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Summary
This paper is concerned with the use of polynomial metamodels for the design of acoustical materials, considered
as equivalent fluids. Polynomial series in microstructural parameters are considered, and allow us to approximate
the multiscale solution map in some well-defined sense. The relevance of the framework is illustrated by consid-
ering the prediction of the sound absorption coefficient. In accordance with theoretical results provided elsewhere
in the literature, it is shown that the surrogate model can accurately approximate the solution map at a reason-
able computational cost, depending on the dimension of the input parameter space. Microstructural and process
optimization by design are two envisioned applications.

© 2017 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the
Creative Commons Attribution (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The inverse design of materials has recently gained popu-
larity in both academia and industry. Materials by design
approaches typically require (i) the construction of a map-
ping between the microstructural features at some relevant
scale and the properties of interest (with a desired level
of accuracy), and (ii) the design of an optimization algo-
rithm that can efficiently explore innovative solutions. In
this paper, we investigate the use of a multiscale-informed
polynomial surrogate to define an approximation of the
macroscopic acoustical properties in terms of microstruc-
tural variables.

Letm denote the vector of microstructural parameters to
be optimized, and assume that m belongs to some admis-
sible closed set Sm = ×ni=1[ai, bi] in Rn. Let q ∈ Sq ⊆ Rd
be some macroscopic quantity of interest. Microstructural
design optimization then consists in finding, using an ad
hoc computational strategy, the optimal value mopt of m
(which may be non-unique) minimizing some application-
dependent cost function J such that J (q) = J (q(m)) =:
J (m), by an abuse of notation,

mopt = argmin
m∈Sm

J (m). (1)

In practice, solving the above optimization problem
(which is not convex and may exhibit many local minima)

Received 21 October 2017,
accepted 21 December 2017,
published online 10 January 2018.

requires performing multiscale simulations a large number
of times, especially for large values of n. A classical rem-
edy to this computational burden relies on the construc-
tion of a surrogate mapping q̂ that properly approximates
q (that is, the map m 7→ q̂(m) approaches the solution
mapm 7→ q(m) in some sense) and remains much cheaper
to evaluate than full-field upscaling simulations. Available
techniques include the use of neural networks, response
surfaces [1] and reduced-order models [2]. Once the ap-
proximation has been defined, the optimal solution is then
defined as

mopt = argmin
m∈Sm

Ĵ (m), Ĵ (m) = J
(

q̂(m)
)

. (2)

2. Methodological aspects

The definition of the surrogate model q̂ involves key the-
oretical questions (such as the characterization of conver-
gence rates), as well as algorithmic concerns (related to
the design of efficient strategies to build the metamodel,
for instance). These issues have attracted much attention in
various fields, especially for the computational treatment
of partial differential equations, and an extensive review
on this topic is beyond the scope of this letter (see e.g.,
[2] for a survey, as well as [3, 4] and the references therein
for convergence results). Despite this fact, the use of meta-
modeling remains quite unexplored in the multiscale anal-
ysis of acoustic properties. Since the reference map m 7→
q(m) typically introduces some smoothness due to its mul-
tiscale nature, polynomial approximation techniques are
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natural candidates for the construction of q̂ (see e.g., [4]).
Upon introducing the normalized vector-valued parameter
ξ such that [−1, 1] 3 ξi = 2/(bi−ai)mi+ (ai+bi)/(ai−bi)
for 1 6 i 6 n, the surrogate model q̂ is then sought for as
a polynomial map in ξ,

q̂(ξ) =
∑

α

q̂αPα (ξ), (3)

where α is a multi-index in Nn, Pα is the multidimensional
Legendre polynomial defined as Pα (ξ) =

∏n
i=1 Pαi (ξi),

and Pαi is the univariate Legendre polynomial of order αi
(see e.g., Chapter 8 in [5]). From the orthogonality of these
polynomials, namely

〈Pα , Pβ〉 =
1
2n

∫

([−1,1])n
Pα (x) Pβ (x) dx

=
n
∏

i=1

δαiβi
2αi + 1

,

(4)

where δ is the Kronecker delta, it follows that

q̂α =

(

n
∏

i=1

(2αi + 1)

)

〈

q̂, Pα
〉

. (5)

The choice of this polynomial basis ensures that the sur-
rogate is uniformly accurate over the parameter space, so
that no bias (noise) is generated in the evaluation of the
cost function. The computation of the coefficients q̂α ne-
cessitates the evaluation of n-dimensional integrals, and
various techniques have been proposed in the literature
to address this issue. Standard or enhanced (i.e. nested,
sparse, etc.) quadrature rules can be invoked for small val-
ues of n, while (advanced) Monte Carlo simulation tech-
niques can be used for much higher dimensions (see e.g.,
[6]). Below, a Gauss-Legendre quadrature rule is used for
illustration purposes.

3. Numerical results

3.1. Reference solution map

In the sequel, we consider the optimization of a tetrakai-
decahedron structure (see Figure 1) for sound absorption
purposes, and seek an approximation of the normal inci-
dence sound absorption coefficient A(n) as a function of
both the macroscopic porosity φ and the membrane clo-
sure rate rc = δ/δmax. For later use, let A(d) be the sound
absorption coefficient for a diffuse field excitation (see
Equations (7)–(9) in [13]). Note that in a more general
setting, the interpolation of intrinsic parameters, such as
transport properties, is more appropriate, since they consti-
tute primary variables enabling the prediction of e.g., fre-
quency dependent response functions. Depending on the
context, A(n) is indexed by either the frequency f or the
angular frequency ω = 2πf . We then adopt the notation
A(n)(φ, rc; f ) (or A(n)(φ, rc;ω)), and any variable tem-
porarily fixed may be dropped with no notational change

Figure 1. Unit cell and FE mesh (φ = 0.97, rc = 0.6).

(when φ and rc are fixed, the absorption coefficient sim-
ply reads as A(n)(f ) or A(n)(ω)). While changes in the
porosity φ can be imposed in various ways, we presently
consider adapting the ligament thickness r (as shown Fig-
ure 1) and the size D of the unit cell remains constant and
equal to 0.8 mm.

Furthermore, the same closure rate is imposed on all
faces of the structure, which reflects both the assumed pe-
riodicity and processing constraints. Following the nota-
tions introduced in § 1, m is identified with the vector
(φ, rc) and q = (A(n)); hence, n = 2 and d = 1. For a
given value of the microstructural parameters, A(n)(ω) is
obtained asA(n)(ω) = 1−|(Zs(ω) −Z0)/(Zs(ω) +Z0)|2,
where Z0 is the air impedance and Zs(ω) is the normal
incidence surface impedance of the equivalent fluid. For
a layer of thickness Ls (Ls = 20 mm below), Zs(ω)
reads as Zs(ω) = −jZc(ω) cot(kc(ω)Ls), where j is the
imaginary unit, Zc(ω) is the characteristic impedance and
kc(ω) denotes the wave number (with the time conven-
tion: +jωt). These quantities can be expressed in terms
of the effective density ρeff (ω) and effective bulk modu-
lus Keff (ω) as Zc(ω) =

√

ρeff (ω)Keff (ω) and kc(ω) =
ω
√

ρeff (ω)/Keff (ω). The effective properties can be esti-
mated by using the semi-phenomenological JCAPL model
[7, 8, 9, 10], which involves transport properties that are
obtained by solving a set of independent boundary value
problems (BVPs) (Stokes, potential flow and thermal con-
duction equations; see e.g., Chapter 5 in [11] and Ap-
pendix B in [12] for a condensed presentation of this
model). In this work, these BVPs are solved by using
the finite element method (at convergence, the mesh as-
sociated with the complete cell contains 214, 412 tetrahe-
dral elements; see Figure 1) and the commercial software
COMSOL Multiphysics. For a given configuration (i.e. for
given values of φ and rc), the averaged computation time
for the multiscale simulations is about 156 seconds. The
reference solution map is shown in Figure 2 for various
frequencies.

3.2. Surrogate analysis

It follows from Equation (3) that the approximant, trun-
cated at order p, is given by

q̂p(ξ) =
p
∑

α ∈N2, |α|=0

q̂αPα (ξ), (6)
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where ξ = (ξ1, ξ2), |α| =
∑n
i=1 αi and Pα (ξ) = Pα1 (ξ1)

×Pα2 (ξ2). The reduced coordinate ξ1 corresponds to φ, and
ξ2 represents the closure rate rc. The coefficients are then
estimated (see Equation 5) as

q̂α ≈
(2α1 + 1)(2α2 + 1)

4

NQ
∑

i=1

wi q̂(ξ(i))Pα (ξ(i)), (7)

in which {wi}
NQ
i=1 and {ξ(i)}NQi=1 are the weights and points

of the quadrature rule. Evaluating the multiscale model at
the quadrature points represents offline stage (distributed)
computations in which the reduced variables are mapped
back onto the physical ones (i.e. φ and rc). Convergence
must be characterized with respect to both p (using e.g.,
a L2 metric for increasing orders of expansion) and nQ =
(NQ)1/2 (for a fixed order of expansion p). In practice, the
value of nQ can be determined by analysing the conver-
gence of the function nQ 7→ ε(nQ) = ‖q̂α (nQ) − q̂α (nQ +
1)‖2/‖q̂α (nQ)‖2, where the dependence of q̂α on nQ is
made explicit (see Equation (7)). In what follows, nQ is
determined such that ε(nQ) 6 10−2 (see Figure 3).

LetDp be the relative error measure defined asDp(φ, rc)
= |A(n)(φ, rc) − Â

(n)
p (φ, rc)|/A(n)(φ, rc), where Â(n)

p is the
estimate of the sound absorption coefficient (normal in-
cidence) obtained with the surrogate model at order p.
The probability density function of Dp obtained for φ ∈
[0.9, 0.99] and rc ∈ [0.1, 0.9] (with a total of 900 combi-
nations evaluated) is shown in Figure 5, for p = 15 (with
nQ = 14, implying that 196 computations are necessary to
calibrate the surrogate model).

As expected, uniform convergence over the parameter
space is observed, with a relative error that is typically
less than 2%, regardless of the frequency under consid-
eration. It should be noticed that the apparent ordering
in mean and variance, which both decrease when the fre-
quency increases, is due to the frequency dependency of
the normalizing absorption coefficient (see Figure 2). The
accuracy of the approximation can also be assessed over a
wide range of frequencies, as shown in Figure 5 for p = 10
(nQ = 11) and p = 15 (nQ = 14).

Let us now consider the optimization problem given by
Equation (2), and consider, for m = (φ, rc), the cost func-
tion Ĵ (m) = −q̂β (m), with β ∈ [0, 1] and

q̂β (m) = βÂ
(n)
p

(m) + (1 − β)Â
(d)
p

(m), (8)

where Â
(n)
p

(m) and Â
(d)
p

(m) are the averages of the sound
absorption coefficients, approximated with the surrogate,
over the frequency interval [f0, f1],

Â
(k)
p

(m) =
1

f1 − f0

∫f1

f0

Â
(k)
p (m; f ) df, (9)

where k stands either for n or d. Note that the dependence
of q̂ on p is not reported to simplify notation. The charts
showing the approximated sound absorption coefficients
are reported in Figure 6, and can be used to evaluate the
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Figure 2. Reference solution map (φ, rc) 7→ A(n)(φ, rc) at differ-
ent frequencies (in Hz).
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Figure 3. Graph of the error function nQ 7→ ε(nQ) for p = 5
(circles), 10 (diamonds) and 15 (squares).
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Figure 4. PDF of the relative error for p = 15 and for the set of
frequencies shown in Figure 2.

performance of the material over ranges of values induced
by process variability.

Once calibrated, the surrogate model allows the cost
function to be evaluated at a negligible computational ex-
pense, which opens up many possibilities to design op-
timal microstructures (pore size, membrane content) un-
der contraints related to different acoustical parameters.
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Figure 5. Solution map for the normal incidence sound absorp-
tion coefficient. Solid line: reference; cross markers: surrogate
with p = 10; point markers: surrogate with p = 15. The results
are shown for rc = 0.1 (black), 0.2931 (green), 0.4862 (blue),
0.5966 (red), 0.7069 (magenta), and φ = 0.9124 (left panel) and
φ = 0.9745 (right panel).
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Figure 6. Plots of the averaged absorption coefficients, with f0 =
250 and f1 = 5, 000 Hz. The maximum value in each chart is
identified with a red cross.

Whereas the proposed application was concerned with
transport and sound absorbing only, it should finally be
noticed that the approach can readily accommodate other
constraints related to mechanical and sound insulation
properties in a multi-objective formulation.

4. Conclusion

In this work, we have investigated the potential of poly-
nomial metamodels to accurately approximate mappings
between key microstructural features and homogenized
acoustical properties. The approach relies on orthogonal
polynomials and enables appropriate convergence over
the parameter space to be ensured. It is shown that the
framework allows the sound absorption coefficient to be
predicted over an appropriate range of frequencies, so that

the optimization of microstructures under various types
of constraints can be envisioned at a reasonable compu-
tational cost to support the design for noise reducing ma-
terials and structures (COST Action CA15125).

Acknowledgments

The work of V. H. Trinh was supported by a fellowship
awarded by the Government of Vietnam (Project 911). The
work from C. Perrot was supported in part by the French
National Research Agency under grant ANR-13-RMNP-
0003-01.

References

[1] O. Sen, S. Davis, G. Jacobs, H. S. Udaykumar: Evaluation
of convergence behavior of metamodeling techniques for
bridging scales in multi-scale multimaterial simulation. J.
Comput. Phys. 294 (2015) 585–604.

[2] P. Benner, M. Ohlberger, A. Cohen, K. Willcox: Model
Reduction and Approximation: Theory and Algorithms.
SIAM, Philadelphia, 2017.

[3] A. Chkifa, A. Cohen, C. Schwab: High-dimensional adap-
tive sparse polynomial interpolation and applications to
parametric PDEs. Found. Comput. Math. 14 (2014) 601–
633.

[4] A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, R. Tempone:
Discrete least squares polynomial approximation with ran-
dom evaluations – application to parametric and stochastic
elliptic PDEs. ESAIM: M2AN 49 (2015) 815–837.

[5] T. J. Sullivan: Introduction to Uncertainty Quantification.
Springer, Cham, 2015.

[6] M. Arnst, J.-P. Ponthot: An overview of nonintrusive char-
acterization, propagation, and sensitivity analysis of un-
certainties in computational mechanics. Int. J. Uncertainty
Quantification 4 (2014) 387–421.

[7] D. L. Johnson, J. Koplik, R. Dashen: Theory of dynamic
permeability and tortuosity in fluid-saturated porous media.
J. Fluid Mech. 176 (1987) 379–402.

[8] Y. Champoux, J. F. Allard: Dynamic tortuosity and bulk
modulus in air-saturated porous media. J. Appl. Phys. 70
(1991) 1975–1979.

[9] S. R. Pride, F. D. Morgan, A. F. Gangi: Drag forces of
porous media acoustics. Phys. Rev. B 47 (1993) 4964–
4978.

[10] D. Lafarge, P. Lemarinier, J. F. Allard, V. Tarnow: Dynamic
compressibility of air in porous structures at audible fre-
quencies. J. Acoust. Soc. Am. 102 (1997) 1995–2006.

[11] J. Allard, N. Atalla: Propagation of Sound in Porous Me-
dia: Modelling Sound Absorbing Materials – 2nd ed. John
Wiley & Sons, Chichester, 2009.

[12] C. Perrot, F. Chevillotte, G. Bonnet, F.-X. Bécot, L. Gau-
tron, A. Duval: Microstructure, transport, and acoustic
properties of open-cell foam samples: Experiments and
three-dimensional numerical simulations. J. App. Phys. 111
(2012) 014911–16.

[13] F. Chevillotte, C. Perrot: Effect of the three-dimensional
microstructure on the sound absorption of foams: A para-
metric study. J. Acoust. Soc. Am. 142 (2017) 1130–1140.

4


