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Producing superfluid circulation states using phase imprinting
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We propose a method to prepare states of given quantized circulation in annular Bose-Einstein
condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a
two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave
function using a short light pulse with a tailored intensity pattern generated with a Spatial Light
Modulator. We demonstrate the realization of ‘helicoidal’ intensity profiles suitable for this purpose.
Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice.
We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution
onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation.
This allows us to optimize the intensity pattern for a given target circulation to compensate for the
limited resolution.

I. INTRODUCTION

In the recent years, the variety of confinement poten-
tials available for trapping ultra cold atoms has devel-
oped dramatically. Beyond harmonic potentials, the use
of dipole traps [1], magnetic traps, adiabatic potentials
[2, 3] or a combination of them has given access to a wide
range of geometries, including optical lattices [4], low di-
mensional confinement [5], box traps for uniform gases
[6], narrow channels between reservoirs [7], ring traps [8–
10], and other arbitrary trap shapes [11, 12]. Taking ad-
vantage of these new tailored potentials, quantum trans-
port experiments with quantum gases have been carried
out [7, 13–16], with strong analogies between quantum
gas setups and mesoscopic condensed matter devices [17].

In particular, annular quantum gases confined in ring
traps can sustain persistent flows with a quantized circu-
lation [10, 18, 19], which are analogue to persistent cur-
rents in superconducting rings with a quantized magnetic
flux [20]. In such a state, the condensate wave function
presents a phase winding 2πℓ around the ring, giving rise
to a quantized circulation ℓh/m, where m is the atomic
mass, h the Planck constant and ℓ ∈ Z the winding num-
ber. Circulation states have been studied in the presence
of a focused laser spot providing a rotating potential bar-
rier, yielding a weak link along the ring in the spirit of
superconducting quantum interference devices (SQUIDs)
[13, 21].

The circulation state can be prepared in different ways.
First, a potential barrier localized within the ring, pro-
duced for example by a focused laser beam, and rotated
fast enough can excite the quantum gas and let vortices
penetrate through the barrier, producing in turn a cir-
culating state [22, 23]. While this technique has proven
its efficiency in the preparation of circulation states with
well defined winding number ℓ [23], it remains limited to
relatively small values of ℓ and necessitates a long prepa-
ration time, which can be an issue if the lifetime of the
sample is limited or if fast operations on the wave func-
tion are required for quantum information protocols.

Another successfully demonstrated method relies on
the direct imprint of a given phase winding with wind-
ing number ℓ onto the condensate wave function. This
has been achieved by two-photon Raman transfer, one
of the laser beam being a Laguerre-Gauss beam carrying
an orbital angular momentum with an helicoidal phase
[19, 24]. The duration of the Raman pulse is on the or-
der of a few microseconds, which makes this method very
efficient for the fast preparation of a given circulation
state, determined by the order ℓ of the Laguerre-Gauss
mode. However, this technique makes use of the internal
structure of the atomic ground state, coupling different
Zeeman substates, and makes difficult its application to
atoms confined in a magnetic trap.
In this paper we propose a phase imprinting method

using a pulsed light shift potential with a tailored heli-
coidal intensity profile, where the light intensity varies
linearly with the azimuthal angle θ, but with no topo-
logical charge [25]. Zheng and Javanainen have studied
the effect of phase imprinting a realistic phase profile,
with a finite light intensity gradient after a loop, on a
one-dimensional annular gas [26]. These authors found
that phase imprinting alone was not able to create a well-
defined circulation state if the gas is confined in a rota-
tionally invariant ring trap. Here we show through nu-
merical simulation of the Gross-Pitaevskii equation that
breaking the rotational invariance with a localized poten-
tial barrier allows to circumvent this issue and to estab-
lish a controlled circulation by phase imprinting. More-
over, this method can be faster than the stirring method
and insensitive to the magnetic sublevels, which makes
it applicable to atoms confined in magnetic potentials.
Since the intensity profile can be engineered to any pat-
tern, this technique is more versatile and its scope can
be extended to the preparation of other target states,
beyond circulation states.
The presentation of this work is organized as follows.

In section II we present the principle of phase imprinting
and show how to implement experimentally an helicoidal
intensity profile with a Spatial Light Modulator (SLM).
In section III we explore the effect on the atomic dy-
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namic of the phase imprint of a realistic intensity profile
with a finite resolution. This allows us to optimize the
phase profile for reaching a given circulation state. Sec-
tion IV shows the effect of dissipation in reaching the
steady state. Finally we present our conclusions in the
last section.

II. PHASE IMPRINTING

Phase imprinting is an effective technique to induce
a given dynamics in a Bose-Einstein condensate [19, 27,
28]. Two approaches have been demonstrated to design
the phase of the wave function with a given space de-
pendence. First, the phase can be imparted by a Raman
two photon process, the phase or angular momentum car-
ried by the photon then being imprinted onto the atomic
wavefunction, giving rise to an induced atomic momen-
tum [29], angular momentum [19], or both [10]. Alterna-
tively, when a spatially dependent potential is pulsed for
a time short as compared to the time for atomic motion
(e.g. the trap period), the potential is merely imprinted
on the atomic phase. This potential can be conveniently
produced by a far off-resonance, tailored laser pulse, as
demonstrated for instance for the preparation of a soliton
[28]. In the present work we follow the second approach
to imprint an arbitrary phase.

A. Principle of phase imprinting

We start with a gas in its ground state, described
within mean-field by the normalized wave function ψ0.
A far off resonance light beam, with a 2D intensity pro-
file I(x, y), is then pulsed onto the atoms, which gives rise
to a light shift potential U(x, y) = αI(x, y) proportional
to the local light intensity. α being a factor proportional
to the polarizability, which is given in the two level ap-
proximation by [30]

α =
Γ

∆

~Γ

8Is
. (1)

Here ∆ is the detuning of the light field from the atomic
resonance, Γ is the transition line width and Is is the
saturation intensity. If such a potential is pulsed for a
time duration τ , much smaller than the time scales set
by the trapping frequencies of the condensate, the wave
function after the pulse is given by

ψ(x, y, τ) = e−
i

~
U(x,y)τψ0(x, y). (2)

Hence in the limit of small τ , the potential will simply
add a phase ϕ(x, y) = −U(x, y)τ/~ to the ground state
wave function ψ0.
This method has been used to produce a soliton in

an elongated condensate [27, 28], with a stepwise inten-
sity profile. In our experiment we want to set an annular
condensate into rotation in a ring trap. As the superfluid
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FIG. 1. SLM setup and generated intensity pattern: (a) Op-
tical setup for an SLM used in the mask mode. The CCD
camera is used here to observe the generated pattern. (b)
Measured intensity pattern obtained from the SLM in mask
mode for phase imprinting, with a beam waist of 200 µm,
imaged onto the CCD camera. (c) Azimuthal dependence
of the intensity profile across the red dotted circle, radius
50 µm, of the obtained intensity profile in (b). (d) Proposed
scheme to break the rotational symmetry by using a potential
barrier produced with a laser beam and a subsequent phase
imprinting. The edge of the intensity profile is aligned with
the position of the barrier where the atomic density vanishes.

velocity is related to the phase gradient of the condensate
wave function, such motion can be described by a uni-
form phase gradient along the ring, of the form ϕ(θ) = ℓθ,
where ℓ is the winding number and θ the azimuthal co-
ordinate [25]. To imprint such a phase we hence need to
prepare an intensity pattern which is increasing linearly
with the angle θ, see Fig. 1(b).

B. Tailoring the intensity pattern using an SLM

As stated in the previous section, the desired light in-
tensity pattern for the phase imprinting is an ‘helix’ of
intensity, with a linear dependence on the azimuthal an-
gle θ. Such a profile can be generated with a Spatial
Light Modulator, a device consisting of a matrix of pix-
els producing on an incident laser a computer-controlled
local phase shift onto one of the polarization axes, the
extraordinary axis [31, 32]. The SLM can work in two
modes, known as ‘diffraction mode’ and ‘mask mode’. In
the diffraction mode, a light beam with a polarization
parallel to the extraordinary axis of the SLM is sent on
the device. The resulting pattern is located in the Fourier
plane and results from the diffraction on the phase grid
programmed on the SLM. The phase shift pattern to be
programmed has to be deduced from the desired pattern
by running an inversion algorithm. By contrast, in the
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mask mode the polarization is aligned at 45 degrees from
the SLM neutral axes. The optical setup is thus pre-
pared in a crossed polarizer analyzer configuration, with
two polarizing beam splitters (PBS). The desired pat-
tern is programmed directly on the SLM matrix, which
changes the polarization accordingly. The target pro-
file is obtained after filtering through the final PBS act-
ing as an analyzer. While part of the incident power is
lost through the other output of the PBS, this technique
allows a more direct preparation of arbitrary light pat-
terns and has been preferred is this work, as it achieves
smoother profiles and can be fine tuned using a passive
feed back [33].
In order to imprint a given circulation, we have to

shape the laser beam profile such that its intensity in-
creases linearly with the azimuthal angle, see Fig. 1(b).
Starting from a Gaussian laser beam with a 1/e2 radius
of 200 µm, we generate such an intensity with an op-
tical setup using an SLM (Hamamatsu X10468-07) in
mask mode, see Fig. 1(a). The useful pattern is imaged
onto the atoms after filtering the useful polarization with
a PBS. The peak intensity and the pulse duration can
be adjusted such that the phase accumulated during the
pulse peaks at an integer multiple of 2π thus prepar-
ing a rotating quantum gas with a well defined winding
number. The pulse duration is set to 20 µs, much faster
that the expected dynamics. A typical single shot picture
recorded on the CCD camera is shown in Fig. 1(b).

C. Overcoming the finite optical resolution

In the ideal case the imprinted phase ϕ should gradu-
ally increase with the azimuthal angle θ from ϕ = 0 at
θ = θ0 to ϕ = 2πℓ at θ = θ0 + 2π, for a targeted wind-
ing number ℓ ∈ Z, and be discontinuous at the starting
angle θ0. This implies in turn an intensity profile with
a discontinuity at θ = θ0. Such a discontinuity in inten-
sity, however, is not possible to produce in practice. The
range in angle ∆θ over which the intensity goes back to
zero is set by the diffraction limit. In our optical setup
this limitation is illustrated in Fig. 1(c) in which the in-
tensity at a fixed radius of 50 µm is plotted against the
azimuthal angle, showing a range ∆θ of ∼ 0.5 radians.
This value depends on the radius at which the azimuthal
profile is plotted, and the final resolution on the annular
gas will thus depend on the ring radius. As a result of
the rapid intensity decay on a finite range, the imprinted
phase will induce a high atomic velocity in the direction
opposite to the desired rotation, and the total angular
momentum will vanish 〈Lz〉 = 0, in agreement with the
results of Ref. [26]. Moreover, this phase imprint with
a large local gradient induces high energy excitations in
the sample, with velocities possibly larger that the criti-
cal velocity of the superfluid.
In order to overcome the issue related to the resolu-

tion limit, we propose to remove the atomic density in
the region ∆θ where the phase gradient is large but fi-

nite. This can be done by focusing a far off-resonant blue
detuned light beam which repels the atoms and breaks
the rotation invariance, see Fig. 1(d).

After phase imprinting, in order to allow the rotation,
the barrier needs to be removed, fast enough to prevent
the quantum gas from getting reflected at the barrier.
However we expect that an abrupt barrier removal will
create excitations in the gas. The barrier removal time
can thus be optimized. Another degree of freedom that
we can adjust is the imprinted phase profile itself, which
can also deviate slightly from a linear profile to compen-
sate for the effect of the subsequent barrier removal. In
the following we present a simulation of this transition
from a broken rotational invariance to its restoration by
numerically solving the Gross-Pitaevskii equation (GPE)
for a condensate in a two-dimensional (2D) ring trap.
The goal of this calculation is, by analyzing the final
state, to find the optimal barrier removal time and the
optimal phase profile to be imprinted to reach the desired
state.

III. GPE SIMULATIONS

We describe the dynamics of the trapped condensate
with the mean-field model given by the Gross-Pitaevskii
equation. We restrict the description to two dimensions,
in the horizontal plane containing the ring trap. This
applies directly to 2D annular quantum gases, which can
be prepared in hybrid optical and adiabatic potentials
[8]. We expect that our results will also be valid for
three-dimensional quantum gases, as the dynamics will
essentially occur within the ring plane.

A. Initial state preparation

The ring trap is described by a rotationally invariant,
radial harmonic confinement with angular frequency ωr

and harmonic oscillator length ar =
√

~/(Mωr), where
M is the atomic mass. From now on we will use dimen-
sionless variables, scaled with the radial harmonic units,
such that the unit of length is ar, the unit of time is ω−1

r

and the unit of energy is ~ωr. The ring radius in these
units is denoted r0, and the ring trap potential simply
reads: Vring(r) = (r − r0)

2/2. With these units, the
dimensionless 2D Gross-Pitaevskii equation in the ring,
with a time-dependent barrier, reads

i
∂ψ

∂t
=

[

−
1

2
∇2 + V (r, θ, t) + g̃N |ψ|

2
− µ

]

ψ. (3)

Here ψ is the condensate wave function normalized to
unity, N is the atom number, g̃ is the 2D interaction
strength [34] and µ is the chemical potential in units of
~ωr. The 2D trapping potential formed by the ring trap
and the time-dependent barrier is given in polar coordi-



4

-10 0 10

-10

0

10

-10 0 10

-10

0

10

∆θ

0

π

2π

0 π/2 π 3π/2 2π
0

π

2π

∆θ

(a) (b) (c)

FIG. 2. (a) Ground state density profile for broken rotational
symmetry computed in the simulation; (b) phase profile im-
printed on it to create a ℓ = 1 circulation state represented in
two dimensions or (c) as a function of θ. This is the starting
point for the simulations in the presence of an initial barrier.
The color scale for the phase profile is the same for all 2D
phase plots.

nates (r, θ) by

V (r, θ, t) =
1

2
(r − r0)

2 + VB(t) e
−
(θ − θB)

2

2σ2
θ

(4)

where VB(t) is the time dependent height of the potential
barrier in units of ~ωr, θB is the center of the barrier in
the azimuthal coordinate, σθ is the angular width of the
barrier.
We use the split step FFT method [35] on a Carte-

sian square grid of 128 points in each direction. The grid
size in dimensionless units is 30 and the trap ring radius
is r0 = 7. The coupling constant and the atom num-
ber are such that g̃N = 1000. The initial ground state
ψ0(r, θ) is found by computing the evolution in imaginary
time in the presence of the barrier, whose width is set to
σθ = 0.22 and initial height is VB(t = 0−) = V0 = 10.
The chemical potential with these figures is found to be
µ = 5.8. The barrier width and height are chosen to al-
low a density drop larger than 80% in the whole zone of
width ∆θ where the phase varies rapidly, such that the
number of atoms affected by the sharp phase gradient re-
mains very small. The presence of the barrier breaks the
rotational symmetry of the ring as shown in Fig. 2(a).
On the initial condensate prepared in the ground state

of GPE in the presence of the barrier ψ0, an helicoidal
phase profile is imprinted instantaneously. In order to
take into account the practical limitations induced by
the finite optical resolution limit, we model the imprinted
phase ϕ(θ) with a piecewise linear function [26], increas-
ing from 0 to 2πℓ over the range 2π−∆θ and then going
back to zero over the small angle ∆θ = 2π/10, slightly
above the experimentally measured value of 0.5 rad,
as shown in Fig. 2(c). The position of the barrier is
chosen to match this rapid phase change, such that
θB = 2π − ∆θ/2. The phase imprint process is very
fast as compared to the atomic motion, and in the sim-
ulation the initial wave function ψ0(r, θ) is simply mul-
tiplied by the imprinted phase factor: ψ(r, θ, t = 0+) =
ψ0(r, θ) exp [iϕ(θ)]. Thanks to the annular shape of the
gas, this phase profile does not lead to any discontinuity
of the wave function in the center. This wave function

FIG. 3. Optimization algorithm to transfer the system into
the desired state. The time evolution is divided into three
main sequences: ground state computation, barrier removal
and evolution in the smooth ring potential. In the third se-
quence the wave function is statistically analyzed and opti-
mization is done on the barrier removal ramp to reach the
desired output state.

is then evolved in real time through Eq. (3), which de-
scribes the barrier removal and the subsequent evolution
in the ring shaped potential alone, see Fig. 3.

B. Optimum barrier removal and phase profile

After the initial state preparation, the numerical sim-
ulation is divided into two more steps, see Fig. 3. In a
first step, the barrier is removed, with a linear ramp in
intensity, right after phase imprinting. The evolution is
thus computed in the presence of a time varying poten-
tial. In a second step, after the barrier has been removed
completely, which occurs at a time t = t′, the wave func-
tion is evolved until time tend = 100 (in dimensionless
units) in the static ring potential Vring alone. For our
later analysis, we save 100 frames of the evolution after
the barrier removal, between t′ and tend, and extract the
angular momentum for each, see below. We then opti-
mize the barrier ramp and the imprinted phase pattern
from these results.
In order to analyze the result in term of angular mo-

mentum transfer, we expand the total angular momen-
tum into states of pure circulation such that Lz(t) =
∑

mKm(t)m in units of ~, where m ∈ Z specifies the
circulation state. Km is thus the total population in the
states with a given angular momentum m~. We compute
these expansions for all of the 100 frames we extracted,
by taking a Fourier transform in the azimuthal space of
the radially averaged wave function. Preparing a persis-
tent current with winding number ℓ would correspond to
the case where Kℓ = 1 and Km = 0 for all m 6= ℓ. We
use the following cost function C to optimize the barrier
removal ramp and the phase pattern:

C =
〈

(1−Kℓ)
4
〉

20<t<tend

. (5)

Using this figure of merit, we first optimize the bar-
rier removal ramp with a fixed phase profile shown in
Fig. 2(c) for ℓ = 1. We find that the minimum value of
C is obtained for a rather short optimal removal time of
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FIG. 4. (a) Density and (b) phase profiles after the phase
imprint of Fig. 2(c) and for an optimized barrier removal time
of t′ = 0.5, after the full evolution in the ring trap (t = 100).
Phase color scale as in Fig. 2. (c) Time evolution of the
population in different m circulation states.

t′ = 0.5, see Fig. 4. The final circulation ℓ = 1 is pre-
pared, and the final state is free from vortex excitations
in the bulk, see Fig. 4(a) and (b). However, large oscil-
lations in the populations in the different m circulation
states are still present, see Fig. 4(c). While this optimiza-
tion allows to get rid of vortices in the bulk, we find that
the cost function after the optimization is not very much
reduced as compared to an abrupt removal (t′ = 0) [33].
In fact the critical parameter to optimize is instead the
phase profile imprinted, as we will show below. In order
to reduce the number of parameters to be optimized, we
will present in the following the results of the phase pro-
file optimization obtained with an abrupt removal of the
barrier (t′ = 0). The results obtained with a non-zero
value of t′ have been checked to be similar, as soon as
phase profile optimization is performed.
We then optimize the phase imprint profile itself, for

an abrupt removal (t′ = 0). The idea of this approach
is to include in the phase imprint an additional term to
compensate for the acceleration that the barrier removal
will induce. Using the SLM we can generate any desired
intensity distribution with a resolution only limited by
the diffraction limit of the optical system. The phase
profile is thus written in the interval (0, 2π −∆θ) in the
form of a truncated Fourier series whose coefficients are
to be optimized for a given target winding number ℓ:

ϕ(θ) = ℓθ +

nmax
∑

n=1

[

Cn cos

(

nθ

2

)

+ Sn sin

(

nθ

2

)]

. (6)

In the interval (2π − ∆θ, 2π), it decreases linearly back
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FIG. 5. The evolution of the population in different m cir-
culation states using a nonlinear imprint obtained from opti-
mization as described in the main text for ℓ = 3 (top row),
ℓ = 2 (middle row) and ℓ = 1 (bottom row) states. The insets
shows the imprints that lead to the time evolution in the main
figures.

to its value ϕ(0) at θ = 0 .
We optimize the contribution of the Fourier compo-

nents Cn and Sn using steepest gradient descent [36].
We set the frequency cutoff to nmax = 4 for ℓ = 1, 2 or
nmax = 6 for ℓ = 3 as going higher does not give signifi-
cant improvement in the optimization. In any case, the
finite optical resolution would limit nmax to nmax = 10
to be consistent with our choice of ∆θ = 2π/10.

C. Results

Figure 5 shows the results of the optimization of the
phase profile for three target states: ℓ = 1, ℓ = 2 and
ℓ = 3. The insets show the non-linear imprints ϕ(θ)
obtained through the optimization algorithm. The total
phase difference imprinted is close to 2π × ℓ, although a
bit larger. These imprints can be easily produced using
an SLM. After imprinting these phase patterns and at the
end of the time evolution, the populationKℓ in the target
state is Kℓ ∼ 0.9, with some fluctuations. These small
excitations can be removed through evaporative cooling.
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FIG. 6. Generation of a moving grey soliton using phase
imprinting and barrier removal on a 1D annular gas. A phase
jump of π is imprinted at t = 0 (top row) and it stabilizes to
a phase jump 0.63π with some density perturbations moving
in the opposite direction (bottom row). Phase color scale as
in Fig. 2.

We also simulated this method of phase imprinting for
the preparation of a grey soliton in a quasi 1D ring. This
approach has been used before for an elongated conden-
sate confined in a cigar-shaped trap [27, 28]. The dy-
namics of a grey soliton depends on the amplitude of the
phase jump [37], and corresponds to a static, dark soli-
ton, when the phase jump reaches π. In principle the
phase jump of the soliton can be tuned to any value in
a straightforward way using the SLM. By adjusting this
phase we can create a dark soliton, stationary with re-
spect to the background fluid, or a moving soliton at
any subsonic velocity. As solitons are stable only in 1D
systems, we perform these simulations using g̃N = 100,
which reduces the chemical potential below the radial
confinement energy, and we compute the ground state of
the quasi 1D annular gas in the presence of a barrier of
width σθ = 0.07 and height V0 = 2.5. We then imprint
the phase with an imperfect phase jump aligned with the
barrier position and remove the barrier abruptly. Fig-
ure 6 shows a grey soliton created by imprinting a phase
jump of ∆ϕ = π that stabilizes to a phase change of
0.63π across the density dip, which rotates around the
ring trap. We end up with a grey soliton because the
width of the barrier (limited by the imperfect phase pro-
file) is larger than the intrinsic soliton width, set by the
healing length. We observe that adding a barrier signif-
icantly helps to get rid of the density waves reported in
reference [27] using the same method of phase imprinting.
We note that by optimizing the shape of the imprinted
phase it should be possible to control the final phase jump
and hence the soliton properties.
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FIG. 7. Evolution of the population in the m = ℓ states after
a phase imprint optimized for a given target value ℓ. Damping
is introduced by setting γ = 0.01. The final density (left) and
phase (right) profiles at the end of evolution are shown in the
inset in the case ℓ = 1. Phase color scale as in Fig. 2.

IV. INCLUDING DAMPING

The Gross-Pitaevskii equation describes the evolution
of the quantum gas dynamics in the absence of losses or
damping. In order to take into account the effect of dis-
sipation in the experiment, due to atom loss or to the
finite trap depth leading to evaporation, we include a
small imaginary part to the time evolution, using the di-
mensionless parameter γ, which describes a phenomeno-
logical damping [38].
The dimensionless GPE including the phenomenologi-

cal damping term is now given by

i
∂ψ

∂t
= (1− iγ)

[

−
1

2
∇2 + V (r, θ, t) + g̃N |ψ|

2
− µ

]

ψ.

(7)

This phenomenological approach with γ > 0 can be
used to simulate the damping of the excitations when
evaporation is on, and find the metastable state the sys-
tem converges to. For the damping coefficient γ = 0.01,
also used in Ref. [13], the atomic state converges to-
wards a stable circulation state. We have checked that
the choice of γ does not influence much the final state but
rather the rate at which it is reached. The simulation in-
cluding dissipation is run in the three cases ℓ = 1, 2, 3,
analogue to the one presented in Fig. 5 in the absence of
dissipation. The results for the evolution of the popula-
tion in the m states are shown in Fig. 7 together with
the final density and phase profile in the insets. The
dissipation helps to remove the remaining fluctuations of
population in the various m states and helps the system
to converge to a state where nearly all the population is
concentrated in states with an angular momentum quan-
tum numberm = ℓ. The role of the barrier is nonetheless
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essential and we checked that a mere phase imprint with-
out the density depletion does not converge efficiently to
a state with a non zero circulation, even if damping is
introduced.

V. CONCLUSIONS

In summary, we have presented a practical method to
set an annular quantum gas into a given circulation state
using phase imprinting. In order to overcome the practi-
cal diffraction limit arising from the tailored light profile,
we have simulated the behavior of the condensate after a
realistic phase imprint in the presence of a barrier. Our
simulations show that it is possible to prepare a given cir-
culation state as well as other designed dynamical states
like solitons by carefully engineering the phase imprint.
While optimizing the barrier removal time alone allows
to suppress bulk vortex excitations, we find that the op-
timization of the phase pattern is crucial to achieve a
high fidelity in the preparation of the target circulation.
For example we reach a population in the ℓ = 1 circula-
tion states of Kℓ = 0.9988 for an optimized phase profile,
when damping is introduced (see Fig. 7).
The phase imprinting method is also fast as compared

to the rotating barrier method. In order to prepare a

ℓ = 1 circulation state, the barrier has to be rotated
along the annulus for a full round trip at a frequency
Ω = 1/r20 in dimensionless units [13]. It takes a time
tstirr = 2π/Ω = 2πr20 to prepare the circulation state,
which corresponds in the case simulated here to about
tstirr = 300, significantly larger than the whole duration
of our simulations.
In a future work it would be very interesting to extend

these ideas to the precise control of soliton creation, in
particular to create multiple solitons with well defined
relative velocities, which gives access to the study of soli-
tonic collisions [39, 40].

ACKNOWLEDGMENTS

We thank Laurence Pruvost and Bruno Viaris for as-
sistance with the SLM in the early stage of the experi-
ment, and Paolo Pedri for helpful discussions on the nu-
merical simulations. We acknowledge financial support
from ANR project SuperRing (ANR-15-CE30-0012-01)
and from the Région Ile-de-France in the framework of
DIM ‘des atomes froids aux nanosciences’, project PESR
and of DIM SIRTEQ (Science et ingénierie en Région
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Supplemental material

I. INTENSITY PATTERN GENERATION

USING THE SLM

An SLM can be used in diffraction mode or in mask
mode. Several techniques exist to generate the desired
pattern by diffraction at infinity [31, 32, 41]. Neverthe-
less, we prefer to use the mask method in which the de-
sired pattern is the conjugated image of the SLM plane
by an optical system, after polarization analysis (see sec-
tion II.B of the main text). This allows a straightforward
control of the intensity, pixel by pixel. Moreover, we have
implemented a feedback loop by imaging the SLM’s plane
onto a camera so that each pixel of the SLM corresponds
to a group of pixels of the camera, to correct the inten-
sity iteratively, pixel by pixel. At the cost of rejecting
optical power, the measured pattern converges towards
any arbitrary target pattern. This technique yields pat-
terns with good fidelity in less than 10 iterations, does
not require complex calculation nor careful calibration of
the SLM, and allows to correct for the spatial defects of
the incident laser beam.
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FIG. 8. Intensity patterns generated in mask mode (a) be-
fore and (c) after feedback. Also shown are the measured
azimuthal profiles of the normalized intensity cut at a radius
of 1.76 mm for the (b) initial and (d) final measured patterns.
The dotted line is the target profile.

Beyond the helix of intensity along the azimuthal angle
combined with a radial Gaussian profile, see Fig. 1(b) of

the main paper, it is possible to realize an helix of inten-
sity with a flat radial profile and with the light limited to
an area adapted to the annular gas. Figure 8 shows such
an intensity pattern, measured before and after feedback,
as well as the normalized intensity along a given radius.
We note that this pattern is produced with a large ring
radius of 1.76 mm, for which the diffraction limit leads
to a very small intensity decay region with ∆θ ∼ 9 mrad,
hardly visible on Fig. 8(d). The rms deviation computed
over the annular shape is 34% for the initial profile and
6.45% for the profile measured after 6 feedback steps.
About 9% of the total incident laser power on the SLM is
transferred into the final pattern of Fig. 8(c). These val-
ues compare well with the experimental figures of diffrac-
tion techniques found in the literature.

II. BARRIER REMOVAL TIME

As discussed in the main text, for a fixed phase imprint
function, barrier removal time has an impact on the con-
vergence to the target state. Figure 9 shows the evolution
of population in differentm states when a linear phase for
ℓ = 1 is imprinted and the barrier is removed abruptly.
This unoptimized case gives a cost (as defined in main
text) of C = 0.06 compared to the best case shown in the
main text when the ramp time is t′ = 0.5 giving a cost of
C = 0.016. However when the phase imprint is optimized
for both of these cases we reduce to similar values in the
final cost. In general, a poorly chosen barrier removal
time can be compensated by an optimized phase profile
except for very large barrier removal times when dipo-
lar oscillations starts to play a role and the total angular
momentum decreases considerably.
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FIG. 9. Evolution of the population in the different m circu-
lation states for a linear phase imprint and an abrupt removal
of barrier.


