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Observer-Based Trajectory Tracking for Anaerobic Digestion Process

K. CHAIB DRAA, H. VOOS, M. ALMA, A. ZEMOUCHE and M. DAROUACH

Abstract— A novel control strategy is proposed for the Anaer-
obic digestion (AD) process to track a reference trajectory.
This is motivated by the aim to control the produced biogas
quality and quantity. The control scheme is composed from
an exponential nonlinear observer which remedies for the
lack of measurements and a feedback control which accounts
for all the process dynamics. By using the LPV techniques,
the Lyapunov analysis and the well-known Barbalat’s lemma,
global stability conditions are synthesized in the form of Linear
Matrix Inequalities (LMIs). The feasibility of the obtained LMIs
is enhanced due to the introduction of a non diagonal multiplier
matrix coming from a convenient use of Young’s inequality.
Finally, the simulation results are provided to validate the
effectiveness of the proposed control strategy in this note.

Index Terms— Anaerobic digestion, LMI approach, Observer
Design, Reference trajectory tracking.

I. INTRODUCTION

AD is an energy-efficient and environmentally beneficial
technology to convert organic waste into a useful energy
such as biogas. The later is a mixture of gaseous, generally
composed of 45− 65% methane, 36− 41% carbon dioxide,
up to 17% nitrogen, < 1% oxygen, 32−169.1 ppm hydrogen
sulphide, and traces of other gases [1], which can be used
in many domains and replace the use of fossil fuel. The
more biogas contains methane the more it is energetic.
Hence, its quality is quite important to control. Moreover,
the biogas can be regarded as a solution to compensate
fluctuations in energy production coming from the weather
dependent technologies. Indeed, the produced biogas from
the AD process can be either converted into electricity and
heat directly after production, either stored and used when
it is required. Actually, storing biogas in gas tanks costs
much cheaper than storing electricity in electrical batteries.
However, usually the storing capacities at BPs are limited
and thus it is of big interest to control the biogas quantity to
avoid additional costs in upgrading the storing capacities.

We may find in the literature different control strate-
gies proposed for the AD processes. They, usually, differer
depending on the model complexity, available measure-
ments and the desired criteria (pollutant minimization, prod-
uct maximisation or digester stabilisation). Among the de-
signed controls for analytical two step models (acidogenesis-
methanogenesis), we may cite the control of bicarbonate
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alkalinity concentration in the digester by the mean of an
additional control input to the model in [2], [3] and [4]. In
[2], the linearizing control was used to enhance the biogas
quality while in [3] and [4] the input to output linearising
control was used to stabilize the digester. Whether in the
first or the second control strategies, the magnitude of the
added input was assumed to be very small so that it could
be excluded from the dynamics of the model state variables
other than the alkalinity concentration. This assumption
makes the control easy to design. Especially, the input to
output linearising control, where this assumption relaxes the
complexity of the nonlinear transformation of the system.
However, even if the control becomes easier when neglecting
the effect of the added input in the dynamics of the model,
this is not very consistent.

Recently, another control strategy using the Model Predec-
tive Control (MPC) has been proposed in [5] to control the
biogas production for a demand-driven electricity production.
The idea is to optimize the plant feeding according to a
fluctuating timetable of energy demand. The control was
applied to a full scale research plant and has shown satisfac-
tory results. However, although the satisfactory results, the
analytical proof for the stability of the closed loop system is
yet difficult to prove.

Combining the ideas from [2], [3], [4] and [5], where the
alkalinity addition is used to stabilize the reactor and enhance
the biogas quality, and the plant feeding is used to optimize
the production, we will propose in our turn to control the sys-
tem so it tracks an admissible reference. Therefore, we will
propose a simple observer-based reference tracking control.
We point out that in our design we will not neglect the effect
of the additional input in the model dynamics. Moreover,
we will integrate a state observer in the control strategy to
cope with the luck of measurements in AD process. Indeed,
it is known that the bacteria measurement is difficult and
costly to process. Hence, difference software sensors have
been proposed to cope with this issue. Among the designed
observers in the literature, we may cite the the asymptotic
observer [6] which is quite simple to design and does not
require the knowledge of some specific nonlinear functions.
However, it is very sensitive to model uncertainties and
its convergence rate depends on the operational conditions.
Hence, to enhance the convergence rate, the Kalman filter has
been designed frequentely in the literature [7], [8], and has
shown suitable results in different chemical applications, but
unfortunately convergence of the estimation errors to zero is
not guaranteed. We can cite also the high gain observer [9],
[10] whose convergence rate is fast, however, its synthesis is
complex and it is very sensitive to noise [11]. Therefore, in



this note, we will use the nonlinear observer proposed in [12]
due to its systematic implementation and fast convergence.

The rest of this note is organised as follows. In Section
II, we will present the AD model. Then, in Section III, we
will pose the problem of observer-based reference tracking
control. Further, in Section IV, we will give the stability
conditions which ensure the exponential convergence to zero
of the estimation error and theH∞ asymptotic stability of the
tracking error. In Section V, we will provide some simulation
results to illustrate the effectiveness of the proposed control
scheme. Finally, we will conclude this note in Section VI.

A. Notation and Preliminaries

The following notations and preliminaries will be used
throughout this note:
• (?) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0) means that this

matrix is positive definite (negative definite);
• the set Co(x, y) = {λx + (1 − λ)y, 0 ≤ λ ≤ 1} is the

convex hull of {x, y};

• es(i) =
(

0, ..., 0,

i th︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

s components

)T ∈ Rs, s ≥ 1 is a

vector of the canonical basis of Rs.
Lemma 1.1 (a variant of Lipschitz reformulation): Let

ϕ : Rn → Rq a differentiable function on Rn. Then, the
following items are equivalent [13]:
• ϕ is a globally γϕ-Lipschitz function;
• there exist finite and positive scalar constants aij , bij so

that for all x, y ∈ Rn there exist zi ∈ Co(x, y), zi 6=
x, zi 6= y and functions ψij : Rn → R satisfying the
following:

ϕ(x)− ϕ(y) =

q,n∑
i,j=1

ψij(zi)Hij
(
x− y

)
(1)

aij ≤ ψij
(
zi

)
≤ bij , (2)

where

ψij(zi) =
∂ϕi
∂xj

(zi), Hij = eq(i)e
T
n (j).

Notice that this lemma has been introduced in order to
simplify the presentation of our design methodology. Indeed,
for our technique, we will exploit (1)-(2) instead of a direct
use of the Lipschitz property.

Lemma 1.2 ([13]): Let X and Y be two given matrices
of appropriate dimensions. Then, for any symmetric positive
definite matrix S of appropriate dimension, the following
inequality holds:

XTY + Y TX ≤ 1

2

[
X + SY

]T
S−1

[
X + SY

]
. (3)

This lemma will be very useful to enhance the feasibility of
the LMI conditions.

II. MATHEMATICAL MODEL OF THE AD PROCESS

AD modelling has a long track in the literature. Often, the
designed models are driven by the application objectives,
the available data and their reliability. In this note, being
motivated by the control and observer design for the AD
process, we will use the same model considered in [12]. Its
structure reads

ẋ1 = −k1µ1(x1)x2 + u1S1in − ux1

ẋ2 = (µ1(x1)− α)ux2

ẋ3 = k2µ1(x1)x2 − k3µ2(x3)x4 + u1S2in − ux3

ẋ4 = (µ2(x3)− α)ux4

ẋ5 = k4µ1(x1)x2 + k5µ2(x3)x4 + u1Cin−
ux5 − qc(x)

ẋ6 = u1Zin + u2Zad − ux6

(4){
y1 = qc(x)
y2 = [x1, x3, x6]T

(5)

with

µ1(x1) = µ1

x1

x1 + ks1
, µ2(x3) = µ2

x3

x3 + ks2 +
x2
3

ki2

(6)

co2 = x5+x3−x6, φ = co2+KHPT+
k6

kLaµ2(x3)x4
(7)

qc(x) = kLa[co2 −KHPc(x)], qm(x) = k6µ2(x3)x4 (8)

Pc(x) =
φ−

√
φ2 − 4KHPT co2

2KH
(9)

where x1 (g/l) is the organic substrate concentration to be
consumed by the acidogenic bacteria x2 (g/l) for growth
and production of volatile fatty acids x3 (mmol/l) (assumed
to behave like pure acetate), x4 (g/l) is the methanogenic
bacteria concentration, x5 (mmol/l) represents the inorganic
carbon concentration and x6 (mmol/l) the alkalinity concen-
tration. The related fed concentration to the digester S1in,
S2in, Cin and Zin are supposed to be known and constant.
The control inputs are u1 = F1in

v (1/day) and u2 = F2in

v
(1/day), where F1in is the waste feeding rate and F2in is the
input flow rate of the added alkalinity (Zad) to the digester.
Since the later volume (v) is constant, then the output flow
rate u = u1 + u2. The produced biogas is assumed to be
composed of methane qm(x) and co2 qc(x) gaseous. The
later partial pressure is computed by Pc(x). The rest of the
used parameters in the model are defined in Table I.

III. FORMULATION OF THE PROBLEM

In reference trajectory tracking problem (this is the case
with most control design problems), the state of the system,
x(t), is generally not available for feedback. That is why
often a state observer is required.

Among the designed observers for the AD processes, we
will consider the nonlinear state observer proposed in [12]
due to its systematic implementation and fast convergence.
Thus, to keep the design usable and applicable for other
nonlinear systems belonging to the same class of systems as



TABLE I
MODEL PARAMETERS

Acronyms Definition Units Value
k1 Yield for substrate (x1) degradation g/(g of x2) 42.1
k2 Yield for VFA (x3) production mmol/(g of x2) 116.5
k3 Yield for VFA consumption mmol/(g of x4) 268
k4 Yield for co2 production mmol/g 50.6
k5 Yield for co2 production mmol/g 343.6
k6 Yield for ch4 production mmol/g 453
µ1 Maximum acidogenic bacteria (x2) growth rate 1/day 1.25
µ2 Maximum methanogenic bacteria (x4) growth rate 1/day 0.74
ks1 Half saturation constant associated with x1 g/l 7.1
ks2 Half saturation constant associated with x3 mmol/l 9.1.28
ki2 Inhibition constant associated with x3 mmol/l 256
kb Acidity constant of bicarbonate mol/l 6.5 10−7

KH Henry’s constant mmol/(l.atm) 27
PT Total preasure atm 1.013
kLa Liquid/gas transfer constant 1/day 19.1.8

the AD process (4)-(5) we will present the results in a general
way. Hence, we rewrite the model (4)-(5) as the following{

ẋ = A(ρu)x+Gγ(x) +Bu
y = Cx

(10)

where the state vector x ∈ Rn, the input u ∈ Rq and the
linear output measurements y ∈ Rp. The parameter ρ ∈ Rs is
an L∞ bounded and known parameter and the affine matrix
A(ρ) is expressed under the form

A(ρ) = A0 +

s∑
j=1

ρjAj (11)

with
ρmin ≤ ρu ≤ ρmax (12)

which means that the parameter ρ belongs to a bounded
convex set for which the set of 2s vertices can be defined
by:

Vρ =
{
% ∈ Rs : %j ∈ {ρj,min, ρj,max}

}
. (13)

The matrices Ai ∈ Rn×n, G ∈ Rn×m and C ∈ Rp×n are
constant. The nonlinear function γ : Rn −→ Rm is assumed
to be globally Lipschitz and can always be written under the
detailed form:

Gγ(x) =

m∑
i=1

Giγi(

ϑi︷︸︸︷
Hix) (14)

where Hi ∈ Rni×n and Gi refers to the ith column of the
matrix G.

Remark 1: We refer the reader to Appendix I to see how
to write the AD model (4)-(5) under the form (10) and how
to obtain (14).

To estimate the unmeasurable sate variables of the
model (10), we use the following observer scheme:

˙̂x = A(ρu)x̂+

m∑
i=1

Giγi(ϑ̂i) +Bu+L(ρu)
(
y−Cx̂

)
(15)

with
ϑ̂i = Hix̂+Ki(ρ)(y − Cx̂), (16)

and

L(ρ) = L0 +

s∑
j=1

ρjLj , Ki(ρ) = Ki0 +

s∑
j=1

ρjKij . (17)

where x̂ is the estimate of x. The matrices Li ∈ Rn×p
and Kij ∈ Rni×p are the observer gains.

Since γ(.) is globally Lipschitz, then from Lemma 1.1
there exist zi ∈ Co(ϑi, ϑ̂i), functions

φij : Rni −→ R

and constants aij , bij , so that

G(γ(x)− γ(x̂)) =

m,ni∑
i,j=1

φij(zi)Hij
(
ϑi − ϑ̂i

)
(18)

and
aij ≤ φij(zi) ≤ bij , (19)

where

φij(zi) =
∂γi

∂ϑji
(zi), Hij = Gieni

(j).

For shortness, we set φij , φij(zi). Without loss of
generality, we assume that aij = 0 for all i = 1, . . . ,m
and j = 1, . . . , ni. For more details about this, we refer the
reader to [14].

Since ϑi − ϑ̂i = (Hi −Ki(ρ)C) e, then the dynamic
equation of the estimation error can be obtained as

ė =

AL(ρ) +

m,ni∑
i,j=1

φijHij
(
Hi −Ki(ρ)C

) e (20)

with
AL = A(ρ)− L(ρ)C (21)



Now, the objective is to use the observer (15) in the control
design for tracking the trajectory of the following desired
system

ẋd = A(ρud)xd +Gγ(xd) +Bud (22)

That is the tracking control is given by

u = −K(ρud)(x̂− xd) + ud (23)

where

K(ρud) = K0 +

s∑
j=1

ρud
j Kj (24)

Let us define the tracking error by

x̃ = x− xd (25)

Its dynamic can be easily obtained as

˙̃x =

A(ρud)−BK(ρud) +

m,ni∑
i,j=1

ϕij(t)HijHi

 x̃

+BK(ρud)e+
(
A(ρu)−A(ρud)

)
xd︸ ︷︷ ︸

ω(t)

(26)

where ϕij = ∂γci
∂xj

(νi), with νi ∈ Co(x, xd) and

ϕ
ij
≤ ϕij ≤ ϕij . (27)

The aim consists in finding the controller and observer gain
matrices, so that the tracking error x̃ satisfies the following
H∞ criterion

‖x̃‖Ln
2
≤
√
µ‖ω‖2Ln

2
+ ν‖x̃0‖2 (28)

where µ > 0 is the gain from ω to x̃, and ν > 0 is to be
determined. In the next section, we will provide the stability
conditions to satisfy our objective.

IV. STABILITY ANALYSIS

In this section we present a kind of separation principle for
nonlinear systems. Since the dynamics (20) do not depend
on the reference tracking error x̃ and the functions φij
are bounded, then we can study the convergence of the
estimation error e separately, and will use it in the dynamics
of the tracking error as a bounded disturbance exponentially
converging towards zero. The following theorem provides the
synthesis conditions expressed in term of LMIs.

Theorem 4.1: The closed-loop system (26) is H∞
asymptotically stabilizable by the observer-based feed-
back (23), if there exist symmetric positive definite matrices
P, Q, Zij , Sij , i, j = 1, . . . , n, and matrices Yi,Xi,Xij of
appropriate dimensions such that for given positive scalar
β, the LMI conditions (29) are fulfilled and the convex
optimization problem (38) is solvable.

1) LMIs for the observer gains:A
(
Q,X, %

)
+ βQ

Π︷ ︸︸ ︷[
Π1 . . . Πm

]
(?) −ΛS

 ≤ 0,

∀% ∈ Vρ (29)

with

A
(
Q,X, %

)
= AT0 Q + QA0 − CTX0 − XT0 C +

s∑
j=1

%j

(
ATj Q + QAj − CTXj − XTj C

)
(30)

and

Πi =
[
M1

i

(
Q,Si1

)
. . . Mni

i

(
Q,Sini

)]
(31)

Mj
i

(
Q,Sij

)
= QHij +HT

i Sij − C>Xij (32)

Λ = block-diag
(

Λ1, ...,Λm

)
(33)

Λi = block-diag
(

2

ϕ̄i1
Ini
, . . . ,

2

ϕ̄ini

Ini

)
(34)

S = block-diag
(
S1, . . . ,Sm

)
(35)

Si = block-diag
(
Si1, . . . ,Sini

)
(36)

The observer gains Lj and Kij are computed as

Lj = Q−1XTj , Kij = S−1
ij X

T
ij . (37)

2) Optimization problem for the controller gains:

min(µ) subject to (39) (38)
Θ

Σ︷ ︸︸ ︷[
Σ1 . . . Σm

]
(?) −ΛZ

 ≤ 0, ∀% ∈ Vρ (39)

with

Θ =

Θ11

[
P
0

]
(?) −In

 , Θ11 =

[
A
(
P,Y, %

)
In

(?) −µIn

]

A
(
P,Y, %

)
= PAT0 +A0P− Y0B

> −BY>0 (40)

+

s∑
j=1

%j

(
PATj +A0P− YjB> −BY>j

)
Σi =

[
N 1
i

(
P,Y,Zi1

)
. . .Nni

i

(
P,Yi,Zini

)]
(41)

N j
i

(
P,Y,Zij

)
=

PHT
i

0
0

+

Hij0
0

Zij (42)

Λ = block-diag
(

Λ1, ...,Λm

)
(43)

Λi = block-diag
(

2

ϕ̄i1
Ini
, . . . ,

2

ϕ̄ini

Ini

)
(44)

Z = block-diag
(
Z1, . . . ,Zm

)
(45)

Zi = block-diag
(
Zi1, . . . ,Zini

)
(46)



Thus, the H∞ criterion (28) is satisfied with the
tracking controller gains

Kj = Y>j P−1, j = 1, . . . , s.

The disturbance attenuation level µ is the minimum
value returned by (38), and ν = λmax(P).

Proof: The proof is based on the use of the Barbalat’s
lemma since the dynamics of the augmented system with

the state
[
x̃
e

]
has a triangular structure. For more details, we

refer the reader to [15]. For the observer convergence we use
the Lyapunov function V1(e), and for the tracking error we
use V2(x̃) and the H∞ criterion (28), where

V1(e) = e>Qe, V2(x̃) = x̃>P−1x̃ (47)

It is useless to reproduce all steps of the convergence
analysis. We refer the reader to [12] to see how the LMIs
(29) ensure the exponential convergence of the estimation
error towards zero.

V. SIMULATION RESULTS

In this section, we will present an numerical example
where the plant designer targets to enhance the produced
biogas quality. To run the simulation, we use the parameter
values given in Table I, and we take S1in = 16 g/l,
S2in = 170 mmol/l, Cin = 76.15 mmol/l, Zin = 200
mmol/l, Zad = 700 mmol/l. We initialize the system and
the observer by x(0) = [1.8, 0.4, 12, 0.7, 109.1.15, 55]T and
x̂0 = [1.8, 0.6, 12, 0.3, 45, 55]T , respectively. The objective
in this example is to track the desired reference given
by xd = [1.9.1572, 0.6058, 5.4, 1.389.13, 242.8, 240.3413]T

and ud = [0.49.166, 0.0436]T , which corresponds to an
enhanced quality of biogas at steady state. In order to
solve the LMI conditions given by Theorem 4.1, we put
ρmin = 0.1 (1/day) and ρmax = 0.8 (1/day). After solving
the LMI conditions (29) and the optimization problem (38),
which have been found feasible by using the LMI Toolbox of
Matlab, we have obtained the results depicted in Figures 1-9.
As it can be seen from these figures, although the large initial
estimation error, the observer is converging to the simulated
state vector of the system and the closed loop system tracks
the desired reference trajectory. Moreover, the behaviour of
the controller remains smooth and very acceptable.
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VI. CONCLUSIONS

In this note, we have designed an observer-based reference
tracking control for the AD process. The control scheme
is composed from an exponential nonlinear observer and a
feedback control. The stability conditions have been provided
in the form of enhanced end easily tractable LMIs due to the
use of an adequate reformulation of the Young’s inequality
and Lipschitz property. In order to extend the use of our
technique and make it applicable for other systems belonging
to the same class of systems as the AD process, we have
presented the results in a general way. Moreover, we have
provided a numerical simulation to illustrate the effectiveness
of the proposed approach. In view of the satisfactory results,
we target in the near future to extend the design methodology
for saturation constraints on the control inputs.
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APPENDIX I

The system (4)-(5) can be easily written under the form
(10) using the following parameters

ρ = u, A0 = 0, A1 = −block-diag(1, α, 1, α, 1, 1)

G =

 −k1 1 k2 0 k4 0
0 0 −k3 1 k5 0
0 0 0 0 −1 0

T

γ(x) =
[
µ1(x1)x2, µ2(x3)x4, qc(x)

]T
B =

[
S1in 0 S2in 0 Cin Zin

0 0 0 0 0 Zad

]T

C =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


H1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]

H2 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]


