
HAL Id: hal-01683611
https://hal.science/hal-01683611

Submitted on 14 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Methods for Software Testing
Marie-Claude Gaudel

To cite this version:
Marie-Claude Gaudel. Formal Methods for Software Testing. 11th International Symposium on
Theoretical Aspects of Software Engineering (TASE 2017), , IEEE, Sep 2017, Sophia-Antipolis, France.
�hal-01683611�

https://hal.science/hal-01683611
https://hal.archives-ouvertes.fr


Formal Methods for Software Testing
(Invited Paper)

Marie-Claude Gaudel
LRI, Univ. Paris-Sud, CNRS, CentraleSupélec

Université Paris-Saclay
Orsay, France 91405

Email: mcg@lri.fr

Abstract—This extended abstract takes advantage of a theory
of software testing based on formal specifications to point out
the benefits and limits of the use of formal methods to this end.

A notion of exhaustive test set is defined according to the
semantics of the formal notation, the considered conformance
relation, and some testability hypotheses on the system under test.
This gives a framework for the formalisation of test selection, test
execution, and oracles, and, moreover, leads to the explicitation
of those hypotheses underlying test selection strategies, such as
uniformity hypotheses or regularity hypotheses. This explicitation
provides some guides to complementary proofs, or tests, or
instrumentations of the system under test.

This approach has been applied to various formalisms: ax-
iomatic specifications of data types, model-based specifications,
process algebras, transition systems, etc. It provides some guiding
principles for the development of testing methods given a formal
specification notation and an associated conformance/refinement
relation. It is at the origin of the development of some test
environments based on SMT solvers and theorem provers.

I. INTRODUCTION

Testing software systems is a complex and difficult task, due
to the diversity of the potential faults in such systems. Among
several complementary approaches, specification-based soft-
ware testing was perceived as unavoidable since the very first
studies and experiments. Moreover, the links between software
testing and formal specifications have been studied for quite
a while: some pioneering papers come back to the seventies
(see for instance [1] and [2]). Sound and effective testing
methods have been established based on various types of
formal specifications, leading to tools for assisting the testing
process. A comprehensive survey can be found in [3]. All these
works refer, explicitly or not, to the same formal concepts.

Taking advantage of a theoretical framework for software
testing based on formal specifications, this paper points out
and discusses the benefits and limits of the use of formal
methods to this end. This framework was first developed
for algebraic specifications [4], [5]. It has been instantiated
for several formal approaches, such as VDM [6], finite state
machines (FSM) [2], [7], various kinds of labelled transition
systems (LTS) [8], Petri nets [9] and several process algebras:
LOTOS [10], [11], CSP [12], Circus [13]. The emergence of
powerful SMT solvers, such as Z3 [14], advances in symbolic
execution [15], and the availability of proof assistants, such as
Isabelle/HOL [16] have allowed the development of test envi-
ronments such as HOL/TestGen [17], which permits synergies
between tests and proofs.

II. BACKGROUND: SPECIFICATION-BASED TESTING,
FORMAL METHODS.

A. Some Basic Facts on Specification-Based Testing
Specification-based testing, or model-based testing, are

black-box testing methods, where the internal organisation
of the system under test (SUT) is ignored: the test strategy
is based on some description of the intended properties and
behaviour of the SUT that can be formal or not.

A common-sense observation is that, being based on some
specification, such methods are relevant for detecting those
faults that cause deviations with respect to this specification,
no more. For other kinds of fault, other validation and verifi-
cation methods must be used. For instance, problems related
to the execution support, such as overflows, are not caught by
specification-based testing unless they are mentioned in the
specification. Similarly, program-based methods are pertinent
for discovering errors occurring in programs and not for
omissions with respect to specifications.

Another observation is that one tests a system. A system is
neither a formula, nor a diagram, even if it can be (partially)
described as such. It is a dynamic entity, embedded in the
physical world. It is observable via some limited interface or
procedure. It is not always fully controllable. A specification,
or a model, or a program text, are not the system but some
description of the system. “The map is not the territory” [18].
Actually, when testing, some assumptions are made on the
SUT: implicitly or explicitly, one considers a class of testable
implementations. These assumptions on the SUT are called
testability hypotheses. They may correspond to very basic
assumptions such as correct implementation of booleans and
bounded integers or determinism, but depending on the kind
of considered specifications they may be more sophisticated
as it will be discussed in Section III-A.

Saying it in another way, these methods target some classes
of faults, assuming either that the SUT is exempt from other
kinds of faults, or that other complementary methods are used.
If the SUT is any erratic or diabolic system, there is no way
of testing it with sensible outcome on the basis of abstract
descriptions. This is the reason why binary code analysis (see
for instance [19]) is used for detecting malicious faults.

B. Formal Methods in a Nutshell
What makes a specification method formal? As for any

specification method, there is a notation. Depending on the



method, specifications can include formulas in various logics,
used to write pre- post-conditions, axioms of data types,
guards, temporal properties. They may state process definitions
as for instance in CSP, CCS, Lotos, Circus. They may rely on
annotated diagrams such as FSM, LTS, Petri nets, etc.

But there is more than a syntax. First, there is a formal
semantics, in term of mathematical notions such as: predicate
transformers for pre- post-conditions; sets and many-sorted
algebras for axiomatic definitions; various sorts of automata,
traces, failures, divergences, for process algebras. Second,
there is a formal deduction system, making it possible to per-
form proofs, or other verifications (such as model-checking),
or both. Thus formal specifications can be analysed to guide
the identification of appropriate test cases.

Moreover, in addition to syntax, semantics, and deduction
system, formal methods come with some relations between
specifications that formalise either equivalence or correct step-
wise development. Depending on the context such relations are
called: refinement, conformance, or, in the case of formulas,
satisfaction. They are fundamental for testing methods.

III. FORMAL SPECIFICATIONS AND TESTING

A. Bridging the Gap between Test and Refinement Relations

Given a formal specification and a system under test, the
testing activity addresses the question: “does the SUT conform
to the specification? ”. However, embedding testing activities
within a formal framework is not so straightforward. As
said above, one tests a system while refinement/conformance
relations are defined on pairs of formal descriptions: for
instance, in the case of FSM, it is equivalence of FSM; in the
case of CSP, traces refinement requires that the set of traces of
the refined specification is a subset of the traces of the original
one, and similarly for failure refinement, ...

The gap between systems and specifications is generally
taken into account by testability hypotheses on the systems
under test [2], [4], [7], called test hypotheses in [8].

For instance, in the case of FSM, it is required that the SUT
behaves like some FSM with the same number of states as the
specified one (or more, but this number is known). It means
that whatever the trace leading to some state, the execution of
a transition from this state with a given input has the same
effect in term of output and change of state. This provides
justification for the transition coverage testing strategy that is
classical in this framework [7].

In the case of CSP, the SUT is assumed to behave like some
unknown CSP process with the same alphabet of actions as
the specified one, and that these actions are atomic [12] or are
perceived as atomic and of irrelevant duration in the SUT. It
is possible to ensure this requirement by developing wrappers,
or by performing some complementary proofs or tests.

In summary, the system under test is assumed to behave like
some (unknown) model of the same nature as the ones consid-
ered by the refinement/conformance relation. Such hypotheses
are formal counterparts of the remarks in II-A.

B. Test, and Exhaustive Test Sets

Thanks to the formal deduction system and the refine-
ment/conformance relation, one can derive consequences and
counter-examples from the specification. They provide guides
for designing testing experiments, for selection of test cases,
and for specification of test drivers.

For instance: testing that a commutativity axiom such as
insert(t, x, y) = insert(t, y, x) is satisfied by the imple-
mentation of a table data type can be done by assigning
some values to the variables t, x, y, and checking that the
execution of both sides of the equation yield similar results;
testing that an implementation of a CSP process conforms
to traces refinement can be done by synchronising it with a
trace that is not a trace of the process and checking that a
deadlock is observed when the submitted trace deviates from
the specification.

Due to dependencies between counter-examples or conse-
quences it is not always necessary to consider all of them: for
instance, in the case of traces refinements, instead of the set of
all unspecified traces, it is sufficient to consider the minimal
forbidden prefixes of these traces without loss of exhaustivity.

Exhaustivity of a test set TS with respect to a specification
SP is the fact that a SUT passes all the tests in TS if and
only if it behaves like a refinement of SP . It must take into
account the testability hypotheses. It can be summarised as:
Testable(SUT ) ⇒(
(∀t ∈ TS, SUT passes t) ⇐⇒ ([|SUT |] refines SP )

)
where ([|SUT |] denotes the unknown formal specification

that corresponds to SUT .
Examples of such theorems are given for algebraic spec-

ifications in [5], for CSP in [12], for Circus in [13]. For a
given formalism, the definition of tests, and of the couple of
exhaustive test set and testability hypotheses is not unique.
For instance, strengthening the testability hypotheses makes it
possible to reduce the exhaustive test set.

C. Selection Hypotheses

Once defined an exhaustive test set for a specification SP
and the corresponding testability hypotheses on a system
under test SUT , a specification-based testing strategy of SUT
against SP can be formalised as the selection of a finite
subset of the exhaustive test set and some strengthening of
the testability hypotheses. We call the additional hypotheses
selection hypotheses. They make explicit the incompleteness
of practical testing methods.

As an example, let us consider the classical partition testing
strategy. Given a collection of (possibly non-disjoint) subsets
that covers the exhaustive test set, a representative element
of each subset is selected to be submitted to the SUT. Let
the following decomposition of a test set TS into n subsets
STS1, ..., STSn, such that TS = STS1

⋃
...
⋃
STSn. The

partition testing strategy corresponds to uniformity hypotheses
on the subsets that can be expressed as:
(∃t0 ∈ TS, SUT passes t0) ⇒ (∀t ∈ TS, SUT passes t)

Other examples of selection hypotheses are regularity hypothe-
ses, that allow to bound the size of the tests, and thus their



number. These are the two main classes of test selection
hypotheses. They allow to specify coverage criteria of the
specification: for instance the popular transition coverage crite-
rion of FSM [2] can be formulated as a uniformity hypotheses
on those subsets of traces where a given transition occurs. But
depending on the underlying formalism and the considered
class of faults, they are many variants. Regularity hypotheses
can be combined with uniform drawing from the exhaustive
test set following the ideas in [20].

As pointed out in [21], [22], test hypotheses, i.e. testability
and selection hypotheses, are equivalent to fault domains, at
least for black-box techniques: fault domains limit the set of
considered SUT by restricting the class of targeted faults and
it is exactly the role of test hypotheses.

There are several interesting consequences in formulating
test strategies as explicit logical hypotheses. First, as devel-
oped in [21], it provides logical bases for comparing test
criteria and identifying redundancies. Second, as illustrated in
the HOL/TestGen test environment [17], it makes it possible
to use proof assistants and SMT solvers to automate test se-
lection and submission. HOL/TesGen is based on the powerful
Isabelle/HOL proof assistant. It allows to specify or discover
some uniformity and regularity hypotheses, to prove them, and
to generate the corresponding test sets and drivers.

D. Oracles

The oracle problem, i.e. how to decide whether a test
execution yields satisfactory outcome, is a very difficult issue
in software testing [23]. The main causes of this difficulty are
the lacks of observability and of controllability of the SUT.

In the case of specification-based testing, as soon as there
is some abstraction gap between the abstract specification and
the concrete implementation, problems arise for interpreting
the results of test experiments: they are observed from the
system, they must be interpreted w.r.t. the specification.

In formal methods that support abstract descriptions of
complex data types, such as algebraic specifications, VDM, Z,
this problem shows up for deciding the equivalence of different
representations of the same abstract entity. For instance, testing
the commutativity of insertion in a table (cf. the axiom in
III-B) is problematic when using hashing. An elegant formal
way to cope with this issue is to wrap the tests in observation
contexts to get results of observable types, i. e. in term of
the implementation [5], [24], [25]. From the specification, one
identifies sequences of operations from abstract types to simple
types treatable by the SUT. It is similar to what is done for
state identification of the SUT in the case of FSM-based testing
some characterising set of sequences is built from the FSM [2],
or some distinguishing sequences [7]. Such sequences when
applied to different states yield different outputs. Appended to
tests they indicate the resulting state.

These methods are expensive, and in some cases incomplete.
Other, less formal, grey-box approaches relies on instrumen-
tations of the SUT in order to improve its observability [26],
raising the issue of the correctness of this instrumentation that
may be proved or tested w.r.t. the formal specification.

IV. CONCLUSION

Formal methods are one important ingredient of a holistic
approach to software testing. They are not the “silver bullet”
but they bring much, thanks to their logical background.
One of their essential advantages is the explicitation of the
assumptions on the SUT associated with testing strategies, thus
paving the way to complementary proofs or tests.

REFERENCES

[1] J. B. Goodenough and S. L. Gerhart, Toward a theory of test data
selection, IEEE Trans. on Software Engineering, SE-1(2): 156-173, 1975.

[2] T. Chow, Testing software design modeled by finite-state machines, IEEE
Trans. on Software Engineering, SE-4(3):178187, 1978.

[3] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J.
Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luttgen, A. J.
H. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan, Using formal
specifications to support testing, ACM Comput. Surv. 41(2), 1-76, 2009.

[4] G. Bernot, M.-C. Gaudel, and B. Marre, Software testing based on formal
specifications: a theory and a tool, Soft. Eng. Journal, 6(6):387-405, 1991.

[5] M.-C. Gaudel and P. Le Gall, Testing data types implementations from
algebraic specifications, LNCS 4949, 209-239, 2007.

[6] J. Dick and A. Faivre, Automating the generation and sequencing of test
cases from model-based specifications, LNCS 670, pp. 268-284, 1993.

[7] D. Lee and M. Yannakakis, Principles and methods of testing finite state
machines-a survey, Proceedings of the IEEE, 84(8):1090-1123, 1996.

[8] E. Brinksma and J. Tretmans, Testing Transition Systems: An Annotated
Bibliography, LNCS 2076, 187-195, 2001.

[9] C. Péraire, S. Barbey and Didier Buchs, Test selection for object-
oriented software based on formal specifications, IFIP TC2/WG2.2,2.3
PROCOMET Conference, 385-403, 1998.

[10] D. H. Pitt and D.Freestone, The Derivation of Conformance Tests
from LOTOS Specifications, IEEE Trans. on Software Engineering, SE-
16(12):1337-1343, 1978.

[11] M.-C. Gaudel and P. R. James, Testing Algebraic Data Types and
Processes: a unifying theory, FACJ, 10(5-6), 436-451, 1999.

[12] A. Cavalcanti and M.-C. Gaudel, Testing for refinement in CSP, LNCS
4789, 151-170, 2007.

[13] A. Cavalcanti and M.-C. Gaudel, Testing for refinement in Circus, Acta
Informatica, 48(2):97-147, 2011.

[14] L. De Moura and N. Bjørner. Z3: An efficient SMT solver, LNCS 4963,
337-340, 2008.

[15] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen,
N.Tillmann, and W. Visser, Symbolic execution for software testing in
practice: preliminary assessment, ICSE ’11, 1066-1071, 2011.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL—A Proof
Assistant for Higher-Order Logic, LNCS 2283, 2002.

[17] A. D. Brucker and B. Wolff, On Theorem Prover-based Testing, Formal
Aspects of Computing, 25(5):683-721, 2013.

[18] A. Korzybski, Science and Sanity: A Non-Aristotelian System and its
Necessity for Rigour in Mathematics and Physics Institute of General
Semantics,1933.

[19] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, A. Vincent, The
BINCOA framework for binary code analysis, LNCS 6806, 165170, 2011.

[20] A. Denise, M.-C. Gaudel, S.-D. Gouraud, R. Lassaigne, J. Oudinet and
S. Peyronnet, Coverage-biased random exploration of large models and
application to testing, STTT 14(1): 73-93, 2012.

[21] R.M. Hierons, Comparing test sets and criteria in the presence of test
hypotheses and fault domains, ACM TOSEM 11(4): 427-448, 2002.

[22] R. M. Hierons, Verdict functions in testing with a fault domain or test
hypotheses, ACM TOSEM, 18(4): 14:1-14:19, 2009.

[23] E. T. Barr, M. Harman, Ph. McMinn, M. Shahbaz and Shin Yoo, The
Oracle Problem in Software Testing: A Survey, IEEE Trans.on Software
Engineering, 41(5), 507-525, 2015.

[24] H. Y. Chen, T. H. Tse and T. Y. Chen, TACCLE: a methodology for
object-oriented software testing at the class and cluster levels, ACM
TOSEM 10(1), 56-109, 2001.

[25] H. Zhu, A note on test oracles and semantics of algebraic specifications,
IEEE QSIC conference, 91-99 2003.

[26] P. Machado, On oracles for interpreting test results against algebraic
specifications, LNCS 1548, 502518, 1998.


