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Spin-transfer torque (STT) in tunnel junctions with ferromagnetic leads is one of the essential underlying
phenomena of modern spintronics. Here, we present a theoretical study of STT in ferrimagnet- (FI-) based
tunnel junctions where two FI metal electrodes are separated by a thin nonmagnetic insulating barrier. We
show that electronic structure parameters, such as bandwidths and exchange splittings of the FI leads strongly
influence STT. In particular, the STT spatial distribution within the leads shows a striking spin-modulated
wavelike behavior resulting from the interplay between the exchange splittings of the two FI sublattices.
Additionally, we identify the fundamental parameter for quantifying STT characteristic lengths in FI metals,
which will also be accessible to experiments, for instance, by ferromagnetic resonance and spin pumping
measurements.
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The magnetic order of a ferromagnetic (F) thin film can
be reoriented by the transfer of angular momentum from
a spin-polarized current. This effect, known as spin-transfer
torque (STT), was theoretically predicted by Slonczewski [1]
and Berger [2] and since then has been the object of extensive
investigation due to its applications in spintronic devices [3].
More recently, and despite their vanishing magnetization,
similar effects were also proposed for structures containing
exclusively antiferromagnetic (AF) metals in which STT was
theoretically predicted to act through longer length scales [4].
Essentially, because of alternating moment orientations in
ideal AFs, commensurate staggered torques occur generically,
and it follows that STT can act cooperatively through the
entire AF volume [4]. Over the past few years, a growing
number of studies have then considered both theoretical
and device aspects of AF-based spintronics [5]. However,
AFs are not easy to manipulate experimentally. Alternatively,
ferrimagnetic (FI) materials merge characteristic features
of both Fs and AFs, namely, a spontaneous macroscopic
magnetization together with a partially compensated magnetic
structure. As a consequence, combined STT features of Fs and
AFs may also occur, giving rise to high local STT values and
long-range STT spatial distributions. To verify so, in this paper,
we address a theoretical study of the STT spatial distribution
in a FI tunnel junction (FI-MTJ) using a tight-binding (TB)
model in the framework of the nonequilibrium Keldysh
formalism.

Given the layer structure sketched in Fig. 1, the FI-MTJ is
described using a single orbital simple cubic TB Hamiltonian
which sums the Hamiltonian terms accounting for the isolated
left (L) and right (R) electrodes, the barrier (B), and the leads-
barrier interactions,

Ĥ = ĤR + ĤL + ĤB + Ĥint, (1)
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where

ĤL(R) =
∑

λ(λ′),k||,σ

(
εk|| + εσ

λ(λ′)
)
ĉ
†
k||,λ(λ′),σ ĉk||,λ(λ′),σ

+
∑

λ(λ′),μ(μ′),k||,σ

tλ(λ′),μ(μ′)ĉ
†
k||,λ(λ′),σ ĉk||,μ(μ′),σ , (2)

ĤB =
∑
i,k||,σ

(εk||+εi)ĉ
†
k||,i,σ ĉk||,i,σ +

∑
i,j,k||,σ

ti,j ĉ
†
k||,i,σ ĉk||,j,σ ,

(3)

Ĥint =
∑
k‖,σ

(ta,αĉ
†
k||,a,σ ĉk||,α,σ +tb,α′ ĉ

†
k||,b,σ ĉk||,α′,σ + H.c.). (4)

Here, ĉ
†
k||,p,σ creates one s electron with spin σ on layer p

in the Bloch state labeled by the transverse wave number k||
(translational invariance in the xz plane is assumed through
the entire junction). εk|| is the in-plane kinetic energy of the
Bloch state, and tp,q is the spin-independent hopping matrix
element between sites p and q. The coupling of the left (right)
lead to the barrier is considered through the hopping parameter
ta,α (tb,α′ ) between the first (last) layer of the barrier and the
last (first) layer of the left (right) lead.

The spin-dependent on-site energies εσ
p within the leads

are split into the s-orbital energy (ε0) and the magnetic s-
d exchange interaction between itinerant spins and localized
magnetic moments (�σ

p): εσ
p = ε0 + �σ

p . We set ε0 = 1.5 eV
in both leads and t = −1 eV in all regions so that all the FIs
analyzed here are fully characterized by their on-site dependent
s-d interaction �σ

p . Unlike the case of ordinary F-MTJ with
a homogeneous exchange splitting value within the electrode,
�σ

p for FI-MTJ here not only alternates in orientation, but also
varies in magnitude from one layer to the next one, which
defines two different sublattices denoted here as A and B (see
Fig. 1). Considering a right FI lead whose first layer next to
the B/FI interface is formed by fully uncompensated up spins
(sublattice A), the spin splitting in layer λ′ writes

�
↑(↓)
λ′ =

{−(+)�A, if λ′ is odd—sublattice A,

+(−)�B, if λ′ is even—sublattice B.
(5)
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FIG. 1. (Color online) Schemes adapted from Ref. [3] for the
specific case of FI leads. (Top) Schematic of the FI-MTJ consisting
of left and right semi-infinite FI leads separated by a nonmagnetic
barrier of Nb atomic layers. The magnetization M ′ of the right lead
points along the z direction. The nonequilibrium on-site torques are
represented by the in-plane (T||) and out-of-plane (T⊥) components,
and the spin current densities are also indicated (I ). (Middle)
Schematic of sublattices A and B in the FI leads with different
spin splittings �A and �B corresponding to up and down localized
spins, respectively. The magnetization M of the left lead is parallel
to the FI/B interface and is rotated by an angle θ around the y

axis. The greek primed and unprimed letters denote atomic sites
in the right and left leads, respectively, and the latin letters denote
the sites in the barrier. (Bottom) Schematic of the bands and the
potential profile where the 1D densities of states for up and down
spins are split by δ = �A − �B and the lower and upper bands
for a given spin are separated by a gap of �A + �B . εB is the
spin-independent on-site energy in the barrier, and V is the potential
applied through the junction. The lower dashed line indicates the
Fermi level at equilibrium, set at 0 eV in all regions, when no voltage is
applied.

As depicted in Fig. 1, majority and minority bands in
the ferrimagnetic leads are split by δ = �A − �B . When an
external bias V is applied, the on-site energies inside the
insulator are considered to drop linearly with the number of
layers (here Nb = 3) from εb = 5 eV at the FI/B interface.
The parameters modeling the electronic properties of the
FI leads constitute a reasonable choice used previously for

ordinary F-MTJ based on magnetic transition metals and their
alloys [6–8].

The spin densities and spin current mean values are
calculated using the density operator directly related to
nonequilibrium 2 × 2 lesser Green’s function in spin space:
Ĝ

<σ,σ ′
p,q ′ (k||,t) = i〈ĉ†k||,p,σ (t)ĉk||,q,σ ′ (t)〉. Creation and annihila-

tion operators are evaluated in the Heisenberg picture at equal
times since the thermal average is calculated in the steady
state of the coupled system at room temperature. According to
the Keldysh formalism [9] its Fourier transform can be writ-
ten as Ĝ<

p,q = 1
2 (F̂p,q + Ĝa

p,q − Ĝr
p,q). The nonequilibrium

Keldysh, F̂p,q , advanced, Ĝa
p,q , and retarded Ĝr

p,q Green’s
functions for the whole coupled system are expressed in terms
of the retarded Green’s functions ĝr

p,q for each uncoupled
region at equilibrium by solving a system of quantum kinetic
and Dyson equations [8]. For ordinary F-MTJ [8,10,11],
the total torque delivered through the entire F lead can be
evaluated using the interfacial spin currents which requires
the computation of the lesser Green’s functions derived from
ĝr

α,α and ĝr
α′,α′ at the F/B and B/F interfaces only due to the

rapid decay of torques from the last interface [12]. In contrast,
the precise computation of the local STT distribution in the
right FI lead addressed in this paper requires the knowledge of
all interlayer matrix elements of the Green’s function. Here,
the retarded Green’s functions for the uncoupled leads ĝr

p,q are
obtained analytically. Such calculation takes into account that a
one-dimensional (1D) FI chain corresponds to a lattice without
closed loops that can be mapped into a Bethe lattice or Cayley
tree which is completely characterized by its number of nearest
neighbors Z = 2 or its connectivity K = Z − 1. Like Eq. (2),
by splitting the Hamiltonian into an unperturbed site-diagonal
term plus an off-diagonal perturbation and by using renormal-
ized perturbation expansion [13] the exact Green’s function
ĝr

p,q can be calculated for the Bethe lattice. Given the above
precisions and denoting d as the dimensionality of the junction,
the spin density and spin current in the right lead are as
follows:

Ŝλ′ = −i�

2(2π )d

∫
Trσ

[
Ĝ

<σ,σ ′
λ′,λ′ σ

]
dE dk||, (6)

Q̂λ′,λ′+1 = t

2(2π )d

∫
Trσ

[(
Ĝ

<σ,σ ′
λ′+1,λ′ − Ĝ

<σ,σ ′
λ′,λ′+1

)
σ
]
dE dk||.

(7)

The spatial distribution of in-plane and out-of-plane spin-
transfer torques within the right electrode is extracted from
the discrete divergence in the transport direction y of the spin
current in each layer of the lead,

T̂λ′ = −∇ · Q̂ = Q̂λ′−1,λ′ − Q̂λ′,λ′+1 = t

2(2π )d

∫
Trσ

[(
Ĝ

<σ,σ ′
λ′,λ′−1 − Ĝ

<σ,σ ′
λ′−1,λ′ − Ĝ

<σ,σ ′
λ′+1,λ′ + Ĝ

<σ,σ ′
λ′,λ′+1

)
σ
]
dE dk||. (8)

Alternatively, since ballistic transport is considered here,
torques can also be extracted from the exchange field [14]:
T̂λ′ = �

λ′ ẑ × Ŝλ′ , where the exchange field �λ′ is defined as
an angular frequency so that the energy required to reverse

one spin in layer λ′ is ��λ′ = ε
↑
λ′ − ε

↓
λ′ [15]. �λ′ is assumed

to match the direction of local magnetization in the local
spin-density approximation. The z component of torque is
zero, and the in-plane and out-of-plane components of the
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FIG. 2. (Color online) Spatial distribution of the in-plane (T||)
and out-of-plane (T⊥) nonequilibrium torque components and lo-
cal spin-density components (S⊥ and S||) for a 1D system; θ =
π/2, �A = 0.5, �B = 0.25 eV, and V = 0.1 V. The equilibrium
torques and local spin densities were subtracted: T||(0 V) and S⊥(0 V)
equal zero in contrast to T⊥(0 V) and S||(0 V) that result from
interlayer equilibrium RKKY interactions. The red and blue curves
(symbols) refer to the right- (left-) hand ordinates.

local torques defined in Fig. 1 are given by the so-called spin
accumulation in the x and y directions Sx and Sy , respectively:
T

||
λ′ = (−1)λ

′
�λ′S

y

λ′ and T ⊥
λ′ = (−1)λ

′+1�λ′Sx
λ′ .

In order to illustrate the essential features of the STT
spatial distribution in the right FI lead, we first examine
a 1D FI-MTJ for which the calculation of local torques
does not require the k|| integration. Figure 2 shows the
corresponding voltage-induced part of local on-site torques
and spin accumulations. The equilibrium zero-bias voltage
torques were subtracted. Whereas the in-plane torque is zero
at equilibrium (V = 0 V), the out-of-plane torque is not since
it accounts for the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [16]. Interestingly, both in-plane and out-of-plane
torques are staggered and commensurate with the lattice
moment orientations. Here, in addition due to the specific
FI order of the lead, the torques exhibit a striking wavelike
behavior: the FI sublattices A and B host two “torque waves”
dephased by half of a period one with respect to the other.
Note also that the higher the exchange field, the higher
the amplitude of the corresponding torque wave. Figure 2
also demonstrates that the spin-transfer torques calculated
using Eq. (8) are perfectly modulated by spin accumulation
Ŝλ′ . Indeed, as explained previously, spin accumulation is
calculated independently from Eq. (6), its spatial distribution
oscillates exactly at the same period as that of the STT and
the ratios T||/Sy and T⊥/Sx are constant. This is consistent
since, in practice, spin accumulation gives rise to torque waves
and can be used as an alternative to calculate the torques.
Using spin accumulation thus provides an alternative method
for calculating torques not only in ordinary F-MTJ, but also,
more generally, in FI- and AF-MTJ.

FIG. 3. (Color online) For six different 1D FI leads pairs,
1/δ dependence of the in-plane torque component period (P ) for
θ = π/2 and V = 0.1 V. The double symbols at 4 and 10 eV−1

represent FI electrodes with unequal spin splittings �A,�B but the
same δ = �A − �B . The spin splittings take the following values
{�A,�B} = {0.5,0.1; 0.5,0.25; 0.6,0.35; 0.5,0.4; 0.4,0.3; 0.5,0.45}.
Upper (lower) insets: spatial distribution of the parallel torque wave
for 1/δ = 4 eV−1 (1/δ = 10 eV−1). The dashed line is a linear fit to
the data.

We next examine the parameters controlling the modulation
of the STT. The linear fit in Fig. 3 shows that for a given voltage,
the torque wave’s period (P ) is inversely proportional to the
difference (δ) of magnetic s-d exchange interactions between
itinerant spins and localized magnetic moments in each of the
two FI sublattices,

P ∝ 1

δ
. (9)

Given the above relation, we point out that the limiting
case characterized by δ = 0, i.e., when the FI becomes a fully
compensated AF, results in a diverging period. This agrees
with the T|| spatial distribution reported previously in AF-based
spin valves [17]. Interestingly, a Taylor expansion at the Fermi
energy of the dispersion relation for a 1D FI up to second
order in the wave vector recasts relation (9) in terms of the
Fermi wave vectors for up and down spins for the case of low
band filling:P ∝ 1

(k↑
f )

2−(k↓
f )

2 = 1
(k↑

f +k
↓
f )(k↑

f −k
↓
f )

. This expression

is related to the length scales at which torque oscillations
decay in conventional F-MTJ from the B/F interface. The two
factors 1

(k↑
f −k

↓
f )

and 1
(k↑

f +k
↓
f )

, respectively, are proportional to

the voltage-induced and RKKY torque oscillations period in
F-based tunnel junctions [18]. Similar to the spatial precession
of up and down components of the scattering state in Fs [12],
the period P might also be viewed as inversely proportional
to the spatial frequency �k = (k↑

f − k
↓
f ) since δ and �k are

proportional to each other with great accuracy for the range of
energies considered here.

We also show that the bandwidth of the electronic band
structure strongly influences both the torque waves’ period
and the amplitude of the oscillations. As a result of the
TB model used, both upper and lower bandwidths can be
parametrized by the hopping t , which determines electron
mobility inside the whole structure. Figure 4(a) shows the
wave period dependence on t for different FI parameters.
The two FI represented by crosses and open circles display
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FIG. 4. (a) Dependence with the hopping parameter (t) of the in-
plane torque component waves period P for θ = π/2 and V = 0.1 V.
(b) Corresponding dependence with t5 of the torque waves amplitude.
The three FI leads of (a) and (b) have �A and �B given in eV in the
caption of (a). The lines are linear fits to the data.

the same period regardless of t since they share the same value
of δ despite unequal spin splittings. The period is however
proportional to t in every case and results from the spread of
the wave function over more sites for larger values of hopping.
The amplitude of the oscillations scales with t5 as can be seen
in Fig. 4(b); the power factor accounts for the mobility change
within the whole structure. It is noteworthy that the hopping
parameter does not influence the commensurability between
the torques and the lattice moment orientations.

We next analyze the STT local distribution in more realistic
3D FI-MTJ. In this case, the full integration in energy and
k|| states is needed, which could potentially extinguish the
STT wavelike behavior. However, we found that the torque
waves are still present, but the dephased torque contributions
introduced by the k|| integration result only in a weak damping
that spoils the oscillations’ periodic character similar to the
case of F-MTJ [18,19]. The two insets in Fig. 5 illustrate
the in-plane torque deposited in each layer of the right lead
in two 3D FI-MTJs with different δ′s. Since damping spoils
the periodic character of these oscillations, the concept of
period P previously discussed no longer stands. Of note, these
damped oscillations cannot be defined as pseudo-oscillations,
and we therefore introduce a parameter ξ , which keeps track
of the wavy length scale. We define ξ as the number of layers
between the B/FI interface and the first layer at which the
torque wave gets zero, which would correspond to half a
period in the 1D case. ξ is plotted in Fig. 5 as a function of
1/δ which governs the oscillations period in the 1D FI-MTJ.
The linear fit provides clear evidence that relation (9) holds
for ξ even in three-dimensional (3D) FI-MTJ, thus confirming
that the parameter δ is a key indicator for quantifying STT

FIG. 5. (Color online) For four 3D FI leads, 1/δ dependence
of the torque characteristic length (ξ ) for θ = π/2 and V =
0.1 V. The spin splittings take the following values {�A,�B} =
{0.5,0.25; 0.6,0.43; 0.5,0.4; 0.4,0.34}. Upper (lower) inset: spatial
distribution (in μeV per unit area) of the in-plane torque wave for
1/δ = 4 eV−1 (1/δ = 16.7 eV−1). The dashed line is a linear fit to
the data.

characteristic lengths in FI metals. We emphasize here the
importance of the staggered character of the in-plane torque
over the penetration depth given by ξ . In effect, the torque
deposited in sublattice A adds up to the torque delivered
in sublattice B since localized spins owning to different
sublattices are aligned in opposite directions. This is in contrast
to the case of ordinary F-MTJ where positive and negative local
torques are counterbalanced to give the total torque delivered,
which is found to be comparable in amplitude to the torques
discussed in this paper. Therefore, in-plane torques in FI leads
with low values of δ are expected to be very efficient thus
driving current-induced order parameter dynamics.

In conclusion, we carried out a detailed analysis of the
STT spatial distribution in FI-based tunnel junctions using
a TB Hamiltonian that captures its essential electric and
magnetic qualitative characteristics in the framework of the
nonequilibrium Keldysh formalism. We find that in-plane
and out-of-plane torques are spatially staggered, and they
exhibit a striking wavelike behavior perfectly modulated by
spin accumulation. Thus, we have addressed in this paper the
equivalence of torques computed from the exchange field along
the z direction in FI-MTJ and through the divergence of the spin
current. The characteristic lengths of the torque oscillations
are shown to be strongly dependent on the electronic and
magnetic features of the FI, namely, the spin splittings of the
two FI sublattices and the bandwidth parametrized here by the
hopping matrix element of the TB Hamiltonian. Furthermore,
we identify the fundamental parameter that governs the torque
waves period in 1D FI-MTJ and the spatial extension of the
damped torque oscillations in 3D FI-MTJ. These theoretical
results may be of importance to choose the best-suited FI
material for STT-based spintronic devices and will serve as a
guideline for experiments on spin penetration length in these
materials using, for example, ferromagnetic resonance and
spin pumping effect [20,21]. In addition, experiments, such as
spin-transfer-driven ferromagnetic resonance and spin-torque
diode effect [22–25] where the magnitude and direction of
the STT are extracted in magnetic tunnel junctions could also
demonstrate the theoretical results predicted in this paper.
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