ωc(x)| > 0 (14)

such that (12), (13) are well defined. Observe that the new presence densities (f̃ ε)ε>0

are smooth, f̃ ε ∈ C1(R+ × R2 × R2) and that the restrictions to [0, T ] × R2 × R2 are
compactly supported, uniformly with respect to ε ∈]0, 1], for any T ∈ R+. The last
statement comes from the similar property of the presence densities (f ε)ε>0, together
with the uniform bound for the electric fields (Eε)ε>0 and the hypothesis (14). A
straightforward computation leads to the following problem in the new coordinates
(x, ṽ)

∂tf̃
ε +

(
ṽ + ε

⊥Eε

B

)
· ∇xf̃

ε − ε
[
∂t

(⊥Eε

B

)
+ ∂x

(⊥Eε

B

)(
ṽ + ε

⊥Eε

B

)]
· ∇ṽf̃

ε (15)

+
ωc(x)

ε
⊥ṽ · ∇ṽf̃

ε = 0, (t, x, ṽ) ∈ R+ × R2 × R2

f̃ ε(0, x, ṽ) = fin

(
x, ṽ + ε

⊥E[fin](x)

B(x)

)
, (x, ṽ) ∈ R2 × R2.

Notice that the time derivative of the electric field Eε can be written in terms of the
presence density f ε (or f̃ ε). Indeed, thanks to the continuity equation

∂tρ[f ε] + divxj[f
ε] = 0

we have

∂tE[f ε] =
1

2πε0

∫
R2

∂tρ[f ε(t)](x− x′) x′

|x′|2
dx′

= − 1

2πε0

∫
R2

divxj[f
ε](x− x′) x′

|x′|2
dx′

= − 1

2πε0
divx

∫
R2

x′

|x′|2
⊗ j[f ε(t)](x− x′) dx′

= − 1

2πε0
divx

∫
R2

x− x′

|x− x′|2
⊗
(
j[f̃ ε(t)](x′) + ε

⊥Eε(t, x′)

B(x′)
ρ[f̃ ε(t)](x′)

)
dx′.

Finally the Vlasov equation (15) writes

∂tf̃
ε + εaε[f̃ ε(t)] · ∇x,ṽf̃

ε +
bε(x, ṽ)

ε
· ∇x,ṽf̃

ε = 0, (t, x, ṽ) ∈ R+ × R2 × R2 (16)

7



where bε · ∇x,ṽ = (εṽ+ ε2Aεx(x, ṽ)) · ∇x +ωc(x) ⊥ṽ · ∇ṽ and for any presence density f̃ ,
aε[f̃ ] · ∇x,ṽ stands for the vector field

aε[f̃ ] · ∇x,ṽ =

(
⊥E[f̃ ]

B
− Aεx

)
· ∇x +

[
−∂x

(
⊥E[f̃ ]

B

)(
ṽ + ε

⊥E[f̃ ]

B

)

+
1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗

(
j[f̃ ] + ε

⊥E[f̃ ]

B
ρ[f̃ ]

)
(x′) dx′

]
· ∇ṽ.

Here Aεx(x, ṽ) · ∇x is a vector field, to be determined later on, not depending on the
presence density f̃ . We will distinguish between the fast dynamics along the vector
field bε

ε
· ∇x,ṽ and the slow dynamics along the vector field εaε · ∇x,ṽ. We pick up the

vector field Aεx(x, ṽ) · ∇x entering the corrections in aε · ∇x,ṽ and bε · ∇x,ṽ such that

x + ε
⊥ṽ
ωc(x)

(which is not exactly the Larmor center, but a perturbation of it, up to a

term in ε2) is left invariant by the fast dynamics

bε · ∇x,ṽ

(
x+ ε

⊥ṽ

ωc(x)

)
= 0

that is (
I2 − ε

⊥ṽ ⊗∇ωc
ω2
c (x)

)
Aεx(x, ṽ) =

⊥ṽ ⊗ ṽ
ω2
c (x)

∇xωc. (17)

Obviously, when the magnetic field is uniform, i.e., ∇xωc = 0, there is no correction,
Aεx = 0. Notice that Aεx is well defined for any (x, ṽ) such that ε

⊥ṽ·∇ωc
ω2
c (x)

6= 1, that is, for

almost all (x, ṽ) ∈ R2 × R2.

Remark 3.1 The vector field in the Vlasov equation (16) is divergence free

divx,ṽ

(
εaε[f̃ ] +

bε

ε

)
= divx

(
⊥E[f̃ ]

B

)
− divṽ

[
∂x

(
⊥E[f̃ ]

B

)
ṽ

]
= 0.

Studying the asymptotic behavior of (16), when ε goes to 0 reduces to averaging with

respect to the flow of the fast dynamics generated by the advection field bε(x,ṽ)
ε
·∇x,ṽ cf.

[3, 5, 9, 6, 7]. Actually, the characteristic flow associated to bε(x, ṽ) · ∇x,ṽ is periodic,
which simplifies a lot the asymptotic analysis.

Proposition 3.1 We denote by (Xε(s;x, ṽ), Ṽε(s;x, ṽ)) the characteristic flow of the
autonomous vector field bε(x, ṽ) · ∇x,ṽ

dXε

ds
= εṼε(s;x, ṽ) + ε2Aεx(X

ε(s;x, ṽ), Ṽε(s;x, ṽ)),
dṼε

ds
= ωc(X

ε(s;x, ṽ)) ⊥Ṽε(s;x, ṽ)

Xε(0;x, ṽ) = x, Ṽε(0;x, ṽ) = ṽ

and by (X(s;x, ṽ), Ṽ(s;x, ṽ)) the characteristic flow of the autonomous vector field
b(x, ṽ) · ∇x,ṽ = ωc(x) ⊥ṽ · ∇ṽ

dX

ds
= 0,

dṼ

ds
= ωc(X(s;x, ṽ)) ⊥Ṽ(s;x, ṽ), X(0;x, ṽ) = x, Ṽ(0;x, ṽ) = ṽ.
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1. For ε > 0 small enough, the flow (Xε, Ṽε) is periodic. More exactly for any

(x, ṽ) ∈ R2 × R2 and ε > 0 such that ε |ṽ| ‖∇ωc‖L∞
ω2
0

< 1, the characteristic s →
(Xε, Ṽε)(s;x, ṽ) is periodic, with smallest period Sε(x, ṽ) > 0.

2. For any (x, ṽ) ∈ R2 × R2 and ε > 0 such that ε |ṽ| ‖∇ωc‖L∞
ω2
0

≤ 1
2

we have

|Xε(s;x, ṽ)− X(s;x, ṽ)| = |Xε(s;x, ṽ)− x| ≤ ε
4π

ω0

|ṽ|, s ∈ R

Sε(x, ṽ) ≤ 2π

ω0

, |Sε(x, ṽ)− S(x, ṽ)| ≤ ε‖∇ωc‖L∞
8π2|ṽ|
ω3
0

, S(x, ṽ) =
2π

|ωc(x)|
≤ 2π

ω0

and

|Ṽε(s;x, ṽ)−Ṽ(s;x, ṽ)| = |Ṽε(s;x, ṽ)−R(−sωc(x))ṽ| ≤ ε‖∇ωc‖L∞
8π2

ω2
0

|ṽ|2, s ∈
[
0,

2π

ω0

]
.

3. For any continuous function u ∈ C(R2 × R2) we define the averages along the
flows of b · ∇x,ṽ, b

ε · ∇x,ṽ

〈u〉 (x, ṽ) =
1

S(x, ṽ)

∫ S(x,ṽ)

0

u(X(s;x, ṽ), Ṽ(s;x, ṽ)) ds, (x, ṽ) ∈ R2 × R2

〈u〉ε (x, ṽ) =
1

Sε(x, ṽ)

∫ Sε(x,ṽ)

0

u(Xε(s;x, ṽ), Ṽε(s;x, ṽ)) ds, (x, ṽ) ∈ R2 × R2.

For any Rx, Rṽ ∈ R+ we have

‖ 〈u〉 ‖L∞(B(Rx)×B(Rṽ)) ≤ ‖u‖L∞(B(Rx)×B(Rṽ))

‖ 〈u〉ε ‖L∞(B(Rx)×B(Rṽ)) ≤ ‖u‖L∞(B(Rεx)×B(Rṽ)), Rε
x = Rx + 2εRṽ/ω0

where B(R) stands for the closed ball of radius R in R2.

4. If u is Lipschitz continuous, then for any (x, ṽ) ∈ R2 × R2 and ε > 0 such that

ε |ṽ| ‖∇ωc‖L∞
ω2
0

≤ 1
2

we have

| 〈u〉ε (x, ṽ)− 〈u〉 (x, ṽ)|
ε

≤ Lip(u)
4π

ω0

|ṽ|
[
1 + ‖∇ωc‖L∞

2π

ω0

|ṽ|
]

+ sup
|ṽ′|=|ṽ|

|u(x, ṽ′)|‖∇ωc‖L∞
8π

ω2
0

|ṽ|.

5. For any function u ∈ C1
c (R2 × R2) we have the inequality

‖u− 〈u〉 ‖L2(R2×R2) ≤
2π

ω0

‖b · ∇x,ṽu‖L2(R2×R2).

6. For any function u ∈ C1(R2 × R2), we have 〈u〉 ∈ C1(R2 × R2) and

〈∇xu〉 = ∇x 〈u〉 , ṽ · ∇ṽ 〈u〉 = 〈ṽ · ∇ṽu〉 , ⊥ṽ · ∇ṽ 〈u〉 = 0.
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Proof.
1. For any s ∈ R we have

Ṽε(s) = R
(
−
∫ s

0

ωc(X
ε(σ)) dσ

)
ṽ

and therefore |Ṽε(s)| = |ṽ|. By hypothesis (14) we know that ωc has constant sign, and
there is a unique Sε(x, ṽ) > 0 such that

sgn ωc

∫ Sε(x,ṽ)

0

ωc(X
ε(σ;x, ṽ)) dσ =

∫ Sε(x,ṽ)

0

|ωc(Xε(σ;x, ṽ))| dσ = 2π.

Clearly we have Ṽε(Sε(x, ṽ);x, ṽ) = ṽ and we claim that, for small ε, we also have
Xε(Sε(x, ṽ);x, ṽ) = x. Indeed, by using the invariance

Xε(Sε) + ε
⊥Ṽε(Sε)

ωc(Xε(Sε))
= x+ ε

⊥ṽ

ωc(x)

we deduce

|Xε(Sε)− x| ≤ ε
|ṽ|
ω2
0

|ωc(Xε(Sε))− ωc(x)| ≤ ε|ṽ| ‖∇ωc‖L∞

ω2
0

|Xε(Sε)− x|.

Therefore, if ε|ṽ| ‖∇ωc‖L∞
ω2
0

< 1, we obtain Xε(Sε(x, ṽ)) = x.

2. Notice that for any s ∈ R

det

(
I2 − ε

⊥Ṽε(s)⊗∇ωc(Xε(s))

ω2
c (X

ε(s))

)
= 1− ε

⊥Ṽε(s) · ∇ωc(Xε(s))

ω2
c (X

ε(s))

≥ 1− ε |Ṽ
ε(s)| |∇ωc(Xε(s))|
ω2
c (X

ε(s))

≥ 1− ε|ṽ| ‖∇ωc‖L∞

ω2
0

≥ 1

2

and therefore Aεx(X
ε(s), Ṽε(s)) is well defined for any s ∈ R. Moreover (17) implies

|Aεx(Xε(s), Ṽε(s))| ≤ |Ṽε(s)|2

ω2
c (X

ε(s))
|∇ωc(Xε(s))|+ ε

|Ṽε(s)| |∇ωc(Xε(s))|
ω2
c (X

ε(s))
|Aεx(Xε(s), Ṽε(s))|

≤ |ṽ|
2

ω2
0

‖∇ωc‖L∞ +
1

2
|Aεx(Xε(s), Ṽε(s))|

and thus

ε|Aεx(Xε(s), Ṽε(s))| ≤ 2
ε|ṽ|2 ‖∇ωc‖L∞

ω2
0

≤ |ṽ|.

By the previous point we know that s→ Xε(s;x, ṽ) is Sε(x, ṽ) periodic, where

Sε(x, ṽ) ≤ 1

ω0

∫ Sε(x,ṽ)

0

|ωc(Xε(σ))| dσ =
2π

ω0

.
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Finally we write for any s ∈ [0, Sε(x, ṽ)] ⊂ [0, 2π/ω0]

|Xε(s;x, ṽ)− x| =
∣∣∣∣∫ s

0

{εṼε(σ) + ε2Aεx(X
ε(σ), Ṽε(σ))} dσ

∣∣∣∣
≤ 2εSε(x, ṽ)|ṽ| ≤ ε

4π

ω0

|ṽ|.

By periodicity we have

|Xε(s;x, ṽ)− X(s;x, ṽ)| = |Xε(s;x, ṽ)− x| ≤ ε
4π

ω0

|ṽ|, s ∈ R.

Let us compare now Sε(x, ṽ) to S(x, ṽ) = 2π/|ωc(x)|, which is the smallest period of
the flow (X, Ṽ). Integrating over [0, Sε(x, ṽ)] the inequality

|ωc(x)| − ‖∇ωc‖L∞
ε4π|ṽ|
ω0

≤ |ωc(Xε(σ)| ≤ |ωc(x)|+ ‖∇ωc‖L∞
ε4π|ṽ|
ω0

one gets

Sε(x, ṽ)

(
|ωc(x)| − ‖∇ωc‖L∞

ε4π|ṽ|
ω0

)
≤ 2π ≤ Sε(x, ṽ)

(
|ωc(x)|+ ‖∇ωc‖L∞

ε4π|ṽ|
ω0

)
implying that ∣∣∣∣ 1

Sε(x, ṽ)
− 1

S(x, ṽ)

∣∣∣∣ ≤ ε‖∇ωc‖L∞
2|ṽ|
ω0

and

|Sε(x, ṽ)− S(x, ṽ)| = Sε(x, ṽ)S(x, ṽ)

∣∣∣∣ 1

Sε(x, ṽ)
− 1

S(x, ṽ)

∣∣∣∣ ≤ ε‖∇ωc‖L∞
8π2|ṽ|
ω3
0

.

Thanks to the inequality ‖R(θ) − R(θ′)‖ ≤ |θ − θ′|, θ, θ′ ∈ R, we obtain for any
s ∈ [0, 2π/ω0]

|Ṽε(s;x, ṽ)− Ṽ(s;x, ṽ)| =
∣∣∣∣R(−∫ s

0

ωc(X
ε(σ)) dσ

)
ṽ −R

(
−
∫ s

0

ωc(X(σ)) dσ

)
ṽ

∣∣∣∣
≤
∫ s

0

|ωc(Xε(σ))− ωc(X(σ))| dσ |ṽ|

≤ ε‖∇ωc‖L∞
8π2

ω2
0

|ṽ|2.

3. The first inequality is obvious, sice X(s;x, ṽ) = x and |Ṽ(s;x, ṽ)| = |ṽ|, for any
(s, x, ṽ) ∈ R × R2 × R2. For the second one use |Ṽε(s;x, ṽ)| = |ṽ| and notice that by
the invariance of the center

Xε(s;x, ṽ) + ε
⊥Ṽε(s;x, ṽ)

ωc(Xε(s;x, ṽ))
= x+ ε

⊥ṽ

ωc(x)

we have

|Xε(s;x, ṽ)| ≤ |x|+ |Xε(s;x, ṽ)− x| ≤ |x|+ 2ε
|ṽ|
ω0

, (s, x, ṽ) ∈ R× R2 × R2.
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4. It is a direct consequence of the previous statements. We have

| 〈u〉ε (x, ṽ)− 〈u〉 (x, ṽ)| ≤ 1

Sε(x, ṽ)

∫ Sε(x,ṽ)

0

|u(Xε(s), Ṽε(s))− u(X(s), Ṽ(s))| ds

+

∣∣∣∣ 1

Sε(x, ṽ)
− 1

S(x, ṽ)

∣∣∣∣ ∫ Sε(x,ṽ)

0

|u(X(s), Ṽ(s))| ds+
1

S(x, ṽ)

∣∣∣∣∣
∫ Sε(x,ṽ)

S(x,ṽ)

|u(X(s), Ṽ(s))| ds

∣∣∣∣∣
≤ Lip(u) sup

0≤s≤2π/ω0

(
|Xε(s)− X(s)|+ |Ṽε(s)− Ṽ(s)|

)
+

[∣∣∣∣ 1

Sε(x, ṽ)
− 1

S(x, ṽ)

∣∣∣∣Sε(x, ṽ) +
|Sε(x, ṽ)− S(x, ṽ)|

S(x, ṽ)

]
sup
|ṽ′|=|ṽ|

|u(x, ṽ′)|

≤ ε Lip(u)
4π

ω0

|ṽ|
[
1 + ‖∇ωc‖L∞

2π

ω0

|ṽ|
]

+ ε sup
|ṽ′|=|ṽ|

|u(x, ṽ′)|‖∇ωc‖L∞
8π

ω2
0

|ṽ|.

5. We can write for any (x, ṽ) ∈ R2 × R2

〈u〉 (x, ṽ)− u(x, ṽ) =
1

S(x, ṽ)

∫ S(x,ṽ)

0

[u(X(s;x, ṽ), Ṽ(s;x, ṽ))− u(x, ṽ)] ds

=
1

S(x, ṽ)

∫ S(x,ṽ)

0

∫ s

0

d

dσ
u(X(σ;x, ṽ), Ṽ(σ;x, ṽ)) dσds

=
1

S(x, ṽ)

∫ S(x,ṽ)

0

∫ s

0

(b · ∇u)(X(σ;x, ṽ), Ṽ(σ;x, ṽ)) dσds

=
1

2π

∫ 2π

0

∫ θ
ωc(x)

0

(b · ∇u)(X(σ;x, ṽ), Ṽ(σ;x, ṽ)) dσdθ.

As u has compact support, its average 〈u〉 is also compactly supported and therefore
u− 〈u〉 belongs to L2(R2 × R2). By the previous computation we have

| 〈u〉 (x, ṽ)− u(x, ṽ)| ≤ 1

2π

∫ 2π

0

∫ 2π
ω0

0

|(b · ∇u)(X(σ;x, ṽ), Ṽ(σ;x, ṽ))| dσdθ

and therefore

‖ 〈u〉 − u‖L2 ≤ 1

2π

∫ 2π

0

∫ 2π
ω0

0

‖(b · ∇u)(X(σ; ·, ·), Ṽ(σ; ·, ·))‖L2 dσdθ =
2π

ω0

‖b · ∇u‖L2 .

The above Poincaré inequality still holds true for any u ∈ L2(R2 × R2) such that
b · ∇u ∈ L2(R2×R2), see [3] for details about the average of Lp functions, 1 ≤ p ≤ ∞.
6. Observe that for any (x, ṽ) ∈ R2 × R2 we have

〈u〉 (x, ṽ) =
1

2π

∫ 2π

0

u(x,R(−θ)ṽ) dθ

and therefore 〈u〉 ∈ C1(R2×R2). Taking the derivatives with respect to x, ṽ under the
integral sign, one gets

(∇x 〈u〉)(x, ṽ) =
1

2π

∫ 2π

0

(∇xu)(x,R(−θ)ṽ) dθ = 〈∇xu〉 (x, ṽ)
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and

ṽ · (∇ṽ 〈u〉)(x, ṽ) =
1

2π

∫ 2π

0

R(−θ)ṽ · (∇ṽu)(x,R(−θ)ṽ) dθ = 〈ṽ · ∇ṽu〉 (x, ṽ).

By the definition, the average 〈u〉 is constant along the flow of b · ∇x,ṽ, and therefore
belongs to the kernel of b · ∇x,ṽ, that is ⊥ṽ · ∇ṽ 〈u〉 = 0.

It is easily seen that the periods S, Sε are invariant along the flows of b · ∇x,ṽ, b
ε · ∇x,ṽ

as well as the averages 〈u〉 , 〈u〉ε. If u is a C1 function, we have by periodicity

〈b · ∇x,ṽu〉 (x, ṽ) =
1

S(x, ṽ)

∫ S(x,ṽ)

0

d

ds
u(X(s), Ṽ(s)) ds = 0, (x, ṽ) ∈ R2 × R2

and similarly 〈bε · ∇x,ṽu〉ε = 0.
In the sequel we derive formally the limit model of (16), as ε goes to 0. The

rigorous arguments will be discussed in Section 5. As we are interested by a second
order model, we keep all the first order corrections. When ε becomes small, we expect

that bε(x, ṽ) · ∇x,ṽf̃
ε will vanish, saying that f̃ ε behaves like its average

〈
f̃ ε
〉
ε

along

the flow (Xε, Ṽε). Taking the average of (16) along the flow (Xε, Ṽε) we obtain

∂t

〈
f̃ ε(t)

〉
ε

+ ε
〈
aε[f̃ ε(t)] · ∇x,ṽf̃

ε(t)
〉
ε

= 0, (t, x, ṽ) ∈ R+ × R2 × R2.

As the difference between the averages along bε(x, ṽ) ·∇x,ṽ and b(x, ṽ) ·∇x,ṽ is of order ε

cf. Proposition 3.1, up to a second order term, we can replace ε
〈
aε[f̃ ε(t)] · ∇x,ṽf̃

ε(t)
〉
ε

by ε
〈
a[f̃(t)] · ∇x,ṽf̃(t)

〉
where

a[f̃ ] · ∇x,ṽ =

(
⊥E[f̃ ]

B
− Ax

)
· ∇x

+

[
1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ − ∂x

(
⊥E[f̃ ]

B

)
ṽ

]
· ∇ṽ

and Ax(x, ṽ) =
⊥ṽ⊗ṽ
ω2
c (x)
∇ωc. More exactly, we expect that solving

∂tf̃ + ε
〈
a[f̃(t)] · ∇x,ṽf̃(t)

〉
= 0, b · ∇x,ṽf̃ = 0, (t, x, ṽ) ∈ R+ × R2 × R2

for a suitable (well prepared) initial condition (see Section 5), will provide a second
order approximation for (1), (2). Although the above solution depends on ε, we use
the notation f̃ , for saying that it is an approximation of f̃ ε, when ε becomes small.
It remains to compute the average of a[f̃(t)] · ∇x,ṽf̃(t), where the presence density
f̃(t) satisfies the constraint b · ∇x,ṽf̃(t) = 0, that is, f̃(t) depends only on x and
|ṽ|. By the definition of the average operator along b · ∇x,ṽ, it is easily seen that〈⊥ṽ ⊗ ṽ〉 = |ṽ|2

2
R(−π/2) and therefore

ε

〈(
⊥E[f̃ ]

B
− Ax

)
· ∇xf̃

〉
= ε

⊥E[f̃ ]

B(x)
· ∇xf̃ − ε 〈Ax〉 · ∇xf̃

= ε

(
⊥E[f̃ ]

B(x)
− |ṽ|2

2ω2
c (x)

⊥∇ωc

)
· ∇xf̃ .
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We recognize here the electric cross field drift ε
⊥E[f̃ ]
B

=
⊥E[f̃ ]
Bε

and the magnetic gradient
drift

−ε |ṽ|
2

2ω2
c (x)

⊥∇ωc = −m|ṽ|
2

2qBε

⊥∇Bε

Bε
.

As
〈
∇ṽf̃

〉
= 0, we have〈

1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ · ∇ṽf̃

〉
= 0.

It remains to compute the average −ε
〈
∂x

(
⊥E[f̃ ]
B

)
ṽ · ∇ṽf̃

〉
. As f̃ satisfies the con-

straint b · ∇x,ṽf̃ = 0, we have ∇ṽf̃ = ∇ṽ f̃ ·ṽ
|ṽ|2 ṽ and therefore

−ε

〈
∂x

(
⊥E[f̃ ]

B

)
ṽ · ∇ṽf̃

〉
= ε

〈
∂x

(
E[f̃ ]

B

)
ṽ · ⊥ṽ

〉
∇ṽf̃ · ṽ
|ṽ|2

= ε∂x

(
E[f̃ ]

B

)
:
〈⊥ṽ ⊗ ṽ〉 ∇ṽf̃ · ṽ

|ṽ|2

=
ε

2

(
⊥E[f̃ ]

B
· ∇B
B

)
ṽ · ∇ṽf̃ .

Finally, the presence density f̃ satisfies

∂tf̃ +

(
⊥E[f̃ ]

Bε(x)
− m|ṽ|2

2qBε

⊥∇Bε

Bε(x)

)
· ∇xf̃ +

1

2

(
⊥E[f̃ ]

Bε(x)
· ∇B

ε

Bε(x)

)
ṽ · ∇ṽf̃ = 0.

4 Well posedness of the limit model

In this section we focus on the existence, uniqueness and other properties of the limit
model

∂tf̃ +

(
⊥E[f̃ ]

Bε(x)
− m|ṽ|2

2qBε

⊥∇Bε

Bε(x)

)
· ∇xf̃ +

1

2

(
⊥E[f̃ ]

Bε(x)
· ∇B

ε

Bε(x)

)
ṽ · ∇ṽf̃ = 0 (18)

where E[f̃ ] stands for the Poisson electric field

E[f̃(t)](x) =
q

2πε0

∫
R2

∫
R2

f̃(t, x′, v′)
x− x′

|x− x′|2
dv′dx′, (t, x) ∈ R+ × R2. (19)

We supplement our model by the initial condition

f̃(0, x, ṽ) = f̃in(x, ṽ), (x, ṽ) ∈ R2 × R2 (20)

where f̃in is a smooth compactly supported presence density. The parameter ε > 0 is
fixed and Bε is a smooth external magnetic field.

14



Proof. (of Theorem 1.1)
We follow the same arguments as in the well posedness proof for the Vlasov-Poisson
problem with external magnetic field. It is enough to establish the existence and
uniqueness on any time interval [0, T ], T ∈ R+. We construct a map acting on elec-
tric fields. Given a C1 electric field E on [0, T ] × R2 such that E, ∂xE are bounded,
divx

⊥E = 0, we consider the solution by characteristics of the Vlasov problem (18),
(19), (20) on [0, T ]× R2 × R2, corresponding to the electric field E

f̃ ε(t, x, ṽ) = f̃in(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ)), (t, x, ṽ) ∈ [0, T ]× R2 × R2

where this time the characteristics (XE(s; t, x, ṽ), V E(s; t, x, ṽ)) are given by

dXE

ds
=
⊥E(s,XE(s))

Bε(XE(s))
− m|Ṽ E(s)|2

2qBε(XE(s))

⊥∇Bε(XE(s))

Bε(XE(s))
(21)

dṼ E

ds
=

1

2

(⊥E(s,XE(s))

Bε(XE(s))
· ∇B

ε(XE(s))

Bε(XE(s))

)
Ṽ E(s) (22)

XE(s; t, x, ṽ) = x, V E(s; t, x, ṽ) = ṽ, (s, t, x, ṽ) ∈ [0, T ]× [0, T ]× R2 × R2.

Notice that the magnetic moment µε(x, ṽ) = m|ṽ|2
2qBε(x)

is left invariant along these char-
acteristics :

dµε

ds
= − m|Ṽ E(s)|2

2qBε(XE(s))

∇Bε(XE(s))

Bε(XE(s))
·

(
⊥E(s,XE(s))

Bε(XE(s))
− m|Ṽ E(s)|2

2qBε(XE(s))

⊥∇Bε(XE(s))

Bε(XE(s))

)

+
m|Ṽ E(s)|2

2qBε(XE(s))

(⊥E(s,XE(s))

Bε(XE(s))
· ∇B

ε(XE(s))

Bε(XE(s))

)
= 0

and therefore the velocity remains bounded, independently with respect to the electric
field

|Ṽ E(s)| ≤
(
‖Bε‖L∞

Bε
0

)1/2

|ṽ| =
(
‖B‖L∞

B0

)1/2

|ṽ|, s ∈ R.

We deduce that (21) also writes

dXE

ds
=
⊥E(s,XE(s))

Bε(XE(s))
− m|ṽ|2

2qBε(x)

⊥∇Bε(XE(s))

Bε(XE(s))
(23)

whose right hand side remains bounded for s ∈ [0, T ] and thus XE exists globally on
[0, T ] and has C1 regularity in all the arguments. Once that XE is determined, Ṽ E

comes easily by solving (22), which is linear with respect to Ṽ E, and therefore Ṽ E

exists also globally on [0, T ], and has C1 regularity in all the arguments. As before, we
consider the map F̃ , whose fixed point gives the solution of the limit model (18), (19),
(20)

E → F̃(E) :=
q

2πε0

∫
R2

∫
R2

f̃E(t, x′, ṽ′)
x− x′

|x− x′|2
dv′dx′.

We are looking for a set X̃T of smooth electric fields, which is left invariant by the map
F̃ and for an estimate like

‖F̃E(t)−F̃E ′(t)‖L∞ ≤ εC̃T

∫ t

0

‖E(s)−E ′(s)‖L∞ ds, E,E ′ ∈ X̃T , t ∈ [0, T ], ε ∈]0, 1]

(24)
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for some constant C̃T , not depending on E,E ′. Assume that

suppf̃in ⊂ {(x, ṽ) ∈ R2 × R2 : |x| ≤ R̃in
x and |ṽ| ≤ R̃in

ṽ }.

By the conservation of the magnetic moment and of the particle number (thanks to
the condition divx

⊥E = 0), it is easily seen that at any time t ∈ [0, T ] we have

suppf̃E(t) ⊂ {(x, ṽ) ∈ R2 × R2 : |ṽ| ≤ R̃ṽ := R̃in
ṽ (‖B‖L∞/B0)

1/2}

implying that

‖ρ[f̃(t)]‖L∞ ≤ |q| ‖f̃in‖L∞π(R̃in
ṽ )2
‖B‖L∞

B0

.

Therefore, as in (57) we obtain the L∞ bound for the electric field

‖E[f̃(t)]‖L∞(R2) ≤
1

ε0
‖ρ[f̃(t)]‖1/2L∞(R2)

(
|q|
2π
‖f̃in‖L1(R2×R2)

)1/2

≤ α :=
|q|√
2ε0
‖f̃in‖1/2L∞(R2×R2)R

in
ṽ

(
‖B‖L∞

B0

)1/2

‖f̃in‖1/2L1(R2×R2), t ∈ [0, T ].

Integrating in time (23) leads immediately to

suppf̃(t) ⊂ {(x, ṽ) ∈ R2 × R2 : |x| ≤ R̃x(t) and |ṽ| ≤ R̃ṽ}

where

R̃x(t) = R̃in
x + εt

[
α

B0

+
m(R̃in

ṽ )2

2|q|B0

‖B‖L∞

B0

‖∇B‖L∞

B0

]
, t ∈ [0, T ].

Taking the derivative with respect to x in (23), (22) we deduce that there is a constant
C5(m, ε0, q, T, ‖B‖W 2,∞(R2), B0) such that for any (x, ṽ) ∈ R2 × R2, |ṽ| ≤ R̃ṽ

|∂xXE(0; t, x, ṽ)|+ |∂xṼ E(0; t, x, ṽ)| ≤ C5 exp

(
ε

∫ t

0

‖∂xE(s)‖L∞ ds

)
, t ∈ [0, T ].

(25)
As before we write

∇xρ[f̃(t)] = q∇x

∫
R2

f̃in(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ)) dṽ

= q

∫
R2

1{|ṽ|≤R̃ṽ}
t∂xX

E(0; t, x, ṽ)(∇X f̃in)(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ)) dṽ

+ q

∫
R2

1{|ṽ|≤R̃ṽ}
t∂xV

E(0; t, x, ṽ)(∇V f̃in)(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ)) dṽ

and by coming back to (25), we obtain

‖∇xρ[f̃(t)]‖L∞ ≤ C6 exp

(
ε

∫ t

0

‖∂xE(s)‖L∞ ds

)
, t ∈ [0, T ]

for some constant C6(m, ε0, q, T, ‖B‖W 2,∞(R2), B0) ≥ 1 and thus

ln+ ‖∇xρ[f̃(t)]‖L∞ ≤ lnC6 + ε

∫ t

0

‖∂xE(s)‖L∞ ds, t ∈ [0, T ], ε ∈]0, 1].
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Combining with (62) yields

‖∂xE[f̃(t)]‖L∞ ≤ C7

(
1 + ε

∫ t

0

‖∂xE(s)‖L∞ ds

)
, t ∈ [0, T ], ε ∈]0, 1]

for some constant C7(m, ε0, q, T, ‖B‖W 2,∞(R2), B0). The previous computations allow
us to consider the set

X̃T = {E ∈ C1([0, T ]× R2) :

divx
⊥E = 0, ‖E(t)‖L∞ ≤ α, ‖∂xE(t)‖L∞ ≤ C7 exp(εtC7), t ∈ [0, T ]}.

It remains to establish (24). Let us consider E,E ′ ∈ X̃T and denote by f̃E, f̃E
′

the solutions by characteristics of (18), (20) corresponding to the electric fields E,E ′

respectively. Recall that at any time t ∈ [0, T ], the densities f̃E(t), f̃E
′
(t) are supported

in {(x, ṽ) ∈ R2 × R2 : |x| ≤ R̃x(t) and |ṽ| ≤ R̃ṽ} and therefore at any time t ∈ [0, T ],
the charge densities ρ[f̃E(t)], ρ[f̃E

′
(t)] are supported in {x ∈ R2 : |x| ≤ R̃x(t)}. It is

easily seen by (57) that

‖F̃(E)(t)− F̃(E ′)(t)‖L∞(R2) = ‖E[f̃E(t)]− E[f̃E
′
(t)]‖L∞(R2)

≤ 1

ε0
‖ρ[f̃E(t)]− ρ[f̃E

′
(t)]‖1/2L∞(R2)

(
1

2π
‖ρ[f̃E(t)]− ρ[f̃E

′
(t)]‖L1(R2)

)1/2

≤ 1

ε0

|q|√
2
R̃x(t)

∥∥∥∥1{|x|≤R̃x(t)} ∫
R2

1{|ṽ|≤R̃ṽ}(f̃
E − f̃E′

)(t, ·, ṽ) dṽ

∥∥∥∥
L∞(R2)

.

By standard computations, one gets for any (t, x, ṽ) ∈ [0, T ] × R2 × R2 such that
|x| ≤ R̃x(t) and |ṽ| ≤ R̃ṽ

|(f̃E − f̃E′
)(t, x, ṽ)| =

∣∣∣f̃in(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ))− f̃in(XE′
(0; t, x, ṽ), Ṽ E′

(0; t, x, ṽ))
∣∣∣

≤ Lip(fin)[|XE −XE′|(0; t, x, ṽ) + |Ṽ E − Ṽ E′|(0; t, x, ṽ)]

≤ εLip(fin)C8

∫ t

0

‖E(s)− E ′(s)‖L∞(R2) ds exp(εtC8)

for some constant C8(m, ε0, q, T, ‖B‖W 2,∞(R2), B0) and (24) follows.

Remark 4.1

1. The total number of particles is conserved. Indeed, as div⊥xE = 0, we have

divx

(⊥E
Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
+ divṽ

[
1

2

(⊥E
Bε
· ∇B

ε

Bε

)
ṽ

]
= 0

and thus
d

dt

∫
R2

∫
R2

f̃(t, x, ṽ) dṽdx = 0, t ∈ R+.

2. The continuity equation writes

∂t

∫
R2

f̃(t, x, ṽ) dṽ + divx

∫
R2

(⊥E
Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
f̃ dṽ = 0
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and, when the magnetic field is uniform, becomes

∂tρ[f̃(t)] +
⊥E[f̃(t)]

Bε
· ∇xρ[f̃(t)] = 0, (t, x) ∈ R+ × R2

that is, the vorticity formulation of the two dimensional Euler equations, with

velocity ⊥E/Bε and vorticity divx
⊥(

⊥E
Bε

) = − ρ[f̃ ]
ε0Bε

see also [11, 4, 22].

3. The balance of the total momentum is

d

dt

∫
R2

∫
R2

f̃(t, x, ṽ)mṽ dṽdx+
1

2

∫
R2

∫
R2

m divx

(
⊥E[f̃ ]

Bε(x)

)
f̃(t, x, ṽ)ṽ dṽdx = 0.

In particular, the total momentum is conserved when the magnetic field is uni-
form.

4. As the magnetic moment µε is left invariant along the characteristics of (18)(
⊥E[f̃ ]

Bε
− µε

⊥∇Bε

Bε

)
· ∇xµ

ε +
1

2

(
⊥E[f̃ ]

Bε
· ∇B

ε

Bε

)
ṽ · ∇ṽµ

ε = 0

we deduce the conservation of the total magnetic moment

d

dt

∫
R2

∫
R2

m|ṽ|2

2qBε
f̃(t, x, ṽ) dṽdx = 0, t ∈ R+.

5. The total, i.e., kinetic and electric energy is conserved. Indeed, by using the
fundamental solution of the Poisson equation in R2, we have

d

dt

1

2ε0

∫
R2

∫
R2

e(x− x′)ρ[f̃(t)](x)ρ[f̃(t)](x′) dx′dx

=
1

ε0

∫
R2

∫
R2

e(x− x′)ρ[f̃(t)](x′)∂tρ[f̃(t)](x) dx′dx

=

∫
R2

Φ[f̃(t)](x)∂tρ[f̃(t)](x) dx

= −
∫
R2

Φ[f̃(t)](x)divx

∫
R2

qf̃(t, x, ṽ)

(
⊥E[f̃(t)]

Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
dṽ dx

=

∫
R2

∫
R2

(
E[f̃(t)]

Bε
·
⊥∇Bε

Bε

)
m|ṽ|2

2
f̃ dṽdx

= − d

dt

∫
R2

∫
R2

m|ṽ|2

2
f̃(t, x, ṽ) dṽdx

and therefore

d

dt

[∫
R2

∫
R2

m|ṽ|2

2
f̃ dṽdx− 1

4πε0

∫
R2

∫
R2

ρ[f̃ ](x)ρ[f̃ ](x′) ln |x− x′| dx′dx
]

= 0, t ∈ R+.
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6. The model (18), (19), (20) is invariant under rotation in the velocity space. More
exactly, if f̃ solves (18), (19), (20), then f̃θ(t, x, Ṽ ) = f̃(t, x, ṽ = R(θ)Ṽ ) solves
(18), (19) as well, together with the initial condition f̃θ(0, x, Ṽ ) = fin(x, ṽ =
R(θ)Ṽ ). Indeed, we have Ṽ · ∇Ṽ f̃θ = ṽ · ∇ṽf̃ |ṽ=R(θ)Ṽ and E[f̃θ(t)] = E[f̃(t)],
implying that

∂tf̃θ +

(
⊥E[f̃θ]

Bε
− m|Ṽ |2

2qBε

⊥∇Bε

Bε

)
· ∇xf̃θ +

1

2

(
⊥E[f̃θ(t)]

Bε
· ∇B

ε

Bε

)
(Ṽ · ∇Ṽ f̃θ) = 0.

In particular, if the initial presence density depends only on x and |ṽ| i.e., b ·
∇x,ṽf̃in = 0, then at any time t ∈ R+ the presence density f̃(t) depends only on
x and |ṽ|, that is b · ∇x,ṽf̃(t) = 0. Indeed, for any θ ∈ R the presence densities
f̃ , f̃θ satisfy the problem (18), (19), (20) and thanks to the uniqueness, we obtain
f̃ = f̃θ, saying that at any time t ∈ R+, f̃(t) depends only on x and |ṽ|.

5 Error analysis

In this section we study rigorously the error when replacing the Vlasov-Poisson problem
with strong external magnetic field (1), (2) by the model (18), (19). We expect an
error of order ε2, when the initial presence density fin is well prepared. As usual
when performing the error analysis in homogenization theory, we need to construct a
corrector. We will use the following easy lemma.

Lemma 5.1 Let M be a square matrix of size 2. Then we have the equalities

〈Mṽ · ṽ〉 = trace(M)
|ṽ|2

2

Mṽ · ṽ − 〈Mṽ · ṽ〉+ b · ∇x,ṽ

(
MR(−π/2) +R(π/2)M

4ωc(x)
ṽ · ṽ

)
〈
MR(−π/2) +R(π/2)M

4ωc(x)
ṽ · ṽ

〉
= 0.

Proof. By direct computations we check that 〈ṽ21〉 = 〈ṽ22〉 = |ṽ|2/2, 〈ṽ1ṽ2〉 = 0,

b · ∇x,ṽ(ṽ
2
1 − ṽ22) = 4ωc(x)ṽ2ṽ1, b · ∇x,ṽ(ṽ2ṽ1) = ωc(x)(ṽ22 − ṽ21)

and the first and second statements follow easily. The last statement is a consequence
of the first one〈

MR(−π/2) +R(π/2)M

4ωc(x)
ṽ · ṽ

〉
= trace

(
MR

(
−π

2

)
+R

(π
2

)
M
) |ṽ|2

8ωc(x)
= 0.

Based on the previous formulae, we are able to construct a corrector f̃ 2 which will
allow us to estimate f̃ ε − f̃ − ε2f̃ 2.
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Proposition 5.1 Assume that f̃ = f̃(x, ṽ) ∈ C1
c (R2 × R2), E = E(x) ∈ C1(R2), B =

B(x) ∈ C1(R2) such that b · ∇x,ṽf̃ = 0, divx
⊥E = 0, infx∈R2 |B(x)| > 0. Then we have

the equality(⊥E
B
− Ax

)
· ∇xf̃ +

[
1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ − ∂x
(⊥E
B

)
ṽ

]
· ∇ṽf̃

−
(⊥E
B
− m|ṽ|2

2qB

⊥∇B
B

)
· ∇xf̃ −

1

2

(⊥E
B
· ∇B
B

)
ṽ · ∇ṽf̃ + b · ∇x,ṽf̃

2 = 0

where Ax(x, ṽ) =
⊥ṽ⊗ṽ
ω2
c
∇ωc and

f̃ 2(x, ṽ) =
∇ωc ⊗∇xf̃ − ⊥∇ωc ⊗ ⊥∇xf̃

4ω3
c (x)

ṽ · ṽ (26)

+
1

2πε0B

(
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ ·
⊥ṽ

ωc(x)

)
ṽ · ∇ṽf̃

|ṽ|2

−

∂x
(

⊥E
B

)
R
(
−π

2

)
+R

(
π
2

)
∂x

(
⊥E
B

)
4ωc(x)

ṽ · ṽ

 ṽ · ∇ṽf̃

|ṽ|2
.

Proof. Notice that

−Ax(x, ṽ) · ∇xf̃ = −(⊥ṽ · ∇xf̃)(ṽ · ∇ωc)
ω2
c (x)

=
(ṽ · ⊥∇xf̃)(ṽ · ∇ωc)

ω2
c (x)

=
∇ωc ⊗ ⊥∇xf̃

ω2
c (x)

ṽ · ṽ

and therefore, thanks to Lemma 5.1, we have

−Ax(x, ṽ) · ∇xf̃ +
m|ṽ|2

2qB(x)

⊥∇B
B(x)

· ∇xf̃ =
∇ωc ⊗ ⊥∇xf̃

ω2
c (x)

ṽ · ṽ −

〈
∇ωc ⊗ ⊥∇xf̃

ω2
c (x)

ṽ · ṽ

〉
= −b · ∇x,ṽf̃

2
I

with

f̃ 2
I :=

(
∇ωc ⊗ ⊥∇xf̃

4ω3
c (x)

R
(
−π

2

)
+R

(π
2

) ∇ωc ⊗ ⊥∇xf̃

4ω3
c (x)

)
ṽ · ṽ

=
∇ωc ⊗∇xf̃ − ⊥∇ωc ⊗ ⊥∇xf̃

4ω3
c (x)

ṽ · ṽ.

Observing that b · ∇x,ṽ(−⊥ṽ/ωc) = ṽ and that ∇ṽf̃ = ∇ṽ f̃ ·ṽ
|ṽ|2 ṽ, it is easily seen that

1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ · ∇ṽf̃ = −b · ∇x,ṽf̃
2
II

with

f̃ 2
II :=

1

2πε0B

(
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ ·
⊥ṽ

ωc(x)

)
ṽ · ∇ṽf̃

|ṽ|2
.
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Using one more time Lemma 5.1, yields

−∂x
(⊥E
B

)
ṽ · ∇ṽf̃ −

1

2

(⊥E
B
· ∇B
B

)
(ṽ · ∇ṽf̃)

= − ṽ · ∇ṽf̃

|ṽ|2

[
∂x

(⊥E
B

)
ṽ · ṽ −

〈
∂x

(⊥E
B

)
ṽ · ṽ

〉]
= −b · ∇x,ṽf̃

2
III

with

f̃ 2
III = − ṽ · ∇ṽf̃

|ṽ|2
∂x

(
⊥E
B

)
R
(
−π

2

)
+R

(
π
2

)
∂x

(
⊥E
B

)
4ωc(x)

ṽ · ṽ.

Our conclusion follows by taking f̃ 2 = f̃ 2
I + f̃ 2

II + f̃ 2
III .

Remark 5.1 Notice that f̃ 2 ∈ Cc(R2 × R2) and if there is k ≥ 2 such that f̃ ∈
Ck
c (R2 × R2), E ∈ Ck(R2), B ∈ Ck(R2), then f̃ 2 ∈ Ck−1

c (R2 × R2).

In the sequel we will use the map T ε : R2 × R2, given by

T ε(x, ṽ) =

(
x+ ε

⊥ṽ

ωc(x)
, ṽ

)
.

Notice that for any application ϕ(x, v) in the kernel of b · ∇x,ṽ i.e., ϕ(x, v) = ψ(x, |ṽ|),
the composition product ϕ ◦ T ε depends only on x+ ε

⊥ṽ
ωc(x)

, |ṽ|

(ϕ ◦ T ε)(x, ṽ) = ϕ

(
x+ ε

⊥ṽ

ωc(x)
, ṽ

)
= ψ

(
x+ ε

⊥ṽ

ωc(x)
, |ṽ|
)

and therefore belongs to the kernel of bε · ∇x,ṽ. Actually, by direct computations we
check that

∂x,ṽT
εbε = λεb ◦ T ε, λε(x, ṽ) =

ωc(x)

ωc(x̃)
, x̃ = x+ ε

⊥ṽ

ωc(x)
. (27)

We are ready to prove our main result.

Proof. (of Theorem 1.2)
As gε belongs to C2

c (R2×R2), it is easily seen that 〈gε〉 ∈ C2
c (R2×R2). We deduce by

Theorem 1.1 that the restriction on [0, T ] of the solution f̃ for (18), (19) corresponding
to the initial condition 〈gε〉 belongs to C2

c ([0, T ]×R2×R2). The restriction on [0, T ] of
the Poisson electric field E[f̃ ] belongs to C2([0, T ]×R2). As b · ∇ 〈gε〉 = 0, we deduce
by the last statement in Remark 4.1 that b · ∇f̃(t) = 0, t ∈ R+. Applying Proposition
5.1 with the presence density f̃(t) ∈ C2

c (R2 × R2), the electric field E[f̃(t)] ∈ C2(R2),
which verify b · ∇x,ṽf̃(t) = 0, divx

⊥E[f̃(t)] = 0, one gets for any t ∈ R+[
⊥E[f̃(t)]

B
− Ax

]
· ∇xf̃ +

[
divx

2πε0B

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ − ∂x

(
⊥E[f̃(t)]

B

)
ṽ

]
· ∇ṽf̃

(28)

−

(
⊥E[f̃(t)]

B
− m|ṽ|2

2qB

⊥∇B
B

)
· ∇xf̃ −

1

2

(
⊥E[f̃(t)]

B
· ∇B
B

)
ṽ · ∇ṽf̃ + b · ∇x,ṽf̃

2(t) = 0
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where f̃ 2(t) ∈ C1
c (R2 × R2) is given by the formula (26) which corresponds to the

presence density f̃(t) and the electric field E[f̃(t)]. Multiplying (28) by ε and adding
to (18) yield

∂tf̃ + εa[f̃(t)] · ∇f̃(t) + εb · ∇f̃ 2(t) = 0. (29)

Notice that thanks to (27) we can write

λε(b · ∇f̃ 2) ◦ T ε = ∂T εbε · (∇f̃ 2) ◦ T ε = bε · ∇(f̃ 2 ◦ T ε)

and therefore, after composition with T ε and multiplication by λε, the equation (29)
becomes

λε(∂tf̃) ◦ T ε + ελε(a[f̃(t)] · ∇f̃(t)) ◦ T ε + εbε · ∇(f̃ 2 ◦ T ε) = 0

or equivalently

∂t(〈λε〉 f̃◦T ε)+ελε(a[f̃(t)]·∇f̃(t))◦T ε+εbε·∇(f̃ 2◦T ε) = −ε(〈λε〉−λε)(〈a〉 [f̃(t)]·∇f̃(t))◦T ε
(30)

where we have used the notation

〈a〉 [f̃ ] :=

(
⊥E[f̃ ]

B
− m|ṽ|2

2qB

⊥∇B
B

,
1

2

(
⊥E[f̃ ]

B
· ∇B
B

)
ṽ

)
.

Notice that, as f̃(t) belongs to the kernel of b · ∇, then f̃ ◦ T ε belongs to the kernel of
bε · ∇, as well as 〈λε〉 f̃ ◦ T ε. Combining (16), (30) we obtain

∂t{f̃ ε − 〈λε〉 f̃ ◦ T ε − ε2f̃ 2 ◦ T ε}+ εaε[f̃ ε(t)] · ∇(〈λε〉 f̃ ◦ T ε)− ελε(a[f̃(t)] · ∇f̃(t)) ◦ T ε

+

(
εaε[f̃ ε(t)] +

bε

ε

)
· ∇{f̃ ε − 〈λε〉 f̃ ◦ T ε − ε2f̃ 2 ◦ T ε} = −ε2(∂tf̃ 2) ◦ T ε

− ε3aε[f̃ ε(t)] · ∇(f̃ 2 ◦ T ε)− ε(λε − 〈λε〉)(〈a〉 [f̃(t)] · ∇f̃(t)) ◦ T ε. (31)

By Remark 3.1 we know that div(εaε[f̃ ε(t)] + bε/ε) = 0 and therefore, multiplying (31)
by rε := f̃ ε − 〈λε〉 f̃ ◦ T ε − ε2f̃ 2 ◦ T ε yields

1

2

d

dt
‖rε‖2L2≤ε‖rε(t)‖L2‖aε[f̃ ε(t)] · ∇(〈λε〉 f̃ ◦ T ε)− λε(a[f̃(t)] · ∇f̃(t)) ◦ T ε‖L2 +‖rε(t)‖L2

× ‖ε2(∂tf̃ 2) ◦ T ε + ε3aε[f̃ ε(t)] · ∇(f̃ 2 ◦ T ε) + ε(λε − 〈λε〉)(〈a〉 [f̃(t)] · ∇f̃(t)) ◦ T ε‖L2 .

By Bellman lemma one gets

‖rε(t)‖L2≤‖rε(0)‖L2 +ε

∫ t

0

‖aε[f̃ ε(s)] · ∇(〈λε〉 f̃(s) ◦ T ε)− λε(a[f̃(s)] · ∇f̃(s)) ◦ T ε‖L2 ds

+ ε2
∫ t

0

‖(∂tf̃ 2(s)) ◦ T ε‖L2 ds+ ε3
∫ t

0

‖aε[f̃ ε(s)] · ∇(f̃ 2(s) ◦ T ε)‖L2 ds

+ ε

∫ t

0

‖(λε − 〈λε〉)(〈a〉 [f̃(s)] · ∇f̃(s)) ◦ T ε‖L2 ds. (32)

We need to analyze one by one all the terms in the right hand side of the previous
inequality, for any t ∈ [0, T ], T ∈ R+. We will denote by C any constant depending on
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m, ε0, q, T, B and the uniform bounds satisfied by the presence densities (gε)ε>0, but not
on ε. As (gε)ε>0 are uniformly compactly supported in R2×R2 and uniformly bounded
in C2(R2 ×R2), it is easily seen that so are (〈gε〉)ε>0. By Theorem 1.1 the solutions f̃
for (18), (19) associated to the initial conditions (〈gε〉)ε>0, remain uniformly compactly
supported in [0, T ]×R2×R2, T ∈ R+, and uniformly bounded in C2([0, T ]×R2), T ∈ R+.
Clearly, at least for ε small enough 0 < ε ≤ εT we have

ε2‖f̃ 2(t) ◦ T ε‖L2 ≤ Cε2, t ∈ [0, T ].

As B ∈ C2(R2), infx∈R2 |B(x)| > 0, for any compact set B(Rx) × B(Rṽ) there is a
constant C(Rx, Rṽ) such that∣∣∣∣ ωc(x)

ωc(x+ ε⊥ṽ/ωc(x))
− 1 + ε

∇ωc(x) ·⊥ ṽ
ω2
c (x)

∣∣∣∣ ≤ C(Rx, Rṽ)ε
2, (x, ṽ) ∈ B(Rx)×B(Rṽ)

(33)
and by the third statement in Proposition 3.1, we deduce

| 〈λε〉−1| =
∣∣∣∣〈ωc(x)

ωc(x̃)
− 1 + ε

∇ωc · ⊥ṽ
ω2
c

〉∣∣∣∣ ≤ C(Rx, Rṽ)ε
2, (x, ṽ) ∈ B

(
Rx − ε

Rṽ

ω0

)
×B(Rṽ).

(34)
Notice that ‖f ε(0)− gε‖L2 , and therefore ‖ρ[f ε(0)]− ρ[gε]‖L2 are of order ε, implying
that

‖E[f ε(0)]− E[gε] ‖L2(R2) ≤ Cε.

We intend to compare f̃ ε(0) with respect to f̃(0) ◦ T ε. We have

f̃ ε(0, x, ṽ) = f ε
(

0, x, ṽ + ε
⊥E[f ε(0)]

B(x)

)
= gε

(
x+

ε

ωc(x)

⊥
(
ṽ + ε

⊥E[f ε(0)]

B(x)

)
, ṽ + ε

⊥E[f ε(0)]

B(x)
− ε

⊥E[gε]

B(x)

)
and therefore ‖f̃ ε(0)− gε ◦ T ε‖L2 ≤ Cε2. Combining the previous arguments, together
with the inequality

‖gε − 〈gε〉 ‖L2 ≤ 2π

ω0

‖b · ∇gε‖L2 ≤ ε2
2π

ω0

sup
η>0

‖b · ∇gη‖L2

η2

cf. statement 5 in Proposition 3.1, we obtain

‖rε(0)‖L2 ≤ ‖f̃ ε(0)− 〈λε〉 f̃(0) ◦ T ε‖L2 + ε2‖f̃ 2(0) ◦ T ε‖L2

≤ ‖f̃ ε(0)− gε ◦ T ε‖L2 + ‖gε ◦ T ε − 〈gε〉 ◦ T ε‖L2

+ ‖(1− 〈λε〉) 〈gε〉 ◦ T ε‖L2 + ε2‖f̃ 2(0) ◦ T ε‖L2 ≤ Cε2.

Notice that (33), (34) also imply that
(
λε−〈λε〉

ε

)
ε>0

is bounded on compact sets of

R2 × R2, and thus

ε

∫ t

0

‖(λε − 〈λε〉)(〈a〉 [f̃(s)] · ∇f̃(s)) ◦ T ε‖L2 ds ≤ Cε2.
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Using the C1
c regularity of f̃ 2, and therefore the C2

c regularity of f̃ , it is straightforward
that

ε2
∫ t

0

‖(∂tf̃ 2(s)) ◦ T ε‖L2 ds+ ε3
∫ t

0

‖aε[f̃ ε(s)] · ∇(f̃ 2(s) ◦ T ε)‖L2 ds ≤ Cε2, t ∈ [0, T ].

We claim that

ε

∫ t

0

‖aε[f̃ ε(s)] · ∇(〈λε〉 f̃(s) ◦ T ε)− λε(a[f̃(s)] · ∇f̃(s)) ◦ T ε‖L2 ≤ Cε2

+ Cε

∫ t

0

‖f̃ ε(s)− f̃(s) ◦ T ε‖L2 ds, t ∈ [0, T ], 0 < ε ≤ εT .

Indeed, recall that for any (x, ṽ) ∈ R2×B(R) and any ε > 0 such that εR‖∇ωc‖L∞
ω2
0

≤ 1
2
,

we have

|Aεx(x, ṽ)| ≤ 2|Ax(x, ṽ)|, |Aεx(x, ṽ)− Ax(x, ṽ)| ≤ ε|ṽ| ‖∇ωc‖L∞

ω2
0

|Aεx(x, ṽ)| ≤ |A
ε
x(x, ṽ)|

2

implying that

|Aεx(x, ṽ)| ≤ 2|Ax(x, ṽ)| ≤ 2R2‖∇ωc‖L∞

ω2
0

, |Aεx(x, ṽ)− Ax(x, ṽ)| ≤ 2ε
R3‖∇ωc‖2L∞

ω4
0

.

As {f̃ ε(t), t ∈ [0, T ], 0 < ε ≤ 1} are uniformly compactly supported in R2 × R2, and
thanks to the uniform bounds

sup
ε>0,t∈[0,T ]

{‖f̃ ε(t)‖C1(R2×R2) + ‖E[f̃ ε(t)]‖C1(R2)} < +∞

we have
‖(aε[f̃ ε(t)]− a[f̃ ε(t)]) · ∇(〈λε〉 f̃(t) ◦ T ε)‖L2 ≤ Cε, t ∈ [0, T ].

Using elliptic regularity results, the quantity

‖(a[f̃ ε(t)]− a[f̃(t) ◦ T ε]) · ∇(〈λε〉 f̃(t) ◦ T ε)‖L2(R2×R2)

is bounded by the L2 norms of the charge and current densities

‖ρ[f̃ ε(t)]− ρ[f̃(t) ◦ T ε]‖L2(R2) + ‖j[f̃ ε(t)]− j[f̃(t) ◦ T ε]‖L2(R2)

and thus by the L2 norm of the presence densities ‖f̃ ε(t)−f̃(t)◦T ε‖L2(R2×R2). Therefore
we have the inequality

‖(a[f̃ ε(t)]−a[f̃(t)◦T ε])·∇(〈λε〉 f̃(t)◦T ε)‖L2(R2×R2) ≤ C‖f̃ ε(t)−f̃(t)◦T ε‖L2(R2×R2), t ∈ [0, T ].

We are done if we prove that

‖a[f̃(t)◦T ε]·∇(〈λε〉 f̃(t)◦T ε)−λε(a[f̃(t)]·∇f̃(t))◦T ε‖L2(R2×R2) ≤ Cε, t ∈ [0, T ], ε > 0

which comes easily by the C2 regularity of f̃ and the compactness of its support, and

the boundedness of
(
λε−〈λε〉

ε

)
ε>0

,
(
∇〈λε〉
ε

)
ε>0

on compact sets of R2 × R2. We only
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have to check the boundedness of
(
∇〈λε〉
ε

)
ε>0

, because that of
(
λε−〈λε〉

ε

)
ε>0

has been

established before. By the statement 6 in Proposition 3.1 we know that

∇x 〈λε〉 = 〈∇xλ
ε〉 , ∇ṽ 〈λε〉 =

ṽ ⊗ ṽ
|ṽ|2
∇ṽ 〈λε〉 =

〈
ṽ · ∇ṽλ

ε

|ṽ|

〉
ṽ

|ṽ|
.

Notice that

∇xλ
ε(x, ṽ) =

∇ωc(x)

ωc(x̃)
− ωc(x)

ω2
c (x̃)

t

(
I2 − ε

⊥ṽ ⊗∇ωc(x)

ω2
c (x)

)
∇ωc(x̃)

and∇xλ
ε(x, ṽ)|ε=0 = 0, implying that

(
∇x〈λε〉

ε

)
ε>0

, and therefore
(
〈∇xλε〉

ε

)
ε>0

=
(
∇x〈λε〉

ε

)
ε>0

is bounded on compact sets of R2 × R2. Similarly we have

ṽ · ∇ṽλ
ε = −ε ⊥ṽ · ∇xωc(x̃)

ω2
c (x̃)

and therefore∣∣∣∣∇ṽ 〈λε〉
ε

∣∣∣∣ =

∣∣∣∣ ṽ · ∇ṽ 〈λε〉
ε

ṽ

|ṽ|2

∣∣∣∣ =

∣∣∣∣〈ṽ · ∇ṽλ
ε〉

ε

ṽ

|ṽ|2

∣∣∣∣ ≤ ‖∇ωc‖L∞

ω2
0

, ε > 0.

Collecting all the previous estimates into (32) leads to the inequality

‖f̃ ε(t)− f̃(t) ◦ T ε‖L2 ≤ ‖rε(t)‖L2 + ‖(〈λε〉 − 1)f̃(t) ◦ T ε‖L2 + ε2‖f̃ 2(t) ◦ T ε‖L2

≤ Cε2 + Cε

∫ t

0

‖f̃ ε(s)− f̃(s) ◦ T ε‖L2 ds, t ∈ [0, T ], 0 < ε ≤ εT

and by Gronwall lemma we deduce that

‖f̃ ε(t)− f̃(t) ◦ T ε‖L2(R2×R2) ≤ Cε2 exp(Cεt), t ∈ [0, T ], 0 < ε ≤ εT .

In particular, as the L2 norm of the Poisson electric field is controlled by the L2 norm
of the charge density, and therefore by the L2 norm of the presence density (because
of the compactness of its support), we have

‖E[f̃ ε(t)]− E[f̃(t) ◦ T ε]‖L2(R2) ≤ Cε2, t ∈ [0, T ], 0 < ε ≤ εT .

It is easily seen that, thanks to the inequality ‖f̃(t) ◦ T ε − f̃(t)‖L2(R2×R2) ≤ Cε that

‖E[f̃(t) ◦ T ε]− E[f̃(t)]‖L2(R2) ≤ Cε, t ∈ [0, T ]

and therefore

‖E[f ε(t)]− E[f̃(t)]‖L2(R2) = ‖E[f̃ ε(t)]− E[f̃(t)]‖L2(R2) ≤ Cε, t ∈ [0, T ], 0 < ε ≤ εT .
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Finally we obtain for any t ∈ [0, T ], 0 < ε ≤ εT
∫
R2

∫
R2

[
f ε(t, x, v)− f̃

(
t, x+ ε

⊥v

ωc(x)
, v − ε

⊥E[f̃(t)]

B(x)

)]2
dvdx


1/2

=

{∫
R2

∫
R2

[
f̃ ε(t, x, ṽ)

−f̃

(
t, x+

ε

ωc(x)
⊥
(
ṽ + ε

⊥E[f ε(t)]

B(x)

)
, ṽ + ε

⊥E[f ε(t)]− ⊥E[f̃(t)]

B(x)

)]2
dṽdx


1/2

≤ ‖f̃ ε(t)− f̃(t) ◦ T ε‖L2(R2×R2) +

{∫
R2

∫
R2

[
f̃

(
t, x+ ε

⊥ṽ

ωc(x)
, ṽ

)

−f̃

(
t, x+ ε

⊥ṽ

ωc(x)
− ε2

ωc(x)

E[f ε(t)]

B(x)
, ṽ + ε

⊥E[f ε(t)]− ⊥E[f̃(t)]

B(x)

)]2
dṽdx


1/2

≤ Cε2 + Cε‖E[f ε(t)]− E[f̃(t)]‖L2(R2) ≤ Cε2.

6 Asymptotic analysis for uniform magnetic fields

When the magnetic field is uniform, it is possible to go further in our analysis, by
considering smooth initial presence densities, not necessarily well prepared. For any
non negative initial presence density fin ∈ C2

c (R2×R2), let us denote by f ε ∈ C2(R+×
R2 × R2) the solution of (1), (2), with E[f ε] ∈ C2(R+ × R2), where the magnetic
field writes Bε = B

ε
, for some constant B 6= 0. By Theorem 2.1 we know that, for

any T ∈ R+, we have uniform estimates with respect to ε > 0 for the L∞ norm of
E[f ε]|[0,T ]×R2 and the size of the support of f ε|[0,T ]×R2×R2 . The change of coordinates
(12), (13) leads to the problem

∂tf̃
ε + εaε[f̃ ε(t)] · ∇x,ṽf̃

ε +
bε(x, ṽ)

ε
· ∇x,ṽf̃

ε = 0, (t, x, ṽ) ∈ R+ × R2 × R2 (35)

f̃ ε(0, x, ṽ) = fin

(
x, ṽ + ε

⊥E[fin](x)

B

)
, (x, ṽ) ∈ R2 × R2

where bε ·∇x,ṽ = εṽ ·∇x +ωc
⊥ṽ ·∇ṽ and for any presence density f̃ , aε[f̃ ] ·∇x,ṽ stands

for the vector field

aε[f̃ ] · ∇x,ṽ =
⊥E[f̃ ]

B
· ∇x +

1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗

(
j[f̃ ] + ε

⊥E[f̃ ]

B
ρ[f̃ ]

)
(x′) dx′ · ∇ṽ

− ∂x

(
⊥E[f̃ ]

B

)(
ṽ + ε

⊥E[f̃ ]

B

)
· ∇ṽ.

Notice that there is no correction Aεx when the magnetic field is uniform, since in that
case the solution of (17) is Aεx = 0. As before we have E[f ε(t)] = E[f̃ ε(t)] and the new
presence densities f̃ ε are smooth, f̃ ε ∈ C2(R+ × R2 × R2), and uniformly compactly
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supported in [0, T ]×R2×R2, with respect to ε > 0, for any T ∈ R+. The characteristic
flow of the vector field bε · ∇x,ṽ

dXε

ds
= εṼε(s;x, ṽ),

dṼε

ds
= ωc

⊥Ṽε(s;x, ṽ), Xε(0;x, ṽ) = x, Ṽε(0;x, ṽ) = ṽ

is given by

Xε(s;x, ṽ) = x+ ε[I2 −R(−ωcs)]
⊥v

ωc
, Ṽε(s;x, ṽ) = R(−ωcs)ṽ, ωc =

qB

m
. (36)

It is periodic, and has the same period as the characteristic flow of the vector field
b(x, ṽ) · ∇x,ṽ = ωc

⊥ṽ · ∇ṽ

Sε(x, ṽ) = S(x, ṽ) =
2π

|ωc|
, (x, ṽ) ∈ R2 × R2, ε > 0.

In order to filter out the fast oscillations corresponding to the vector field bε(x,ṽ)
ε
· ∇x,ṽ,

we perform one more change of coordinates

f̃ ε(t, x, ṽ) = F̃ ε(t,X, Ṽ ), (X, Ṽ ) = (Xε, Ṽε)(−t/ε;x, ṽ). (37)

By applying the chain rule, we obtain

∂tF̃
ε + ε∂x,ṽ(X

ε, Ṽε)(−t/ε; (Xε, Ṽε)(t/ε;X, Ṽ ))aε[F̃ ε(t)−t/ε]t/ε · ∇X,Ṽ F̃
ε = 0 (38)

where we have used the notations

F̃ ε(t)−t/ε = F̃ ε(t)◦(Xε, Ṽε)(− t
ε

), aε[F̃ ε(t)−t/ε]t/ε = aε[F̃ ε(t)◦(Xε, Ṽε)(− t
ε

)]◦(Xε, Ṽε)(
t

ε
).

As the characteristic flow (Xε, Ṽε) in (36) is linear, the jacobian matrix simply writes
for any (x, ṽ) ∈ R2 × R2

∂x,ṽ(X
ε, Ṽε)(−t/ε;x, ṽ) =

(
I2

ε
ωc
R(−π/2)[I2 −R(ωct/ε)]

O2 R(ωct/ε)

)
and therefore (38) becomes

∂tF̃
ε + ε

{
aεx[F̃

ε(t)−t/ε]t/ε +
ε

ωc
R(−π/2)[I2 −R(ωct/ε)]a

ε
ṽ[F̃

ε(t)−t/ε]t/ε

}
· ∇XF̃

ε

+ εR(ωct/ε)a
ε
ṽ[F̃

ε(t)−t/ε]t/ε · ∇Ṽ F̃
ε = 0, (t,X, Ṽ ) ∈ R+ × R2 × R2.

We have obtained a two scale problem and we expect that the asymptotic behavior
when ε becomes small will follow by averaging with respect to the fast time variable
s = t/ε. As we are looking for second order approximations, we only need to average,
with respect to s, when ε is small

aεx[F̃
ε(t)−s]s · ∇XF̃

ε and R(ωcs)a
ε
ṽ[F̃

ε(t)−s]s · ∇Ṽ F̃
ε
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up to terms of order ε. By the second statement in Proposition 3.1, observe that

E[F̃ ε(t)−s]s(X, Ṽ ) =
q

2πε0

∫
R2

∫
R2

F̃ ε(t, (Xε, Ṽε)(−s;x′, ṽ′)) Xε(s;X, Ṽ )− x′

|Xε(s;X, Ṽ )− x′|2
dṽ′dx′

=
q

2πε0

∫
R2

∫
R2

F̃ ε(t,X ′, Ṽ ′)
Xε(s;X, Ṽ )− Xε(s;X ′, Ṽ ′)

|Xε(s;X, Ṽ )− Xε(s;X ′, Ṽ ′)|2
dṼ ′dX ′

= E[F̃ ε(t)](X) +O(ε) (39)

and therefore we deduce that

ωc
2π

∫ 2π/ωc

0

aεx[F̃
ε(t)−s]s · ∇XF̃

ε(t) ds =
⊥E[F̃ ε(t)](X)

B
· ∇XF̃

ε +O(ε). (40)

We concentrate now on the average of R(ωcs)a
ε
ṽ[F̃

ε(t)−s]s · ∇Ṽ F̃
ε. We only need to

consider the contributions of order 1 in aεṽ[F̃
ε(t)−s]s, that is, those of

q

2πε0B

(
divx

∫
R2

∫
R2

⊥(· − x′)

| · − x′|2
⊗ ṽ′F̃ ε(t, (Xε, Ṽε)(−s;x′, ṽ′)) dṽ′dx′

)
(Xε(s;X, Ṽ ))

=
q

2πε0B
divX

∫
R2

∫
R2

⊥(Xε(s;X, Ṽ )− Xε(s;X ′, Ṽ ′))

|Xε(s;X, Ṽ )− Xε(s;X ′, Ṽ ′)|
⊗ R(−ωcs)Ṽ ′F̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′

and

−

(
∂x

(
⊥E[F̃ ε(t)−s]

B

)
ṽ

)
s

(X, Ṽ ) =
R(π/2)

B
∂XE[F̃ ε(t)−s]sR(−ωcs)Ṽ .

Notice that, up to terms of order ε, the average of the first contribution writes

ωc
2π

∫ 2π
ωc

0

R(ωcs)
q

2πε0B
divX

∫
R2

∫
R2

⊥(X −X ′)
|X −X ′|2

⊗R(−ωcs)Ṽ ′F̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′ds

=
qR(−π/2)

2πε0B
divX

∫
R2

∫
R2

ωc
2π

∫ 2π
ωc

0

R(ωcs)(X −X ′)
|X −X ′|2

⊗R(−ωcs)Ṽ ′dsF̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′

=
qR(−π/2)

2πε0B
divX

∫
R2

∫
R2

(X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
F̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′

=
qR(−π/2)

2πε0B

∫
R2

∫
R2

(X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
∇X′F̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′.

It is easily seen that

divX′
(X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
= 0, X 6= X ′
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and thus the above computations lead to

qR(−π/2)

2πε0B
lim
r↘0

∫
R2

∫
|X−X′|>r

(X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
∇X′F̃ ε(t,X ′, Ṽ ′) dX ′ dṼ ′

=
qR(−π/2)

2πε0B
lim
r↘0

∫
R2

∫
|X−X′|=r
F̃ ε (X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
X −X ′

|X −X ′|
dσ(X ′) dṼ ′

=
qR(−π/2)

2πε0B
lim
r↘0

1

2r

∫
|X−X′|=r

∫
R2

F̃ ε(t,X ′, Ṽ ′)Ṽ ′ dṼ ′dσ(X ′)

=
⊥j[F̃ ε(t)](X)

2ε0B
. (41)

Similarly, up to terms of order ε, the second contribution is, thanks to (39)

ωc
2πB

∫ 2π/ωc

0

R(π/2)R(ωcs)∂XE[F̃ ε(t)]R(−ωcs)Ṽ ds = −trace(∂XE[F̃ ε(t)])

2B
⊥Ṽ

= −divXE[F̃ ε(t)]

2B
⊥Ṽ = −ρ[F̃ ε(t)]⊥Ṽ

2ε0B
. (42)

Combining (41), (42) we obtain

ωc
2π

∫ 2π/ωc

0

R(ωcs)a
ε
ṽ[F̃

ε(t)−s]s · ∇Ṽ F̃
εds =

⊥{j[F̃ ε(t)]− ρ[F̃ ε(t)]Ṽ }
2ε0B

· ∇Ṽ F̃
ε +O(ε).

(43)

Thanks to (40), (43) we are led to the model

∂tF̃ +ε
⊥E[F̃ (t)]

B
·∇XF̃ +ε

⊥{j[F̃ (t)]− ρ[F̃ (t)]Ṽ }
2ε0B

·∇Ṽ F̃ = 0, (t,X, Ṽ ) ∈ R+×R2×R2

(44)
which is supplemented by the initial condition

F̃ (0, X, Ṽ ) = fin

(
X − ε

⊥Ṽ

ωc
, Ṽ + ε

⊥E[fin](X)

B

)
, (X, Ṽ ) ∈ R2 × R2. (45)

More exactly, we expect that solving (44) together with the initial condition (45), will
provide a second order approximation for (1), (2). Although the above solution depends
on ε, we use the notation F̃ , saying that it is an approximation, when ε becomes
small. The well posedness of the limit model (44), (45) is a direct consequence of the
well posedness of the vorticity formulation for the 2D incompressible Euler equations.
Indeed, integrating (44) with respect to the velocity leads to the Euler equations

∂tρ[F̃ ]+
⊥E

Bε
·∇Xρ[F̃ ] = 0, E(t,X) =

1

2πε0

∫
R2

ρ[F̃ (t)](X ′)
X −X ′

|X −X ′|2
dX ′, (t,X) ∈ R+×R2

which allows us to determine ρ and E. Multiplying (44) by Ṽ and integrating with
respect to the velocity give a transport equation for the current density as well

∂tj[F̃ ] +

(⊥E
Bε
· ∇X

)
j[F̃ ] = 0
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and finally the presence density F̃ comes by solving the linear transport equation (44),
with smooth advection field

⊥E

Bε
· ∇X +

1

2ε0Bε
⊥(j − ρṼ ) · ∇Ṽ .

The proof details are left to the reader, see also Lemma 3.3 [25].

Theorem 6.1 Consider a non negative, smooth, compactly supported initial presence
density F̃in ∈ C1

c (R2×R2) and a uniform magnetic field Bε = B
ε
6= 0. There is a unique

presence density F̃ ∈ C1(R+×R2×R2) whose restriction on [0, T ]×R2×R2 is compactly
supported for any T ∈ R+, whose Poisson electric field is smooth E[F̃ ] ∈ C1(R+×R2),
satisfying (44), (45). Moreover, if for some integer k ≥ 2 we have F̃in ∈ Ck

c (R2 ×R2),
then F̃ ∈ Ck(R+ × R2 × R2) and E[F̃ ] ∈ Ck(R+ × R2).

Remark 6.1

1. The total kinetic energy is conserved. Indeed, multiplying (44) by m|Ṽ |2/2 and
integrating with respect to velocity yields

∂t

∫
R2

m
|Ṽ |2

2
F̃ dṼ +

⊥E[F̃ (t)]

Bε
· ∇X

∫
R2

m
|Ṽ |2

2
F̃ dṼ

=
m

2ε0Bε

∫
R2

⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ ) · Ṽ F̃ dṼ = 0

and our conclusion follows by integrating also with respect to X.

2. The total electric energy is conserved. As before, using the fundamental solution
of the Poisson equation in R2, we have

d

dt

1

2ε0

∫
R2

∫
R2

e(X −X ′)ρ[F̃ (t)](X)ρ[F̃ (t)](X ′) dX ′dX

=
1

ε0

∫
R2

∫
R2

e(X −X ′)ρ[F̃ (t)](X ′)∂tρ[F̃ (t)](X) dX ′dX

=

∫
R2

Φ[F̃ (t)](X)∂tρ[F̃ (t)](X) dX −
∫
R2

Φ[F̃ (t)](X)divX

(
ρ[F̃ (t)]

⊥E[F̃ (t)]

Bε

)
dX

=

∫
R2

∇XΦ[F̃ (t)] ·
⊥E[F̃ (t)]

Bε
ρ[F̃ (t)](X) dX = 0.

3. The function (X, Ṽ )→ 1
2
|j[F̃ (t)](X)−ρ[F̃ (t)](X)Ṽ |2 is an invariant of the trans-

port operator in (44). Indeed, thanks to the mass and momentum balances, we
deduce that(

∂t +
⊥E[F̃ (t)]

Bε
· ∇X +

⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ )

2ε0Bε
· ∇Ṽ

)
|j[F̃ (t)]− ρ[F̃ (t)]Ṽ |2

2

= −ρ[F̃ (t)]
⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ )

2ε0Bε
· (j[F̃ (t)]− ρ[F̃ (t)]Ṽ ) = 0.
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4. The model (44), (45) is invariant under rotation in the velocity space. More
exactly, if F̃ solves (44), (45), then F̃θ(t,X, Ṽ ) = F̃ (t,X,R(θ)Ṽ ) solves (44)
together with the initial condition

F̃θ(0, X, Ṽ ) = F̃in(X,R(θ)Ṽ ), (X, Ṽ ) ∈ R2 × R2.

In particular, if the initial presence density satisfies b ·∇X,Ṽ F̃in = 0, then, thanks

to the uniqueness, we have b · ∇X,Ṽ F̃ (t) = 0 at any time t ∈ R+.

5. When the initial presence density is well prepared i.e., b · ∇X,Ṽ F̃in = 0, then
⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ ) · ∇Ṽ F̃ = 0, t ∈ R+ and therefore (44) reduces to (18), with
uniform magnetic field.

The solution of (44), (45) will allow us to describe the asymptotic behavior of the
family (f ε)ε>0 corresponding to the initial condition fin, when ε becomes small. Let us
introduce the presence density

f̃(t, s, x, ṽ) = F̃ (t, (X, Ṽ)(−s;x, ṽ)), (t, s, x, ṽ) ∈ R+ × R× R2 × R2

where F̃ solves (44), (45) and (X, Ṽ) is the characteristic flow associated to the vector
field b(x, ṽ)·∇x,ṽ = ωc

⊥ṽ·∇ṽ, see Proposition 3.1. The idea is to compare f̃ ε(t, x, ṽ) with
respect to f(t, x + ε⊥ṽ/ωc, ṽ), where f(t, x, ṽ) = f̃(t, t/ε, x, ṽ). By direct computation
we check that

∂tf + ε

(⊥E[f(t)]

B
· ∇xf +

⊥(j[f(t)]− ρ[f(t)]ṽ)

2ε0B
· ∇ṽf

)
+
b(x, ṽ)

ε
· ∇x,ṽf = 0. (46)

Notice that f(0) ◦ T ε is a second order approximation of f̃ ε(0) in L2(R2 × R2){∫
R2

∫
R2

[
f̃ ε(0, x, ṽ)− f

(
0, x+ ε

⊥ṽ

ωc
, ṽ

)]2
dṽdx

}1/2

(47)

=

{∫
R2

∫
R2

[
fin

(
x, ṽ + ε

⊥E[fin]

B
(x)

)
− F̃

(
0, x+ ε

⊥ṽ

ωc
, ṽ

)]2
dṽdx

}1/2

=

{∫
R2

∫
R2

[
fin

(
x, ṽ + ε

⊥E[fin]

B
(x)

)
− fin

(
x, ṽ + ε

⊥E[fin]

B
(x+ ε ⊥ṽ/ωc)

)]2
dṽdx

}1/2

≤ Cε2.

By introducing a corrector term, we will prove that f ◦ T ε is a second order approxi-
mation of f̃ ε in L∞loc(R+;L2(R2×R2)). We mention that the asymptotic behavior for a
very similar problem has been investigated in Theorem 1.2 [25], but without indicating
the convergence rate. Our goal in this section is to complete the asymptotic analy-
sis by justifying the second order approximation. For any smooth presence density
f̃ ∈ C1

c (R2 × R2) we use the notations

a[f̃ ] · ∇x,ṽ =
⊥E[f̃ ]

B
· ∇x +

[
divx

2πε0B

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ − ∂x

(
⊥E[f̃ ]

B

)
ṽ

]
· ∇ṽ
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and

〈a〉 [f̃ ] · ∇x,ṽ =
⊥E[f̃ ]

B
· ∇x +

⊥(j[f̃ ]− ρ[f̃ ]ṽ)

2ε0B
· ∇ṽ.

For constructing the corrector, we need essentially to invert the transport operator ∂s+
b ·∇x,ṽ on the subspace of functions with zero average with respect to the characteristic
flow of the vector field ∂s + b · ∇x,ṽ, see [8, 9]. As in Proposition 5.1, the expression
of the corrector is explicit and follows by direct computations. We consider presence
densities depending also on the fast time variable and therefore we work in the phase
space (s, x, ṽ) ∈ R× R2 × R2.

Proposition 6.1 Assume that f̃ = f̃(s, x, ṽ) ∈ C1(R × R2 × R2) is S = 2π
|ωc| periodic

and uniformly compactly supported in (x, ṽ) with respect to s ∈ R, such that

∂sf̃ + b(x, ṽ) · ∇x,ṽf̃ = 0, (s, x, ṽ) ∈ R× R2 × R2.

Then we have the equality

a[f̃(s)] · ∇x,ṽf̃ − 〈a〉 [f̃(s)] · ∇x,ṽf̃ + (∂s + b(x, ṽ) · ∇x,ṽ)f̃
2 = 0

where

f̃ 2 =
cos(2ωcs)

8ωcπε0B
divx

∫
R2

[⊥(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ] +
x− x′

|x− x′|2
⊗ j[F̃ ]

]
dx′ · ∇Ṽ F̃ (x,R(ωcs)ṽ)

+
sin(2ωcs)

8ωcπε0B
divx

∫
R2

[
(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ]−
⊥(x− x′)
|x− x′|2

⊗ j[F̃ ]

]
dx′ · ∇Ṽ F̃ (x,R(ωcs)ṽ)

+
cos(2ωcs)

4ωc

[
R(π/2)∂x

(
E[F̃ ]

B

)
+ ∂x

(
E[F̃ ]

B

)
R(−π/2)

]
: ⊥∇Ṽ F̃ ⊗R(ωcs)ṽ

− sin(2ωcs)

4ωc

[
∂x

(
E[F̃ ]

B

)
−R(π/2)∂x

(
E[F̃ ]

B

)
R(−π/2)

]
: ⊥∇Ṽ F̃ ⊗R(ωcs)ṽ.

Proof. The presence density f̃ satisfies the constraint (∂s+b ·∇x,ṽ)f̃ = 0 and therefore
we have

f̃(s, x, ṽ) = f̃(0, (X, Ṽ)(−s;x, ṽ)), (s, x, ṽ) ∈ R× R2 × R2.

Therefore there is a function F̃ ∈ C1
c (R2 × R2) such that

f̃(s, x, ṽ) = F̃ (x,R(ωcs)ṽ), (s, x, ṽ) ∈ R× R2 × R2.

Observe that ρ[f̃(s)] = ρ[F̃ ], j[f̃(s)] = R(−ωcs)j[F̃ ] and

∇ṽf̃(s, x, ṽ) = R(−ωcs)∇Ṽ F̃ (x,R(ωcs)ṽ), (s, x, ṽ) ∈ R× R2 × R2.

Notice that

1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃(s)](x′) dx′ · ∇ṽf̃(s)−
⊥j[f̃(s)]

2ε0B
· ∇ṽf̃(s) (48)

=
divx

2πε0B

∫
R2

R(ωcs)
⊥(x− x′)
|x− x′|2

⊗R(−ωcs)j[F̃ ](x′) dx′ · (∇Ṽ F̃ )(x,R(ωcs)ṽ)

−
⊥j[F̃ ](x)

2ε0B
· (∇Ṽ F̃ )(x,R(ωcs)ṽ).
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As already observed in (41), the average with respect to s of

1

2πε0B
divx

∫
R2

R(ωcs)
⊥(x− x′)
|x− x′|2

⊗R(−ωcs)j[F̃ ](x′) dx′

coincides with ⊥j[F̃ ]/(2ε0B), and therefore we have

divx
2πε0B

∫
R2

R(ωcs)
⊥(x− x′)
|x− x′|2

⊗R(−ωcs)j[F̃ ](x′) dx′ −
⊥j[F̃ ](x)

2ε0B

=
divx

2πε0B

∫
R2

[
cos2(ωcs)−

1

2

] ⊥(x− x′)
|x− x′|2

⊗ j[F̃ ] +

[
sin2(ωcs)−

1

2

]
x− x′

|x− x′|2
⊗ ⊥j[F̃ ] dx′

+
divx

2πε0B

∫
R2

cos(ωcs) sin(ωcs)

[⊥(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ] +
(x− x′)
|x− x′|2

⊗ j[F̃ ]

]
dx′

whose zero average primitive with respect to s is

sin(2ωcs)

8ωcπε0B
divx

∫
R2

[⊥(x− x′)
|x− x′|2

⊗ j[F̃ ]− x− x′

|x− x′|2
⊗ ⊥j[F̃ ]

]
dx′

−cos(2ωcs)

8ωcπε0B
divx

∫
R2

[⊥(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ] +
x− x′

|x− x′|2
⊗ j[F̃ ]

]
dx′.

Coming back to (48), and taking into account that ∇Ṽ F̃ (x,R(ωcs)ṽ) belongs to the
kernel of ∂s + b ·∇x,ṽ, since it depends only on the invariants x,R(ωcs)ṽ of ∂s + b ·∇x,ṽ,
it is easily seen that

divx
2πε0B

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃(s)] dx′ · ∇ṽf̃(s)−
⊥j[f̃(s)]

2ε0B
· ∇ṽf̃(s) + (∂s + b · ∇x,ṽ)f̃

2
I = 0

where

f̃ 2
I =

cos(2ωcs)

8ωcπε0B
divx

∫
R2

[⊥(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ] +
x− x′

|x− x′|2
⊗ j[F̃ ]

]
dx′ · ∇Ṽ F̃ (x,R(ωcs)ṽ)

+
sin(2ωcs)

8ωcπε0B
divx

∫
R2

[
(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ]−
⊥(x− x′)
|x− x′|2

⊗ j[F̃ ]

]
dx′ · ∇Ṽ F̃ (x,R(ωcs)ṽ).

(49)

Similarly we obtain

−∂x

(
⊥E[f̃(s)]

B

)
ṽ · ∇ṽf̃ +

ρ[f̃(s)]

2ε0B
⊥ṽ · ∇ṽf̃ + (∂s + b · ∇x,ṽ)f̃

2
II = 0

where

f̃ 2
II =

cos(2ωcs)

4ωc

[
R(π/2)∂x

(
E[F̃ ]

B

)
+ ∂x

(
E[F̃ ]

B

)
R(−π/2)

]
: ⊥∇Ṽ F̃ ⊗R(ωcs)ṽ

− sin(2ωcs)

4ωc

[
∂x

(
E[F̃ ]

B

)
−R(π/2)∂x

(
E[F̃ ]

B

)
R(−π/2)

]
: ⊥∇Ṽ F̃ ⊗R(ωcs)ṽ.

(50)

Our conclusion follows by combining (49), (50).
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Remark 6.2 Notice that f̃ 2 = f̃ 2(s, x, ṽ) is continuous, S = 2π
|ωc| periodic and uni-

formly compactly supported in (x, ṽ) with respect to s. Moreover, if f̃ ∈ Ck(R×R2×R2)
for some integer k ≥ 2, then f̃ 2 ∈ Ck−1(R× R2 × R2).

We appeal one more time to the application T ε(x, ṽ) = (x + ε⊥ṽ/ωc, ṽ). Since the
magnetic field is uniform, the formula (27) simply writes

∂T εbε = b ◦ T ε, b · ∇x,ṽ = ωc
⊥ṽ · ∇ṽ, bε · ∇x,ṽ = εṽ · ∇x + ωc

⊥ṽ · ∇ṽ. (51)

Finally we are ready to prove that f(t) ◦ T ε, where f(t, x, ṽ) = F̃ (t, x,R(ωct/ε)ṽ), is a
second order approximation of f̃ ε(t, x, ṽ).

Proof. (of Theorem 1.3)
For any t ∈ R+, the presence density (s, x, ṽ) → f̃(t, s, x, ṽ) = F̃ (t, (X, Ṽ)(−s;x, ṽ))
belongs to C2(R × R2 × R2), is S = 2π

|ωc| periodic with respect to s and uniformly

compactly supported in (x, ṽ), with respect to s ∈ R and t ∈ [0, T ], T ∈ R+. By
definition, for any t ∈ R+, the presence density f̃(t) satisfies the constraint (∂s + b ·
∇x,ṽ)f̃(t) = 0. Thanks to Proposition 6.1, there is f̃ 2(t, s, x, ṽ) such that

a[f̃(t, s)] · ∇x,ṽf̃ − 〈a〉 [f̃(t, s)] · ∇x,ṽf̃ + (∂s + b · ∇x,ṽ)f̃
2 = 0. (52)

It is easily seen, by the explicit formula of f̃ 2, that the corrector f̃ 2 belongs to C1(R+×
R×R2×R2), is S = 2π

|ωc| periodic with respect to s, and uniformly compactly supported

in (x, ṽ) with respect to s ∈ R and t ∈ [0, T ], T ∈ R+. Taking s = t/ε in (52),
multiplying by ε and combining with (46) yield

d

dt

{
f(t) + ε2f̃ 2(t, t/ε)

}
+ εa[f(t)] · ∇x,ṽf(t) +

b

ε
· ∇x,ṽ

{
f(t) + ε2f̃ 2(t, t/ε)

}
= ε2∂tf̃

2(t, t/ε, x, ṽ).

After composition with T ε, the above equation becomes, thanks to (51)

d

dt

{
f(t) ◦ T ε + ε2f̃ 2(t, t/ε) ◦ T ε

}
+ εa[f(t)] ◦ T ε · (∇f(t)) ◦ T ε

+
bε

ε
· ∇
{
f(t) ◦ T ε + ε2f̃ 2(t, t/ε) ◦ T ε

}
= ε2∂t{f̃ 2(t, t/ε) ◦ T ε}.

Combining with (35) and using the notation rε(t) = f̃ ε(t)−f(t)◦T ε−ε2f̃ 2(t, t/ε)◦T ε,
lead to

∂tr
ε + εaε[f̃ ε(t)] · ∇x,ṽf̃

ε − ε(a[f(t)] · ∇f(t)) ◦ T ε +
bε

ε
· ∇x,ṽr

ε = −ε2∂tf̃ 2(t, t/ε) ◦ T ε.
(53)

As the magnetic field is uniform, the vector fields aε[f̃ ε], bε are divergence free and
therefore∫
R2

∫
R2

εaε[f̃ ε(t)] · ∇x,ṽf̃
εrε dṽdx =

∫
R2

∫
R2

εaε[f̃ ε(t)] · ∇(f(t) ◦ T ε + ε2f̃ 2(t, t/ε) ◦ T ε)rε dṽdx

∫
R2

∫
R2

bε

ε
· ∇x,ṽr

ε rε dṽdx = 0.
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Multiplying (53) by rε(t, x, ṽ) and integrating with respect to (x, ṽ) imply

1

2

d

dt
‖rε(t)‖2L2 + ε

∫
R2

∫
R2

aε[f̃ ε(t)] · ∇(f(t) ◦ T ε)rε dṽdx

− ε
∫
R2

∫
R2

(a[f(t)] · ∇f(t)) ◦ T εrε dṽdx

= −ε2
∫
R2

∫
R2

∂tf̃
2(t, t/ε) ◦ T εrε dṽdx− ε3

∫
R2

∫
R2

aε[f̃ ε(t)] · ∇(f̃ 2(t, t/ε) ◦ T ε)rε dṽdx

and by Bellman lemma one gets

‖rε(t)‖L2 ≤ ‖rε(0)‖L2 + ε

∫ t

0

‖aε[f̃ ε(t′)] · ∇(f(t′) ◦ T ε)− (a[f(t′)] · ∇f(t′)) ◦ T ε‖L2 dt′

+ ε2
∫ t

0

‖∂tf̃ 2(t′, t′/ε) ◦ T ε‖L2 dt′ + ε3
∫ t

0

‖aε[f̃ ε(t′)] · ∇(f̃ 2(t′, t′/ε) ◦ T ε)‖L2 dt′.

(54)

As before, we are working for t ∈ [0, T ], T ∈ R+, and we denote by C any constant
depending on m, ε0, q, T, B and the initial presence density fin, but not on ε. Thanks
to (47) we have

‖rε(0)‖L2 ≤ ‖f̃ ε(0)− f(0) ◦ T ε‖L2 + ε2‖f̃ 2(0, 0) ◦ T ε‖L2

and thus clearly ‖rε(0)‖L2 ≤ Cε2. Using the C1
c regularity of f̃ 2 which comes from the

C2
c regularity of F̃ , it is straightforward that

ε2
∫ T

0

‖∂tf̃ 2(t, t/ε) ◦ T ε‖L2 dt′ + ε3
∫ T

0

‖aε[f̃ ε(t)] · ∇(f̃ 2(t, t/ε) ◦ T ε)‖L2 dt ≤ Cε2.

We claim that

ε

∫ t

0

‖aε[f̃ ε(t′)] · ∇(f(t′) ◦ T ε)− (a[f(t′)] · ∇f(t′)) ◦ T ε‖L2 dt′ ≤ Cε2 (55)

+ Cε

∫ t

0

‖f̃ ε(t′)− f(t′) ◦ T ε‖L2 , t ∈ [0, T ].

Thanks to the uniform bounds

sup
ε>0,t∈[0,T ]

{‖f̃ ε(t)‖C1(R2×R2) + ‖E[f̃ ε(t)]‖C1(R2)} < +∞

it is easily seen that

‖(aε[f̃ ε(t)]− a[f̃ ε(t)]) · ∇(f(t) ◦ T ε)‖L2 ≤ Cε, t ∈ [0, T ], ε > 0.

Thanks to elliptic regularity results, the quantity

‖( a[f̃ ε(t)]− a[f(t) ◦ T ε] ) · ∇(f(t) ◦ T ε)‖L2

is bounded by the L2 norms of the charge and current densities

‖ρ[f̃ ε(t)]− ρ[f(t) ◦ T ε]‖L2(R2) + ‖j[f̃ ε(t)]− j[f(t) ◦ T ε]‖L2(R2)
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and thus by the L2 norm of the presence densities ‖f̃ ε(t) − f(t) ◦ T ε‖L2(R2×R2). We
obtain the inequality

‖(a[f̃ ε(t)]−a[f(t)◦T ε])·∇(f(t)◦T ε)‖L2 ≤ C‖f̃ ε(t)−f(t)◦T ε‖L2(R2×R2), t ∈ [0, T ], ε > 0.

The inequality (55) follows immediately, noticing that

‖a[f(t) ◦ T ε] · ∇(f(t) ◦ T ε)− (a[f(t)] · ∇f(t)) ◦ T ε‖L2(R2×R2) ≤ Cε, t ∈ [0, T ], ε > 0.

Finally (54) writes

‖rε(t)‖L2 ≤ Cε2 + Cε

∫ t

0

‖f̃ ε(t′)− f(t′) ◦ T ε‖L2 dt′

implying that

‖f̃ ε(t)− f(t) ◦ T ε‖L2 ≤ ‖rε(t)‖L2 + ε2‖f̃ 2(t, t/ε) ◦ T ε‖L2

≤ Cε2 + Cε

∫ t

0

‖f̃ ε(t′)− f(t′) ◦ T ε‖L2 dt′, t ∈ [0, T ], ε > 0.

By Gronwall lemma we deduce

‖f̃ ε(t)− f(t) ◦ T ε‖L2 ≤ Cε2 exp(Cεt), t ∈ [0, T ], ε > 0.

Clearly we have

‖E[f ε(t)]− E[F̃ (t)]‖L2 = ‖E[f̃ ε(t)]− E[f(t)]‖L2 ≤ ‖E[f̃ ε(t)]− E[f(t) ◦ T ε]‖L2

+ ‖E[f(t) ◦ T ε]− E[f(t)]‖L2 ≤ Cε

and therefore
∫
R2

∫
R2

[
F̃

(
t, x+ ε

⊥v

ωc
,R(ωct/ε)

(
v − ε

⊥E[F̃ (t)]

B

))
− f ε(t, x, v)

]2
dvdx


1/2

=

{∫
R2

∫
R2

[
F̃

(
t, x+

ε

ωc

(
⊥ṽ − εE[f ε(t)]

B

)
,R(ωct/ε)

(
ṽ + ε

⊥E[f ε(t)]− ⊥E[F̃ (t)]

B

))

−f̃ ε(t, x, ṽ)
]2

dṽdx

}1/2

≤ ‖f̃ ε(t)− f(t) ◦ T ε‖L2 +

{∫
R2

∫
R2

[
F̃

(
t, x+ ε

⊥ṽ

ωc
,R(ωct/ε)ṽ

)
−

F̃

(
t, x+ ε

⊥ṽ

ωc
− ε2

ωc

E[f ε(t)]

B
,R(ωct/ε)ṽ + εR(ωct/ε)

⊥E[f ε(t)]− ⊥E[F̃ (t)]

B

)]2
dṽdx


1/2

≤ Cε2 + Cε‖E[f ε(t)]− E[F̃ (t)]‖L2 ≤ Cε2, t ∈ [0, T ], ε > 0.
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A Well posedness of the Vlasov-Poisson problem

with external magnetic field

Proof. (of Theorem 2.1)
We are done if we prove the well posedness on any time interval [0, T ], T ∈ R+. We
construct a map acting on electric fields. Given a C1 electric field E on [0, T ] × R2

such that E, ∂xE are bounded, we consider the solution by characteristics of the Vlasov
problem (7), (9) on [0, T ]× R2, that is

fE(t, x, v) = fin(XE(0; t, x, v), V E(0; t, x, v)), (t, x, v) ∈ [0, T ]× R2 × R2

where the characteristics (XE, V E)(s; t, x, v) are given by

dXE

ds
= V E(s),

dV E

ds
=

q

m

(
E(s,XE(s)) +B(XE(s)) ⊥V E(s)

)
(XE, V E)(s = t; t, x, v) = (x, v), (s, t, x, v) ∈ [0, T ]× [0, T ]× R2 × R2.

Notice that the right hand side terms in the characteristic equations have at most
linear growth at infinity (i.e., when s, t ∈ [0, T ], |x| + |v| → +∞), and therefore the
characteristics exist globally on [0, T ] and have C1 regularity in all the arguments.
Considering now the Poisson electric field corresponding to the presence density f ,
leads to a map F , whose fixed point gives the solution of the Vlasov-Poisson problem
(7), (8), (9) on [0, T ]

E → F(E) =
q

2πε0

∫
R2

∫
R2

fE(t, x′, v′)
x− x′

|x− x′|2
dv′dx′.

We need to find a set XT of smooth electric fields, which is left invariant by the map
F , and to establish an estimate like

‖FE(t)−FẼ(t)‖L∞(R2) ≤ CT

∫ t

0

‖E(s)− Ẽ(s)‖L∞(R2) ds, E, Ẽ ∈ XT , t ∈ [0, T ] (56)

for some constant CT , not depending on E, Ẽ. After that, the well posedness of the
Vlasov-Poisson system follows immediately, by iterating the map F . We are not indi-
cating all the details of this construction, but only the a priori estimates, for smooth
solutions of (7), (8), (9). Let f be a smooth solution corresponding to the non negative
initial presence density fin ∈ C1

c (R2 × R2). We are looking for estimating E, ∂xE in
C([0, T ]× R2). Notice that for any R > 0 we have

|ε0E[f(t)](x)| ≤ 1

2π

∫
R2

1{|x−x′|<R}
ρ[f(t)](x′)

|x− x′|
dx′ +

1

2π

∫
R2

1{|x−x′|≥R}
ρ[f(t)](x′)

|x− x′|
dx′

≤ R‖ρ[f(t)]‖L∞(R2) +
1

2πR
‖ρ[f(t)]‖L1(R2).

As the total charge is conserved, after minimization with respect to R, that is by taking
R = (‖ρ[fin]‖L1(R2)/2π‖ρ[f(t)]‖L∞(R2))

1/2, we obtain

ε0‖E[f(t)]‖L∞(R2) ≤ ‖ ρ[f(t)] ‖1/2L∞(R2)

(
|q|
2π
‖fin‖L1(R2×R2)

)1/2

. (57)
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For estimating the L∞ norm of the charge density, we analyze the support of the
presence density f . By the characteristic equations we have for any 0 ≤ s ≤ t ≤ T

|X(s; t, x, v)− x| ≤
∫ t

s

|V (σ; t, x, v)| dσ (58)

and
1

2

d

ds
|V (s; t, x, v)|2 =

q

m
E[f(s)](X(s; t, x, v)) · V (s; t, x, v) (59)

implying that

| |V (s; t, x, v)| − |v| | ≤ |q|
m

∫ t

s

‖E[f(σ)]‖L∞(R2) dσ.

Assume that supp fin ⊂ {(x, v) ∈ R2 × R2 : |x| ≤ Rin
x and |v| ≤ Rin

v }. Clearly, for

any (x, v) ∈ R2 × R2 such that |v| > Rv(t) := Rin
v + |q|

m

∫ t
0
‖E[f(s)]‖L∞(R2) ds we have

|V (0; t, x, v)| ≥ |v| − |q|
m

∫ t

0

‖E[f(s)]‖L∞(R2) ds > Rin
v

and therefore
f(t, x, v) = fin(X(0; t, x, v), V (0; t, x, v)) = 0.

Consider now (x, v) ∈ R2 × R2 such that

|x| > Rx(t) := Rin
x + tRv(t) +

∫ t

0

|q|
m

∫ t

s

‖E[f(σ)]‖L∞(R2) dσ ds.

If |v| > Rv(t) we already know that f(t, x, v) = 0. If |v| ≤ Rv(t), we have by (58), (59)

|X(0; t, x, v)| ≥ |x| −
∫ t

0

|V (s; t, x, v)| ds

≥ |x| −
∫ t

0

[
|v|+ |q|

m

∫ t

s

‖E[f(σ)]‖L∞(R2) dσ

]
ds

≥ |x| − tRv(t)−
∫ t

0

|q|
m

∫ t

s

‖E[f(σ)]‖L∞(R2) dσ ds > Rin
x

implying that f(t, x, v) = fin(X(0; t, x, v), V (0; t, x, v)) = 0. We have proved that f is
compactly supported

supp f(t) ⊂ {(x, v) ∈ R2 × R2 : |x| ≤ Rx(t) and |v| ≤ Rv(t)}, t ∈ [0, T ].

Notice that the above computations are not depending on the magnetic field B; more
exactly the equations (59) will be the same when considering an external magnetic
field or not. This is why the arguments used for the Vlasov-Poisson problem also apply
for the Vlasov-Poisson problem with external magnetic field. The charge density is
bounded by

|ρ[f(t)](x)| = |q|
∫
R2 fin(X(0; t, x, v), V (0; t, x, v)) dv ≤ |q|‖fin‖L∞(R2×R2)πR

2
v(t).(60)
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The a priori bound for the L∞ norm of the electric field comes by Gronwall lemma.
Actually, combining (57), (60) yields

ε0‖E[f(t)]‖L∞(R2) ≤
(
|q|
2π
‖fin‖L1(R2×R2)

)1/2 (
|q|‖fin‖L∞(R2×R2)π

)1/2
Rv(t)

=
|q|√

2
‖fin‖1/2L1(R2×R2)‖fin‖

1/2

L∞(R2×R2)

(
Rin
v +
|q|
m

∫ t

0

‖E[f(s)]‖L∞(R2) ds

)
.

Notice that once that we have obtained a L∞ bound for the electric field, we also get
a bound for the support size of the presence density f . The derivation of the L∞ a
priori estimate for ∂xE is more elaborated. It was shown in [2] that there is a constant
C̃ (depending only on m, ε0) such that

‖∂xE[f(t)]‖L∞ ≤ C̃
[
(1 + ‖ρ[f(t)]‖L∞)(1 + ln+ ‖∇xρ[f(t)]‖L∞) + ‖ρ[f(t)]‖L1

]
. (61)

Here the notation ln+ stands for the positive part of ln. We already have a priori
bounds for the L∞ norm of ρ[f(t)] (use the estimate for the size of the support of f)
and for the L1 norm of ρ[f(t)] (use the conservation of the total charge), and therefore
(61) becomes

‖∂xE[f(t)]‖L∞ ≤ C1(1 + ln+ ‖∇xρ[f(t)]‖L∞), t ∈ [0, T ] (62)

for some constant C1 depending on m, ε0, q, T . We need to estimate the L∞ norm of
∇xρ[f(t)] which writes

∇xρ[f(t)] = q∇x

∫
R2

fin(X(0; t, x, v), V (0; t, x, v)) dv (63)

= q

∫
R2

1{|v|≤Rv(t)}
t∂xX(0; t, x, v)(∇Xfin)(X(0; t, x, v), V (0; t, x, v)) dv

+ q

∫
R2

1{|v|≤Rv(t)}
t∂xV (0; t, x, v)(∇V fin)(X(0; t, x, v), V (0; t, x, v)) dv.

A straightforward computation on the characteristic equations shows that there is a
constant C2(m, q, T, ‖B‖W 1,∞) ≥ 1 such that for any (x, v) ∈ R2 × R2, |v| ≤ Rv(t), we
have

|∂xX(0; t, x, v)|+ |∂xV (0; t, x, v)| ≤ C2 exp

(∫ t

0

‖∂xE[f(s)]‖L∞ ds

)
, t ∈ [0, T ].

Coming back to (63) we obtain

‖∇xρ[f(t)]‖L∞ ≤ C3 exp

(∫ t

0

‖∂xE[f(s)]‖L∞ ds

)
, t ∈ [0, T ]

for some constant C3(m, q, T, ‖B‖W 1,∞) ≥ 1, and therefore

ln+ ‖∇xρ[f(t)]‖L∞ ≤ lnC3 +

∫ t

0

‖∂xE[f(s)]‖L∞ ds, t ∈ [0, T ].

Finally, combining with (62) yields

‖∂xE[f(t)]‖L∞ ≤ C4

(
1 +

∫ t

0

‖∂xE[f(s)]‖L∞ ds

)
, t ∈ [0, T ]
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and the a priori estimate for the L∞ norm of ∂xE[f ] follows by Gronwall lemma.
Based on the L∞ estimates for the electric field together with its spatial derivatives,
and also on the compactness of the presence density support, the inequality (56) comes
immediately.
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