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Abstract

Let A be an arbitrary alphabet and let θ be an (anti-)automorphism of A∗ (by definition,
such a correspondence is determinated by a permutation of the alphabet). This paper deals
with sets which are invariant under θ (θ-invariant for short) that is, languages L satisfying
θ(L) ⊆ L. We establish an extension of the famous defect theorem. With regards to the so-
called notion of completeness, we provide a series of examples of finite complete θ-invariant
codes. Moreover, we establish a formula which allows to embed any non-complete θ-invariant
code into a complete one. As a consequence, in the family of the so-called thin θ-invariant
codes, maximality and completeness are two equivalent notions.
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1. Introduction

In the free monoid theory, during the last decade, research involving one-to-one morphic
or antimorphic substitutions has played a particularly important part: this is due to the
powerful applications of these objects, in particular in the framework of DNA-computing. In
the case of automorphisms or anti-automorphisms -for short we write (anti-)automorphisms-
given an arbitrary alphabet, say A, any such mapping is completely determined by extending
a unique permutation of A to A∗, the free monoid that is generated by A.

In the special case of involutive (anti-)automorphisms, lots of successful investigations
have been done for extending most of the now classical combinatorial properties on words.
The topics of the so-called pseudo-palindromes [9], that of θ-episturmian words [3], and the
one of pseudo-repetitions [7, 14] have been particularly involved. The framework of some
peculiar families of variable-length codes [15] and that of equations in words [5, 8, 16, 21]
have been concerned. Generalizations of the famous theorem of Fine and Wilf ([13],[18,
Proposition 1.3.5]) were also established [6, 20].

Equations in words are also the starting point of the study in the present paper, which
consists in some full version of [22]. Let A be an arbitrary alphabet and let θ be an (anti-
)automorphism of A∗; we adopt the point of view from [18, Ch. 9], by considering a finite
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carla.selmi@univ-rouen.fr (Carla Selmi)

Preprint submitted to Elsevier August 11, 2018



collection of unknown words, say Z. We assume that a (minimum) positive integer k (i.e.
the so-called order of θ) exists such that θk = idA∗ . This condition is particularly satisfied
by every (anti-)automorphism whenever A is finite. In view of making the present foreword
more easily readable, in the first instance let us take θ as an involutive (anti-)automorphism
(that is, θ2 = idA∗). We assign that the words in Z and their images by θ to satisfy a given
equation, and we ask for the computation of a finite set of words, say Y , such that all the
words of Z can be expressed as a concatenation of words in Y . Actually, such a question
appears more complex than in the classical configuration, where θ does not interfer: in this
classical case, according to the famous defect theorem [18, Theorem 1.2.5], it is well known
that at most |Z| − 1 words allow to compute the words in Z. At the contrary, due to the
interference of (anti-)automorphisms, in [16], examples where |Y | = |Z| are provided by the
authors.

Along the way, for solving our problem, applying the defect theorem to the set X =
Z∪θ(Z) might appear natural. Such a methodology garantees the existence of a set Y , with
|Y | ≤ |X| − 1 and whose elements allow by concatenation to rebuilt all the words in X. It
is also well known that Y can be chosen in such a way that only trivial equations may hold
among its elements: with the terminology of [1, 18, 19], Y is a code, or equivalently Y ∗, the
submonoid that it generates, is free. Unfortunately, since both the words in Z and θ(Z)
are expressed as concatenations of words in Y , among the words of Y ∪ θ(Y ) non-trivial
equations can still hold. In other words, by applying that methodology, the initial problem
would be transferred among the words in Y ∪ θ(Y ).

An alternative methodology will consist in asking for codes Y which are invariant under θ
(θ-invariant for short) that is, satisfying θ(Y ) = Y . Returning to the general case, where θ is
an arbitrary (anti-)automorphism, this is equivalent to say that the union of the sets θi(Y ),
for all i ∈ Z, is θ-invariant. By the way, it is straightforward to show that the intersection
of an arbitrary family of free θ-invariant submonoids is itself a free θ-invariant submonoid.
In the present paper we prove the following result:

Theorem 1. Let θ be an (anti-)automorphism of A∗ and let X be a finite θ-invariant set.
If X it is not a code, then the smallest θ-invariant free submonoid of A∗ containing X is
generated by a θ-invariant code Y , which furthermore satisfies |Y | ≤ |X| − 1.

For illustrating this result in terms of equation, we refer to [5, 21], where the authors consid-
ered generalizations of the famous three unkown variables equation of Lyndon-Shützenberger
[18, § 9.2]. They proved that, an involutive (anti-)automorphism θ being fixed, given such an
equation with sufficiently long members, a word t exists such that any 3-uple of “solutions”
can be expressed as a concatenation of words in {t}∪{θ(t)}. With the notation of Theorem
1, the elements of the θ-invariant set X are x, y, z, θ(x), θ(y), θ(z) and those of Y are t and
θ(t): we verify that, in every case Y is a θ-invariant code, furthermore we have |Y | ≤ |X|−1.

With regards to the theory of codes, completeness is one of the most challenging notions:
a subset X of the free monoid A∗ is complete if any word is a factor of some word in X∗.
Maximality is another important notion: a code is maximal if it cannot be strictly included
in some other code of A∗. Actually, according to Zorn’s Lemma, any code is included in a
maximal one moreover, a famous result due to Schützenberger states that, for the family of
the so-called thin codes (which contains the regular codes), maximality and completeness are
two equivalent notions [1, Theorem 2.5.16]. From this point of view, in the second part of
our study we are interested in complete θ-invariant codes. It is natural to prealably examine
the case of finite codes. Clearly, the well-known complete uniform codes that is, the codes
An (with n ≥ 1), are invariant under every (anti-)automorphism. Beside that, non-trivial
finite complete θ-invariant codes exist: for instance, take for A the binary alphabet {a, b},
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choose for θ the anti-automorphism that swaps the letters a and b, and consider the complete
code which was introduced in [4]:

X = {a3, ab, a2ba, a2b2, ba2, baba, bab2, b2a, b3}.

It is staightforward to verify that X is θ-invariant. In our paper, we provide some other
examples: each of the classes of bifix codes, prefix codes, and non-prefix non-suffix codes is
concerned.

Despite that, the question of describing a general structure for finite complete θ-invariant
codes remains largely open: this is not surprizing since, with the exception of certain special
families (eg. [11, 12, 24]), no general structure that could embrace finite complete codes is
described in the literature.

Another issue could consist in developing methods for embedding a code into a complete
one. However, in [23], the author presents a class of codes that cannot be embedded into
any finite complete one. With regards to θ-invariance, as far as we know, the question of
embedding finite codes into complete ones remains open.

Actually, in [23], the question whether any finite code can be embedded into a regular
one was implicitely asked: a positive answer was brought in [10], where the authors provided
a now classical formula for embedding any regular code into a complete one. In the present
paper, we put a corresponding problem in the framework of θ-invariant codes. Actually, by
establishing the following result, we bring a positive answer:

Theorem 2. Any non-complete θ-invariant code X ⊆ A∗, can be embedded into a
complete one. Moreover, if A is finite and X regular, then X can be embedded into a
regular complete θ-invariant code.

As a consequence, we obtain the following result: it states that, in the framework of θ-
invariant codes, a property similar to a famous one due to Schützenberger [1, Theorem
2.5.16] holds:

Theorem 3. Given a thin θ-invariant code X ⊆ A∗, the five following conditions are
equivalent:
(i) X is complete.
(ii) X is a maximal code.
(iii) X is maximal in the family of the θ-invariant codes.
(iv) A positive Bernoulli distribution π exists such that π(X) = 1.
(v) For any positive Bernoulli distribution π, we have π(X) = 1.

We now describe the contents of our paper. Section 2 contains the preliminaries: the
terminology of the free monoid is settled, and we recall some classical notions and results
concerning the codes. The preceding Theorem 1 is established in Section 3, where an original
example of equation is studied. In Section 4, we present several examples of finite complete
θ-invariant codes. The problem of embedding a finite θ-invariant code into a complete one is
also discussed: this ensures a transition to the question of embedding a regular θ-invariant
code into a complete one. This last question is studied in Section 5, where the preceding
Theorem 2 and Theorem 3 are established.

2. Preliminaries

2.1. Words and free monoid

We adopt the notation of the free monoid theory. In the whole paper, we consider an
alphabet A, and we denote by A∗ the free monoid that it generates. Given a word w ∈ A∗,
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we denote by |w| its length, the empty word, which we denote by ε, being the word with
length 0. Given a subset X of A∗, we denote by X∗ the submonoid of A∗ that is generated
by X, moreover we set X+ = X∗ \ {ε}.

Let x ∈ A∗ and w ∈ A+. We say that x is a prefix (suffix) of w if a word u exists such that
w = xu (w = ux). Similarly, x is a factor of w if two words u, v exist such that w = uxv.
Given a non-empty set X ⊆ A∗, we denote by P (X) (S(X), F (X)) the set of the words
that are prefix (suffix, factor) of some word in X. Clearly, we have X ⊆ P (X) ⊆ F (X)
(X ⊆ S(X) ⊆ F (X)). Given a pair of non-empty words w,w′, we say that it overlaps if words
u, v exist such that uw′ = wv or w′u = vw, with 1 ≤ |u| ≤ |w| − 1 and 1 ≤ |v| ≤ |w′| − 1;
otherwise, the pair is overlapping-free (in such a case, if w = w′, we simply say that w is
overlapping-free).

2.2. Variable length codes

It is assumed that the reader has a fundamental understanding with the main concepts
of the theory of variable-length codes: we only recall some of the main definitions and we
suggest, if necessary, that he (she) report to [1]. A subset X of A∗ is a variable-length code
(a code for short) if any equation among the words of X is trivial that is, for any pair of
sequences of words in X, say (xi)1≤i≤n, (yj)1≤j≤p, the equation x1 · · ·xn = y1 · · · yp implies
n = p and xi = yi, for each integer i ∈ [1, n]. By definition X∗ is a free submonoid of A∗.

In the present paper the so-called prefix, suffix and bifix codes play an noticeable part: a
code X ⊆ A∗ is prefix (suffix) if X ∩XA+ = ∅ (X ∩A+X = ∅). A code is bifix if it is both
prefix and suffix.

A code X ⊆ A∗ is maximal if it is not strictly included in some other code of A∗. Given
a set X ⊆ A∗, it is complete if A∗ = F (X∗); X is thin if A∗ 6= F (X). Regular codes are well
known examples of thin codes [1, Proposition 2.5.20].

A positive Bernoulli distribution is a morphism π from the free monoid A∗ onto the
multiplicative monoid [0, 1], such that we have π(a) > 0 for every a ∈ A, and such that∑

a∈A π(a) = 1. The uniform distribution corresponds to π(a) = 1/|A|, for every letter a.
For any subset X of A∗, we set π(X) =

∑
x∈X π(x). Clearly, the last sum may be finite or

not, however if X is a thin subset we have π(X) < ∞ [1, Proposition 2.5.12]; moreover for
every code X ⊆ A∗, we have π(X) ≤ 1. From this point of view, the following result was
established by Shützenberger (eg. [1, Theorem 2.5.16]):

Theorem 2.1. Given a thin code X ⊆ A∗, the four following conditions are equivalent:
(i) X is complete.
(ii) X is a maximal code.
(iii) A positive Bernoulli distribution π exists such that π(X) = 1.
(iv) For any positive Bernoulli distribution π, we have π(X) = 1.

2.3. (Anti-)automorphisms

In the whole paper, we fix an alphabet A and a mapping θ onto A∗ which is either an
automorphism or an anti-automorphism: it is an anti-automophism if it is one-to-one, with
θ(ε) = ε and θ(xy) = θ(y)θ(x), for any pair of words x, y. For short in any case we write
that θ is an (anti-)automorphism.

We say that the (anti-)automorphism θ is of finite order if some positive integer k exist
such that θk = idA∗ , the smallest one being the so-called order of θ (trivially idA∗ is of order
1). It is well known that such a condition is satisfied whenever A is a finite set; in particular,
over a two letter alphabet, any non-trivial (anti-)automorphism is of order 2 that is, it is
involutive.
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In the whole paper, we are interested in the family of sets X ⊆ A∗ that are invariant under
θ (θ-invariant for short) that is, which satisfy θ(X) ⊆ X; the mapping θ being one-to-one,
this is equivalent to θ(X) = X.

Example 1. Let A = {a, b, c, d}. Consider the (unique) anti-automorphism θ that is defined
by θ(a) = a, θ(b) = b, θ(c) = d, θ(d) = c. It is straightforward to verify that the mapping θ
is involutive, moreover the sets {cd} and {abcd, cdba} are θ-invariant.

Remark 1. In the spirit of the families of codes that were introduced in [15], given an
(anti-)automorphism θ, define a θ-code as a set X such that

⋃
i∈Z θ

i(X) is a code. Clearly,
with this definition any θ-code is a code; the converse is false, as attested below by Example
2.

Actually, any θ-code that is a maximal code, is necessarily θ-invariant. Indeed, assuming
X not θ-invariant, we have X ( X∪θ(X), thus X is strictly included in the code

⋃
i∈Z θ

i(X).
A similar argument proves that if X is maximal as a θ-code, then it is θ-invariant (indeed,⋃

i∈Z θ
i(X) itself is a θ-code).

Taking account of the fundamental importance of the concept of maximality in the theory
of codes, such properties reinforces the relevance of the notion of θ-invariant code.

Example 2. Let A = {a, b} and θ be the so-called mirror antimorphism: θ(a) = a, θ(b) = b.
Take for X the finite (prefix) code {a, ba}. We have X ∪ θ(X) = {a, ab, ba}, which is not a
code (ab · a = a · ba).

3. A defect effect for invariant sets

We start with some considerations about θ-invariant submonoids of A∗. Clearly the
intersection of a non-empty family of θ-invariant free submonoids of A∗ is itself a θ-invariant
free submonoid. Given a submonoid M of A∗, recall that its minimal generating set is
(M \ {ε}) \ (M \ {ε})2. The following property holds:

Proposition 3.1. Given an alphabet A and given an (anti-)automorphism θ of A∗, let M
be a submonoid of A∗ and let S ⊆ A∗ such that M = S∗. Then the two following properties
hold:

(i) If S is θ-invariant then the same holds for M .
(ii) If S is the minimal generating set of M and if M is θ-invariant then S is θ-invariant.

Proof. (i) Assume that the set S is θ-invariant, and let w ∈ M . Since M = S∗, a finite
sequence of words in S, namely (si)1≤i≤n, exists such that w = s1 · · · sn. Since θ is an (anti-
)automorphism, in every case θ(w) is some concatenation of the words θ(si) (1 ≤ i ≤ n),
therefore we have θ(w) ∈ S∗ = M . Consequently M is θ-invariant.

(ii) Assume that M is θ-invariant and let s ∈ S. It follows from S ⊆ M that we
have θ(s) ∈ θ(M) = M therefore, a sequence of words in S, namely (si)1≤i≤n, exists such
that θ(s) = s1 · · · sn. Since θ is an (anti-)automorphism, s is in fact some concatenation
of the words θ−1(s1), · · · , θ−1(sn) ∈ M . Moreover, for each integer i ∈ [1, n], we have
θ−1(si) = s1

i · · · s
ni
i , with sj

i ∈ S (1 ≤ j ≤ ni). It follows from the definition of S that
we have n = 1 and s = s1

1 = θ−1(s1), thus θ(s) = s1 ∈ S. As a consequence, S itself is
θ-invariant. �

Informally, the famous defect theorem says that if some words in a set X satisfy a non-
trivial equation, then these words can be written upon an alphabet of smaller size. In this
section, we will examine whether a corresponding result may be stated in the framework of
θ-invariant sets.
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Theorem 3.2. Given an alphabet A and given an (anti-)automorphism θ of A∗, let X ⊆ A∗
be a θ-invariant set. Let Y be the minimal generating set of the smallest θ-invariant free
submonoid of A∗ that contains X. If X is not a code, then we have |Y | ≤ |X| − 1.

With the notation of Theorem 3.2, since Y is a code, each word x ∈ X has a unique
factorization upon the words of Y , namely x = y1 · · · yn, with yi ∈ Y (1 ≤ i ≤ n). In a
classical way, we say that y1 (yn) is the initial (terminal) factor of x (with respect to such
a factorization). From this point of view, before to prove Theorem 3.2, we need to establish
the following statement:

Lemma 3.3. With the preceding notation, each word in Y is the initial (terminal) factor
of some word in X.

Proof. By contradiction, assume that a word y ∈ Y that is never initial of any word in X
exists. Set Z0 = (Y \ {y}){y}∗ and Zi = θi(Z0), for each integer i ∈ Z. In a classical way
(see eg. [18, p. 7]), since Y is a code, Z0 itself is a code.
For each integer i ∈ Z, since θi is itself an (anti-)automorphism, Zi is a code that is, Z∗i is a
free submonoid of A∗. Consequently, the intersection, say M , of the family (Z∗i )i∈Z is itself
a free submonoid of A∗.
Let w ∈ M . For each integer i ∈ Z, we have w ∈ Z∗i , thus θ(w) ∈ θ(Z∗i ) ⊆ (θ(Zi))∗ =
(θi+1(Z0))∗ = Z∗i+1. Consequently we have θ(w) ∈

⋂
i∈Z Z

∗
i+1 =

⋂
i∈Z Z

∗
i = M , whence we

have θ(M) ⊆M therefore, since θ is onto, we obtain θ(M) = M .
Let x be an arbitrary word in X. Since X ⊆ Y ∗, and according to the definition of y,
we have x = (z1y

k1)(z2y
k2) · · · (zny

kn), with n ≥ 1, z1, · · · zn ∈ Y \ {y} and k1, · · · kn ≥ 0.
Consequently x belongs to Z∗0 , therefore we have X ⊆ Z∗0 . Since X is θ-invariant, this
implies X = θi(X) ⊆ θi(Z∗0 ) ⊆ Z∗i , for each i ∈ Z, thus X ⊆M .
But the word y belongs to Y ∗ and does not belong to Z∗0 thus, it doesn’t belong to M .
This implies X ⊆ M ( Y ∗: a contradiction with the minimality of Y ∗. Clearly, similar
arguments may be applied to words y ∈ Y that are never terminal of any word in X: this
completes the proof. �

Proof of Theorem 3.2. Let α be the mapping from X onto Y which, with every word
x ∈ X, associates the initial factor of x in its (unique) factorization over Y ∗. According
to Lemma 3.3, α is onto. We will prove that it is not one-to-one. Classically, since X
is not a code, a non-trivial equation may be written among its words, say: x1 · · ·xn =
x′1 · · ·x′p, with xi, x

′
j ∈ X x1 6= x′1 (1 ≤ i ≤ n, 1 ≤ j ≤ p). Since Y is a code, a unique

sequence of words in Y , namely y1, · · · , ym (m ≥ 1) exists such that: x1 · · ·xn = x′1 · · ·x′p =
y1 · · · ym. This implies y1 = α(x1) = α(x′1) and completes the proof. �

In what follows we discuss some interpretation of Theorem 3.2 with regards to equations in
words. For this purpose, we assume that A is finite, θ being of order k, and we consider a
finite set of words, say Z. Let X be the union of the sets θi(Z), for i ∈ [0, k−1], and assume
that a non-trivial equation holds among the words of X, namely x1 · · ·xm = y1 · · · yp. By
construction X is θ-invariant therefore, according to Theorem 3.2, a θ-invariant code Y
exists such that X ⊆ Y ∗, with |Y | ≤ |X| − 1. This means that each of the words in X
can be expressed by making use of at most |X| − 1 words of type θi(u), with u ∈ Y and
0 ≤ i ≤ k − 1. It will be easily verified that the examples from [5, 16, 21] corroborate this
fact; moreover, below we mention an original one:

Example 3. Let θ be an anti-automorphism of order 3. Consider two different words x, y,
with |x| > |y| > 0, satisfying the equation: xθ(y) = θ2(y)θ(x). With this condition, a pair
of words u, v exists such that x = uv, θ(x) = vθ(y), θ2(y) = u, thus y = θ(u). It follows

6



from x = uv that vθ(y) = θ(x) = θ(v)θ(u), thus v = θ(v) and θ(y) = θ(u). This implies
y = u = θ(u) = θ2(u) and v = θ(v) = θ2(v). Moreover, we have θ(x) = vu, θ2(x) = uv:
we obtain x = θ2(x) thus, x = θ(x) = θ2(x); hence we have uv = vu. Consequently, a non-
empty word t and integers i, j exist such that u = ti, v = tj . With the preceding notation,
we have Z = {x, y}, X = Z ∪ θ(Z)∪ θ2(Z) = {x, y}, Y = {t}. We verify that |Y | ≤ |X| − 1.

4. Finite complete θ-invariant codes

In this section we are interested in finite complete θ-invariant codes over an alphabet A.
Given an arbitrary letter a ∈ A, since for every non-negative integer n, we have an ∈ F (X∗),
necessarily a (unique) positive integer p exists such that ap ∈ X; therefore, A is necessarily
finite. Several examples of finite complete θ-invariant codes will be presented. We start with
prefix codes, which certainly constitute the best-known class of them.

4.1. Finite complete prefix θ-invariant codes

Actually finite complete prefix codes play a peculiar part in the framework of codes.
A famous result due to Schützenberger [25] (cf. also [2]) states that any finite complete
code with a finite deciphering delay (eg. [1, Ch. 5]) is necessarily prefix. In particular,
over A∗ only one finite complete circular code (or, equivalently, finite complete uniformly
synchronized code) can exist, namely the alphabet A itself (cf. [1, Ch. 7, Ch. 10], [17]).

It is well-known that each prefix set, say X, can be represented by a tree, say T (X), of
arity |A|: in this representation, each node (i.e. vertice) is a prefixes of some word in X (i.e.
the elements of P (X)), the root being ε, the empty word. Moreover, given two nodes u, v
and a letter a ∈ A, an edge with label a exists from u to v in T (X) if, and only if, we have
v = ua: we denote such a labelled edge by (u, a, v) and we say that v is a sucessor of u. In
that representation, complete prefix codes correspond to complete trees, in the sense where
each interior node has exactly |A| successors.

We start with the case where θ is an automorphism of A∗. Given a prefix set X ⊆
A∗, we say that the corresponding tree T (X) is invariant under θ whenever (u, a, v) is an
edge of T (X) if, and only if, (θ(u), θ(a), θ(v)) is an edge of T (X). With this notion, a
characterization of θ-invariant prefix codes may be stated:

Claim 1. Let A be a finite alphabet, let θ be an automorphism of A∗ and let X be a prefix
code. Then X is θ-invariant if, and only if, the tree T (X) itself is invariant under θ.

Proof. Assume that X is θ-invariant, and let (u, a, ua) an arbitrary edge in T (X). By
construction a word s ∈ S(X) exists such that uas ∈ X. Since X is a θ-invariant set,
this implies θ(u)θ(as) = θ(ua)θ(s) ∈ X, thus θ(u) and θ(ua) ∈ P (X). Consequently,
(θ(u), θ(a), θ(u)θ(a)) is an edge of T (X), therefore T (X) is invariant under θ.

Conversely, assume that T (X) is invariant under θ. Let w = w1 · · ·wn ∈ X, with wi ∈ A
(1 ≤ i ≤ n). By construction, the following sequence of edges exists in T (X) (for i = 0, we
set w1 · · ·wi = ε):

(w1 · · ·wi, wi+1, w1 · · ·wi+1) (0 ≤ i ≤ n− 1),

moreover the node w = w1 · · ·wn has no sucessor. Since T (X) is invariant under θ, a
corresponding sequence of edges exists in T (X), namely:

(θ(w1) · · · θ(wi), θ(wi+1), θ(w1) · · · θ(wi+1)) (0 ≤ i ≤ n− 1).

Since the node w1 · · ·wn has no sucessor, the same holds for the corresponding node θ(w) =
θ(w1 · · ·wn): this implies θ(w) ∈ X. �
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Figure 1: Example 4 with n = 4. In the tree T (X), each bottom-up (top-down) branch represents an edge
with label b (a).

Example 4. Let A = {a, b}, and θ be the automorphism defined by θ(a) = b, θ(b) = a.
Given an arbitrary integer n ≥ 3, consider the following set:

X =
⋃

1≤i≤n−1
{aib, bia} ∪ {an, bn}.

By construction, X is a prefix code. Moreover, X is complete: this can be directly verified
by examining T (X) (an alternative method consists in applying Theorem 2.1 (iii), with π
the uniform Bernoulli distribution). It is also straightforward to verify that X is θ-invariant.

Note that X is not bifix: indeed, for each integer i ∈ [2, n − 1], the word ab ∈ X is a
suffix of aib ∈ X. Figure 1 illustrates the corresponding tree T (X) for n = 4.

In the case where θ is an anti-automorphism, the following property is noticeable:

Claim 2. Let θ be an anti-automorphism onto A∗ and let X ⊆ A∗ be a finite θ-invariant
code. If X is prefix, then it is necessarily bifix.

Proof. By contradiction, assume X not bifix, thus not suffix: words p ∈ A∗, s ∈ A+ exist
such that s, ps ∈ X. Since X is θ-invariant, we have θ(s), θ(ps) ∈ X, thus θ(s), θ(s)θ(p) ∈ X:
this contradicts the fact that X is a prefix code. �

The result of Claim 2 directly leads to examine the behavior of finite complete bifix codes
with regards to (anti-)automorphisms.
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4.2. Finite complete bifix θ-invariant codes

At first, it is worth mentioning a well-known class of finite bifix codes:

Example 5. A set X is uniform if a positive integer n exists such that X ⊆ An. Trivially,
such a set is a bifix code moreover, it is complete if, and only if, we have X = An. It is
straightforward to verify that X is invariant under every (anti-)automorphism of A∗: indeed,
the restriction of such a mapping on words of length n induces a permutation of An.

It is a natural question to ask whether non-uniform finite complete bifix θ-invariant codes
exist. By exhibiting infinite classes of convenient codes, the three following examples allow
to bring a positive answer. Actually, the two first families of codes have been constructed
by applying a famous internal transformation to some uniform code [4] (cf. also [1, § 6.2])

Example 6. Let A = {a, b} and θ be the anti-automorphism of A∗ that is defined by
θ(a) = b, θ(b) = a.
Let n = 2k + 1, with k ≥ 1. Consider the following set:

X = (An \ (Aakbk ∪ akbkA)) ∪ {akbk} ∪AakbkA.

The set AakbkA is a (uniform) bifix code. Since the condition akbk ∈ P (X) (akbk ∈ S(X))
necessarily implies akbk ∈ P (akbkA) (akbk ∈ S(Aakbk)), X is a finite (non-uniform) bifix
code. The code X is complete: indeed, we have Aakbk ∩ akbkA = ∅ therefore, given an
arbitrary positive Bernoulli distribution π over A∗, we have:

π(X) = π(An \ (Aakbk ∪ akbkA)) + π(akbk) + π(AakbkA) = 1− 2π(akbk) + 2π(akbk) = 1.

Furthermore, since we have θ(A) = A and θ(akbk) = akbk, X is θ-invariant.
For n = 3, the preceding construction leads to the following finite complete bifix θ-invariant
code [4, (1)]:

X = {a3, ba2, b2a, b3, ab, a2ba, a2b2, baba, bab2}.

Example 7. Let A = {a, b} and θ be the so-called mirror-image, which is in fact the anti-
automorphism defined by θ(a) = a, θ(b) = b.
Take n = 3k + 1, with k ≥ 1. We have akbkak 6∈ P (Aakbkak) ∪ S(akbkakA); therefore an
examination similar to the one we applied at Example 6 leads to verify that the following
set is a finite complete bifix θ-invariant code:

X = (An \ (Aakbkak ∪ akbkakA)) ∪ {akbkak} ∪AakbkakA.

For n = 4 (i.e. k = 1) the corresponding binary tree T (X) is represented in Figure 2.

We observe that, in view of constructing arbitrarily large non-uniform finite bifix θ-invariant
codes over arbitrarily large finite alphabets, the two last constructions can be generalized,
as illustrated by the following example:

Example 8. 1) Let A = {a, b, c} and θ be the anti-automorphism defined by θ(a) = b,
θ(b) = c, θ(c) = a.

Take n = 2k + 1, with k ≥ 1, and

W =
⋃
i∈Z
{θi(akbk)} = {akbk, ckbk, ckak, bkak, bkck, akck}.
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a

Figure 2: Example 7: the case where n = 4, thus k = 1.

By construction we have W ∩ (P (AW ) ∪ S(WA)) = ∅ therefore, the following set is a
θ-invariant finite bifix code:

X = (An \ (AW ∪WA)) ∪W ∪AWA. (1)

Moreover, X is complete: indeed, by construction we have AW ∩WA = ∅ therefore, for any
positive Bernoulli distribution over A∗, we have π(X) = 1− 2π(W ) + 2π(W ) = 1.

2) Similarly, over A = {a, b, c} take for θ the anti-automorphism onto A∗ defined by
θ(a) = b, θ(b) = c, θ(c) = a. Set n = 3k + 1 and

W =
⋃
i∈Z
{θi(akbkak)} = {akbkak, bkckbk, ckakck}.

Applying the construction from (1) also leads to obtain a finite complete bifix θ-invariant
code.
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4.3. Non-prefix non-suffix finite complete θ-invariant codes

In the most general case, given an (anti-)automorphism θ of A∗, we are looking to finite
codes X ⊆ A∗ which are both complete and θ-invariant. With regards to the last condition,
the following statement brings some characterization:

Claim 3. Let θ be an (anti-)automorphism onto A∗ and let X be a finite subset of A∗.
Then X is θ-invariant if, and only if, it is the disjoint union of a finite family of uniform
θ-invariant codes.

Proof. Let `1 < · · · < `n be the unique increasing finite sequence of the lengths of the
words in X. For each i ∈ [1, n], set Xi = X ∩A`i . By construction, each set Xi is a uniform
code, moreover we have:

X =
⋃

1≤i≤n

Xi.

Clearly, the set X is θ-invariant if, and only if, for each integer i ∈ [1, n], θ induces a
permutation of Xi itself. �

When X is a required to be a code, Claim 3 only leads to some necessary condition. For
instance, the set {a, ab, b} = {a, b} ∪ {ab}, which satisfies the condition of the claim, is
θ-invariant, but clearly it is not a code. Actually, despite that in any case θ-invariance is
preserved with respect to the union of sets, the main obstacle is that, given two (disjoint)
codes, there is no characterization that can guarantee that their union remains a code.

Of course, one can wonder about the impact of θ-invariance itself on the structure of a
finite complete code. Indeed, in view of the above, such an influence is very strong with
regards to two special families of codes: the uniform ones and, with respect to automor-
phisms, the family of prefix non-suffix codes. However, the part of θ-invariance appeared in
fact of lesser importance in the construction of our families of bifix codes, where it essentially
involved the structure of a few convenient words (eg. the elements of W ).

Things become even more complex when attempting to construct finite complete θ-
invariant codes that are neither prefix nor suffix. Indeed, with regards to finite complete
codes, although that some famous families have been exhibited (eg. [11, 12]), no general
structure is known. However, finite complete θ-invariant codes that are neither prefix nor
suffix exist as attested by the following example:

Example 9. With the anti-automorphism θ that was introduced in Example 6 (which swaps
the letters a and b), consider the classical finite complete code X = {a2, ab, a2b, ab2, b2} [24,
Example 2], which is neither prefix, nor suffix. It is straightforward to verify that it is
θ-invariant (we have θ(ab) = ab).

4.4. Toward the construction of regular complete θ-invariant codes

In [23], by making use of factorizations of the so-called cyclotomic polynomials, the author
provided a family of non-finitely completable codes. It is therefore a natural question to ask
whether corresponding objects exist in the framework of θ-invariant codes.

Let A be a finite alphabet, and let θ be an (anti)-automorphism of A∗. Given a finite code
X, if X is embeddable into a complete θ-invariant code, say Y , then, with the terminology
of Remark 1, it has to be a θ-code. Indeed the set

⋃
i∈Z θ

i(X) is necessarily a θ-invariant
code that is included in Y . Therefore, our problem comes down to wonder whether a given
finite θ-invariant code can be embedded into a complete one.

We begin by strictly restraining the problem to the framework of prefix codes. Given
a (non-trivial) automorphism θ, according to the preceding Claim 1 any θ-invariant prefix
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code can be embedded into a θ-invariant complete one. Informally, if suffices to complete
the corresponding tree with convenient ones of arity |A| that are invariant under θ.

In the case of anti-automorphisms, according to Claim 2, for being embeddable into a
complete one, a finite prefix θ-invariant code has to be bifix. However, the converse is false;
indeed there are finite bifix θ-invariant codes that cannot be included into any complete one,
as attested by the following example:

Example 10. 1) Let A = {a, b}, and be θ be the mirror anti-automorphism of Example 7.
At first, we observe that the finite θ-invariant bifix code X = {aa, b} cannot embedded
into any finite complete bifix (not necessarily θ-invariant) code. Indeed, assume that such
a complete code, say Z, exists: necessarily Z is prefix and complete, hence for any positive
integer p, we have abp ∈ P (Z∗). Therefore a positive integer n exists such that abn belongs
to Z; since b belongs to Z this contradicts the fact that Z is bifix.
As a consequence X cannot be included in any finite complete prefix θ-invariant code.
Indeed, according to Claim 2, such a code should be bifix.

2) Note that the infinite (regular) set Z = {b} ∪ {abna : n ∈ N} is a θ-invariant bifix
code which contains X. Moreover, taking for π the uniform Bernoulli distribution, it is
straighforward to verify that we have π(Z) = 1/2+1/4

∑
n∈N(1/2n) = 1, thus Z is complete.

We do not know whether there are finite θ-invariant complete codes that contain the code X
of Example 10. Actually, as far as we know, the question of embedding a finite θ-invariant
code into a complete one remains open.

From another angle, the study in [23] led its author to conclude that the study of all finite
codes requires also investigations on the infinite ones. From that, the question of embedding
a finite code into a regular one was open. A positive answer was given in [10], where a now
famous method for embedding a regular code into a complete one was published.

From this last point of view, in the next section, we will interest in the problem of
embedding a regular θ-invariant code into a regular complete one.

5. Embedding a regular θ-invariant code into a complete one

5.1. Some notation

In this section we consider an (anti-)automorphism θ of A∗, and a non-complete θ-
invariant code X ⊆ A∗. We ask for a complete regular θ-invariant code Y such that X ⊆ Y .
We will bring a positive answer: let’s begin by describing our construction.

Let X be a non-complete θ-invariant code, and let y 6∈ F (X∗). Necessarily, we have
|A| ≥ 2 (otherwise, X should be complete). Without loss of generality, we may assume that
the initial and the terminal letters of y are different (otherwise, substitute to y the word
aya, with a, a ∈ A and a 6= a): in particular, we have |y| ≥ 2. Set:

z = a|y|ya|y| (with y ∈ aA∗a). (2)

Since θ is an (anti-)automorphism, for each integer i ∈ Z, two different letters b, b exist such
that the following property holds:

θi(z) = b
|y|
θi(y)b|y| (with θi(y) ∈ bA∗b). (3)

Finally, we introduce the three following sets:

Z =
⋃
i∈Z
{θi(z)}, (4)
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W = ZA∗ ∩A∗Z, (5)

T = W \ (W ∪X)(W ∪X)+. (6)

By construction, the following inclusion holds:

W ⊆ (X ∪ T )+. (7)

5.2. Basic properties of Z

By construction, each element of the preceding set Z has length 3|y|. Given two (not
necessarily different) integers i, j ∈ Z, we will accurately study how the two words θi(z), θj(z)
may overlap.

Lemma 5.1. With the notation in (3), let u, v ∈ A+, i, j ∈ Z such that |u| ≤ |z| − 1 and
θi(z)v = uθj(z). Then we have |u| = |v| ≥ 2|y|, moreover a letter b and a unique positive
integer k (depending of |u|) exist such that we have θi(z) = ubk, θj(z) = bkv, with k ≤ |y|.

Proof. According to (3), we set θi(z) = b
|y|
bx′bb|y| and θj(z) = c|y|cx′′cc|y|, with b, b, c, c ∈

A, b 6= b, c 6= c and |x′| = |x”| = |y| − 2. Since θ is an (anti-)automorphism, we have
|θi(z)| = |θj(z)|, thus |u| = |v|; since we have 1 ≤ |u| ≤ 3|y| − 1, exactly one of the following
cases occurs:
Case 1: 1 ≤ |u| ≤ |y| − 1. With this condition, we have (θi(z))|u|+1 = b = c = (uθj(z))|u|+1
and (θi(z))|y|+1 = b = c = (uθj(z))|y|+1, which contradicts b 6= b.
Case 2: |u| = |y|. This condition implies (θi(z))|u|+1 = b = c = (uθj(z))|u|+1 and

(θi(z))2|y| = b = c = (uθj(z))2|y|, which contradicts b 6= b.

Case 3: |y| + 1 ≤ |u| ≤ 2|y| − 1. We obtain (θi(z))2|y| = b = c = (uθj(z))2|y| and

(θi(z))2|y|+1 = b = c = (uθj(z))2|y|+1 which contradicts b 6= b.
Case 4: 2|y| ≤ |u| ≤ |z| − 1 = 3|y| − 1. With this condition, necessarily we have
(θi(z))|u|+1 = b = c = (uθj(z))|u|+1, therefore an integer k ∈ [1, |y|] exists such that

θi(z) = ubk and θj(z) = bkv. �

Lemma 5.2. With the preceding notation, we have A+ZA+ ∩ ZX∗Z = ∅.

Proof. By contradiction, assume that z1, z2, z3 ∈ Z , x ∈ X∗ and u, v ∈ A+ exist such that
uz1v = z2xz3. By comparing the lengths of u, v with |z|, exactly one of the three following
cases occurs:
Case 1: |z| ≤ |u| and |z| ≤ |v|. With this condition, we have z2 ∈ P (u) and z3 ∈ S(v),
therefore the word z1 is a factor of x: this contradicts Z ∩ F (X∗) = ∅.
Case 2: |u| < |z| ≤ |v|. We have in fact u ∈ P (z2) and z3 ∈ S(v). We are in the condition
of Lemma 5.1: the words z2, z1 overlap. Consequently, u, z′1 ∈ A+ and b ∈ A exist such
that z2 = ubk and z1 = bkz′1, with 1 ≤ k ≤ |y| and |z′1| = |u|. But, by construction, we have
|uz1| = |z2xz3|−|v|. Since we assume |v| ≥ |z|, this implies |uz1| ≤ |z2xz3|−|z| = |z2x|, hence
we obtain uz1 = ubkz′1 ∈ P (z2x). It follows from z2 = ubk that z′1 ∈ P (x). Since we have

z1 ∈ Z and according to (3), i ∈ Z and b ∈ A exist such that we have z1 = bkz′1 = b|y|θi(y)b|y|.
Since by Lemma 5.1 we have |z′1| = |u| ≥ 2|y|, we obtain θi(y) ∈ F (z′1), thus θi(y) ∈ F (x),
which contradicts y /∈ F (X∗).
Case 3: |v| < |z| ≤ |u|. Same arguments on the reversed words lead to a conclusion similar
to that of Case 2.
Case 4: |z| > |u| and |z| > |v|. With this condition, both the pairs of words z2, z1 and z1, z3
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overlap. Once more we are in the condition of Lemma 5.1: letters c, d, words u, v, s, t, and
integers h, k exist such that the two following properties hold:

z2 = uch, z1 = chs, |u| = |s| ≥ 2|y|, h ≤ |y|, (8)

z1 = tdk, z3 = dkv, |v| = |t| ≥ 2|y|, k ≤ |y|. (9)

It follows from uz1v = z2xz3 that uz1v = (uch)x(dkv), thus z1 = chxdk. But according to
(3), i ∈ Z and c ∈ A exist such that we have z1 = c|y|θi(y)c|y|. Since we have h, k ≤ |y|, this
implies d = c moreover θi(y) is a factor of x. Once more, this contradicts y /∈ F (X∗). �

As a direct consequence of Lemma 5.2, we obtain the following result:

Corollary 5.3. With the preceding notation, X∗Z is a prefix code.

Proof. Let z1, z2 ∈ Z, x1, x2 ∈ X∗, u ∈ A+, such that x1z1u = x2z2. For any word z3 ∈ Z,
we have (z3x1)z1(u) = z3x2z1, a contradiction with Lemma 5.2. �

5.3. The consequences for the set X ∪ T
Lemma 5.4. The set X ∪ T is a θ-invariant code.

Proof. The fact that X ∪ T is θ-invariant comes from its construction. For proving that it
is a code, we consider an arbitrary equation among the words in X ∪ T . Since X is a code,
and since z /∈ F (X∗), we may assume that at least one occurrence of a word in T appears
in each side of the equation, therefore this equation takes the following form:

x0t0x1t1 · · · tn−1xn = x′0t
′
0 · · · t′p−1x

′
p, (10)

with xi, x
′
j ∈ X∗ (0 ≤ i ≤ n, 0 ≤ j ≤ p) and ti, t

′
j ∈ T (0 ≤ i ≤ n− 1, 0 ≤ j ≤ p− 1). Since

by construction we have T ⊆ W ⊆ ZA∗, each side of the equation has a prefix in X∗Z.
According to Corollary 5.3 and since all the words in Z have a common length, this implies
x0 = x′0, therefore our equation is equivalent to:

t0x1t1 · · · tn−1xn = t′0x
′
1 · · · t′p−1x

′
p. (11)

Without loss of generality, we assume that |t0| ≤ |t′0|; let k be the greatest non-negative
integer such that a word s exists with t0x1t1 · · ·xktks = t′0, with s ∈ A∗. By contradiction,
we assume s 6= ε. Let z0 ∈ Z (z1 ∈ Z) be the unique word such that t′0 ∈ A∗z0 (tk ∈ A∗z1).
According to the preceding property (3), an integer i ∈ Z and two letters b, b exist such that

z0 = b
|y|
θi(y)b|y|. Moreover, since we have y 6∈ F (X∗), and since X is θ-invariant, we have

θi(y) 6∈ F (X∗). By construction, the set with elements t0x1 · · · tkxk+1 and t′0 is not prefix;
more precisely, exactly one of the two following main conditions holds:

1. At first, we assume that t′0 ∈ P (t0x1 · · · tkxk+1) that is, s ∈ P (xk+1) (cf. Figure 5). By
construction, at least one of the two words s, z0 is a suffix of the other one. Actually,
since we have z0 6∈ F (X∗), necessarily s is a proper suffix of z0, therefore (z1, z0) is
an overlapping pair of words. According to Lemma 5.1, necessarily we have |s| ≥ 2|y|,
which implies θi(y) ∈ F (s): a contradiction with θi(y) 6∈ F (X∗).

2. Now, we assume that t0x1 · · · tkxk+1 is a proper prefix of t′0, thus we have s = xk+1s1,
with s1 6= ε. Let z2 ∈ Z be the unique word such that tk+1 ∈ z2A

∗. By construction
the set with elements t0x1 · · · tkxk+1z2 and t′0 is not prefix. More precisely, exactly one
of the two following cases occurs:
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tk ∈ T

z1 ∈ Z

z0 ∈ Z

s

θi(y)

xk+1 ∈ X∗

t′0 ∈ T

• •

Figure 3: Proof of Lemma 5.4 - the case where s ∈ P (xk+1).

tk ∈ T tk+1 ∈ T
xk+1 ∈ X∗

t′0 ∈ T

z1 ∈ Z

z0 ∈ Z

z2 ∈ Z

s1

Figure 4: Proof of Lemma 5.4 -the case where xk+1 ∈ P (s) and s1 ∈ P (z2) \ {z2}.
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tk ∈ T
tk+1 ∈ T

z1 ∈ Z

z0 ∈ Z

z2 ∈ Z

xk+1 ∈ X∗

t′0 ∈ T

s1 ∈ W

Figure 5: The case where xk+1 ∈ P (S), with z2 ∈ P (s1) in the proof of Lemma 5.4.

2.1 The first case corresponds to t′0 being a proper prefix of t0x1 · · · tkxk+1z2, that is
s1 being a proper prefix of z2 (cf. Figure 6). With this condition, the word z0 is
necessarily a factor of z1xk+1z2. According to Lemma 5.2, since we have s1 6= ε,
this implies z1 = z0, which contradicts s 6= ε.

2.2 It remains to consider the case where z2 is a prefix of s1 (cf. Figure 7). Actually,
since t0x1 · · · tkxk+1z2 is a prefix of t0x1 · · · tkxk+1s1 = t′0, with |z2| = |z0|, neces-
sarily z0 is a suffix of s1, hence we have s1 ∈ z2A

∗ ∩A∗z0, thus s1 ∈W according
to (5). We obtain t′0 = t0x1 · · · tkxks1 ∈ (TX∗)+W , thus t′0 ∈ (T ∪ X)+W : this
contradicts (6).

In each case we obtain a contradiction: as a consequence we have s = ε, thus t′0 =
t0x1 · · ·xktk. Once more according to (6), it follows from t′0 ∈ T that we have k = 0,
thus t′0 = t0. As a consequence, Equation (11) is equivalent to the following one:

x1t1 · · · tn−1xn = x′1 · · · t′p−1xp. (12)

By iterating these arguments, we shall obtain: n = p and xi = x′i, t
′
j = tj (0 ≤ i ≤ n,

0 ≤ j ≤ n− 1), therefore X ∪ T is a code: this completes the proof of Lemma 5.4. �

Lemma 5.5. The code X ∪ T is complete.

Proof. Let w ∈ A∗. According to the construction of W we have ZwZ ⊆W . According to
(7) this implies ZwZ ⊆ (X ∪ T )∗, therefore we have w ∈ F ((X ∪ T )∗). �

In the case where A is a finite alphabet, the (anti-)automorphism θ is of finite order. If X
is a regular code, in starting with y 6∈ F (X∗), the construction in (4) leads to a finite set Z:
this guarantees the regularity of the sets W and T . As a direct consequence, we obtain the
following result:

Theorem 5.6. Given a non-complete θ-invariant code X ⊆ A∗, the two following properties
hold:

(i) In any case, X can be embedded into a complete θ-invariant code in A∗.
(ii) If A is finite and X regular, then X can be embedded into a regular complete θ-

invariant code in A∗.
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Example 11. Let A = {a, b}, and θ be the anti-automorphism such that θ(a) = b, θ(b) = a,
and let X = {a4, a2b2, a2b4, a4b2, ba, ba4, b4a, b4}
Trivially, X is θ-invariant. By applying Sardinas-Patterson algorithm [1, § 2.3], one can
easily verify that X is a (non-prefix) code. It is non complete: by making use of the uniform
Bernoulli distribution π, we obtain π(X) < 1.
Let y = ba3ba. Firstly, we note that we have y 6∈ F (X), hence y ∈ F (X∗) implies y = sp,
with s ∈ S(X) and p ∈ P (X∗). Secondly, we have S(X) ∩ P (y) = {b, ba}, but since
{a3ba, a2ba} ∩ P (X∗) = ∅, necessarily we have y 6∈ F (X∗). Thirdly, in view of obtaining an
overlapping-free word, we substitute by = b2a3ba to y (we have by 6∈ F (X∗).
With the notation (2, 4), we have z = a7b2a3bab7, thus:
Z =

⋃
i∈Z{θi(z)} = {a7b2a3bab7, a7bab3a2b7}. Moreover, the sets W and T shall be con-

structed according to (5,6).

Example 11 provides a (non-finite) regular complete θ-invariant code; in the sequel we give
an example of a non-regular one:

Example 12. Let A = {a, b}, and θ be an arbitrary (anti-)automorphism of A∗. Consider
the famous Dyck language D∗1 = {w ∈ A∗ : |w|a = |w|b}. Each of its elements is classically
represented by a so-called Dyck path in the grid N×Z. To be more precise, with each word
w = w1 · · ·wn (with wi ∈ A, for 1 ≤ i ≤ n), a unique path is associated, namely (i, yi)0≤i≤n,
with y0 = yn = 0 and such that, for each i ∈ [1, n]:

wi = a =⇒ yi = yi−1 + 1 and wi = b =⇒ yi = yi−1 − 1.

By construction, D∗1 is a free submonoid of A∗. Its minimal generating set is the so-called
Dyck code D1, whose elements are represented by those of the preceding non-empty paths
which satisfy the following condition:

n ≥ 2 and (∀i ∈ [1, n− 1]) yi 6= 0.

The code D1 is well known for being a (non-thin) complete context-free language (eg. [1,
Example 2.5.3]). Moreover, according to Proposition 3.1, since D∗1 is θ-invariant, the same
holds to the Dyck code.

As a consequence of Theorem 5.6, we obtain the following result, which states a property
similar to [1, Theorem 2.5.16] in the framework of θ-invariant code:

Theorem 5.7. Given a thin θ-invariant code X ⊆ A∗, the following conditions are equiva-
lent:

(i) X is complete.
(ii) X is a maximal code.
(iii) X is maximal in the family θ-invariant codes.
(iv) A positive Bernoulli distribution π exists such that π(X) = 1.
(v) For any positive Bernoulli distribution π, we have π(X) = 1.

Proof. According to [1, Theorem 2.5.16], the conditions (i), (ii) , (iv), (v) are equivalent.
Trivially, Condition (ii) implies Condition (iii). By contradiction, we prove that Condition
(iii) implies Condition (i). Starting with a non-complete θ-invariant code X, according
to Theorem 5.6 the existence of a complete θ-invariant code that strictly contains X is
guaranteed, thus X is not maximal in the family of θ-invariant codes: this completes the
proof. �
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