
HAL Id: hal-01683041
https://hal.science/hal-01683041v1

Submitted on 12 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Coordinating Vertical Elasticity of both Containers and
Virtual Machines

Yahya Al-Dhuraibi, Faiez Zalila, Nabil Bachir Djarallah, Philippe Merle

To cite this version:
Yahya Al-Dhuraibi, Faiez Zalila, Nabil Bachir Djarallah, Philippe Merle. Coordinating Vertical Elas-
ticity of both Containers and Virtual Machines. CLOSER 2018 - 8th International Conference on
Cloud Computing and Services Science, Mar 2018, Funchal, Madeira, Portugal. �hal-01683041�

https://hal.science/hal-01683041v1
https://hal.archives-ouvertes.fr

Coordinating Vertical Elasticity of both Containers and Virtual Machines

Yahya Al-Dhuraibi12, Faiez Zalila1, Nabil Djarallah2 and Philippe Merle1

1Inria / University of Lille, France
2Scalair Company, France

{yahya.al-dhuraibi,faiez.zalila, philippe.merle}@inria.fr, ndjarallah@scalair.fr

Keywords: Cloud Computing, Container, Docker, Vertical elasticity.

Abstract: Elasticity is a key feature in cloud computing as it enables the automatic and timely provisioning and depro-
visioning of computing resources. To achieve elasticity, clouds rely on virtualization techniques including
Virtual Machines (VMs) and containers. While many studies address the vertical elasticity of VMs and other
few works handle vertical elasticity of containers, no work manages the coordination between these two ver-
tical elasticities. In this paper, we present the first approach to coordinate vertical elasticity of both VMs
and containers. We propose an auto-scaling technique that allows containerized applications to adjust their
resources at both container and VM levels. This work has been evaluated and validated using the RUBiS
benchmark application. The results show that our approach reacts quickly and improves application perfor-
mance. Our coordinated elastic controller outperforms container vertical elasticity controller by 18.34% and
VM vertical elasticity controller by 70%. It also outperforms container horizontal elasticity by 39.6%.

1 INTRODUCTION

Cloud computing is an attractive paradigm to many
application domains in industry and academia. An
enormous number of applications are deployed on
cloud infrastructures. The workload of cloud appli-
cations usually varies drastically over time. There-
fore, maintaining sufficient resources to meet peak
requirements can be costly, and will increase the ap-
plication provider’s functional cost. Conversely, if
providers cut the costs by maintaining only a mini-
mum computing resources, there will not be sufficient
resources to meet peak requirements and cause bad
performance, violating Quality of Service (QoS) and
Service Level Agreement (SLA) constraints. Cloud
elasticity takes an important role to handle such ob-
stacle. Cloud elasticity is a unique feature of cloud
environments, which allows to provision/deprovision
or reconfigure cloud resources, i.e., Virtual Machines
(VMs) and containers (Al-Dhuraibi et al., 2017b).
Cloud elasticity can be accomplished by horizontal
or vertical scaling. Horizontal elasticity consists in
adding or removing instances of computing resources
associated to an application (Coutinho et al., 2015).
Vertical elasticity consists in increasing or decreasing
characteristics of computing resources, such as CPU,
memory, etc. (Lakew et al., 2014).

VMs and containers are the main computing re-

source units in cloud computing. VMs are the tradi-
tional core virtualization construct of clouds. Con-
tainers are a new competitor, yet complementary vir-
tualization technology to VMs. In this paper, we use
Docker containers. Docker1, a recent container tech-
nology, is a system-level virtualization solution that
allows packaging an application with all of its de-
pendencies into standardized units for software de-
ployment. While VMs are ultimately the medium to
provision PaaS and application components at the in-
frastructure layer, containers appear as a more suit-
able technology for application packaging and man-
agement in PaaS clouds (Pahl, 2015). Containers
can run on VMs or on bare OS. Running contain-
ers or different containerized applications in VM or
cluster of VMs is an emerging architecture used by
the cloud providers such as AWS EC2 Container Ser-
vice (ECS), Google Cloud Platform, MS Containers,
Rackspace, etc. The VMs are run by the hypervisors
on the host. Our work manages resources for such ar-
chitecture. Therefore, this paper addresses the combi-
nation of vertical elasticity of containers and vertical
elasticity of VMs.

Many works (Baruchi and Midorikawa,
2011), (Dawoud et al., 2012), (Farokhi et al.,
2015) handle the vertical elasticity of VMs, other
works (Monsalve et al., 2015), (Paraiso et al., 2016)

1http://docker.io

manage the resources of containers. However, no
attention was given to the coordination of both
elasticities. In addition, these works do not take in
consideration that the added resources to the VM are
not detected by Docker daemons. We propose the
first system powering the coordination between VM
and container vertical elasticity. In this paper, we
propose a controller coordinating container vertical
elasticity with the hosting VM vertical elasticity. This
approach autonomously adjusts container resources
according to workload demand. Subsequently,
we control VM resources if the hosted containers
require more resources. Docker daemon does not
automatically detect the “on-the-fly” or hot added
resources at the VM level unless it is reinstalled or its
dedicated cgroups modification. Our system enables
Docker daemons to detect the added resources to
the hosting VM, therefore, containers can make
use of these resources. In addition to the scientific
aspects listed in the below items, we have added this
technical contribution. Our approach is evaluated by
conducting experiments on the benchmarking appli-
cation RUBiS (Cecchet et al., 2002). RUBiS is an
implementation of an auction site similar to eBay, it
is widely used in clouds to evaluate J2EE application
servers performance and scalability. The results show
that our approach improves application performance.
It outperforms container vertical elasticity controller
by 18.34% and VM vertical elasticity controller
by 70%, it also outperforms container horizontal
elasticity by 39.6%. The main contributions of this
paper are:
1. An autonomous vertical elasticity system for both

Docker containers and the hosting VMs. It allows
to add/remove resources (i.e., CPU cores, mem-
ory) according to the workload demand.

2. We show that our combination of vertical elas-
ticity of both VMs and containers is better than
the vertical elasticity of VM only or the verti-
cal elasticity of containers only, i.e., Vvm.Vcont >
Vvm⊕Vcont , where (.) and (⊕) are the symbols for
the logical AND and XOR operators, respectively.
Vvm denotes the vertical elasticity of VMs while
Vcont denotes the vertical elasticity of containers.

3. We show that our combination of vertical elastic-
ity of both VMs and containers is better than the
horizontal elasticity of containers, i.e., Vvm.Vcont >
Hcont , where Hcont denotes the horizontal elastic-
ity of containers.
The rest of this paper is organized as follows. Sec-

tion 2 discusses the motivation towards this work.
Section 3 describes the design and function of our co-
ordinating vertical elasticity controller system. Sec-
tion 4 presents the evaluation of our solution. In

Section 5 we discuss some related works. Section 6
presents conclusion and future work.

2 MOTIVATION

There is a large amount of research on cloud elastic-
ity, however, most of them are based on VMs. Some
works highlight elasticity of containers and they are
discussed in Section 6. With the varying application
workload demand, container(s) on the host continues
to scale up/down resources, thanks to our Docker
controller which manages container resource allo-
cation. The problem is that when containers have
already allocated all resources from the host machine,
the containerized application performance will be
degraded. Therefore, to handle such obstacle and to
add more resources, one of the following mechanisms
should be used: horizontal elasticity, migration, or
reconfiguration of the host machine (i.e., vertical
elasticity). We experiment these mechanisms and
show that the vertical elasticity is better when it is
possible in terms of performance and configurations.

Horizontal elasticity: Since horizontal elastic-
ity consists in replicating the application on different
machines, some applications such as vSphere and
DataCore require additional licenses for each replica.
These licenses could be very expensive. Besides,
horizontal elasticity requires additional components
such as load balancers and their reconfiguration.
The initialization of an instance takes also a time
during the boot process to be functional. These
requirements are not needed for the vertical elasticity.
In (Dawoud et al., 2012), they have mathematically
and experimentally proved that the vertical elasticity
is better than the horizontal elasticity. To verify this
fact, they have used queuing theory (Sztrik, 2012).
Although horizontal elasticity has many advantages
including redundancy, being able to scale to almost
any scale, and allowing load balancing over multiple
physical machines, it requires additional components
and reconfiguration. (Appuswamy et al., 2013)
proves that vertical elasticity outperforms horizontal
scaling in terms of performance, power, cost, and
server density in the world of analytics, mainly in
Hadoop MapReduc. In addition, horizontal elasticity
is not a good choice for the stateful applications that
require sticky sessions. Finally, coordinated vertical
scaling is desired when there is enough capacity of
the physical servers, horizontal scalability may still
be needed, since vertical scalability is ultimately
limited by the capacity of resources.
Migration: the other choice to have more resources

is to migrate the container to another machine with
more resources. To experiment this mechanism,
we implement live migration technique for Docker
containers. CRIU (Checkpoint/Restore, 2017) is
used to achieve the procedure and migrate contain-
ers lively (Al-Dhuraibi et al., 2017a). CRIU is a
Linux functionality that allows to checkpoint/restore
processes, e.g., Docker containers. CRIU has the
ability to save the state of a running process so that
it can later resume its execution from the time of
the checkpoint. We take many pre-dumps of the
container while it is running, then a final dump for
the memory page changes after the last pre-dump
is taken (this time the Docker container freezes).
While an efficient mechanism is used to transfer
Docker containers, there is still downtime due to
the migration when the container process is frozen.
Table 1 shows migration down time for two small
size applications (nginx, httpd). Network traffic
overhead is not considered. Container migration is
also risky for stateful applications such RTPM media
applications to lose sessions. We tend to vertically

Table 1: Migration Performance Indicators
App. Image

size
(MB)

Pre-
dump
time
(s)

Dump
time
(s)

Restore
time
(s)

Migr.
total
time
(s)

Migr.
down-
time
(s)

nginx 181.5 0.0202 0.2077 3.505 3.734 0.547
httpd 193.3 0.0807 0.196 3.19 3.467 1.712

adjust the cloud infrastructures, thus we use coordi-
nated vertical elasticity between the containers and
their host machine. Using such mechanism, elasticity
actions are coordinated and performed quickly.

3 ELASTIC CONTROLLER

3.1 General Design

Our system adheres to the control loop principles of
the IBM’s MAPE-K reference model (IBM, 2006).
The control part of MAPE- K consists of many
phases: Monitor, Analyze, Plan, and Execute. The
managed components in this context are the infras-
tructure units KVM VMs and Docker containers, the
containerized applications as well. We design elas-
tic controllers to automatically adjust resources to the
varying workload without violating QoS by growing
or shrinking the amount of resources quickly on de-
mand for both containers and their VMs. Figure 1
shows the general architecture of our controllers. The
architecture design includes an elastic controller for
Docker containers and another one for the hosting

machine. The aim for the second controller is to
allocate/de-allocate resources if containers residing
on a virtual host machine require more/less resources
than the amount of resources offered by that VM.

3.2 Components of the System

3.2.1 Monitoring Component

The monitoring component of Docker controller col-
lects periodically current resource utilization and ac-
quisition of every container on the host. The collected
data can be (i) the resource utilization metrics such as
CPU or memory current usage or (ii) the acquired re-
sources such as memory size or CPU cores. This in-
formation is collected from the Docker daemon via its
RESTful API and from the container cgroups filesys-
tem directly. Our container controller monitors these
cgroups each 4 seconds on an interval of 16 seconds,
then the average values are reported. This monitoring
data will be used in the reactive model in the elas-
tic Docker controller to make elastic actions. Sim-
ilarly, the host machine resource utilization and the
amount of acquired resources are monitored period-
ically as shown in Table 2. The elasticity VM con-
troller will use this data to provision/de-provision re-
sources on the host machine. The values shown in Ta-
ble 2 (thresholds, increase/decrease limits) are chosen
following (Al-Dhuraibi et al., 2017a), (Dawoud et al.,
2012), (Baresi et al., 2016) which are based on real-
world best practices. We have noticed that the CPU
and memory utilization values are sometimes fluctuat-
ing rapidly, which could be due to the nature of work-
load. Therefore, to avoid these oscillations, we mea-
sure CPU and memory utilization periodically on an
interval of 16 seconds (as shown in Table 2), then we
take the average values as the current utilization.

3.2.2 Docker Controller

Docker relies on cgroups to combine processes run-
ning in a container. Cgroups allow to manage the
resources of a container such as CPU, memory, and
network. Cgroups not only track and manage groups
of processes but also expose metrics about CPU,
memory, etc. Cgroups are exposed through pseudo-
filesystems. In these files, Docker resources can be
configured to have hard or soft limits. When soft limit
is configured, the container can use all resources on
the host machine. However, there are other parame-
ters that can be controlled here such as CPU shares
that determine a relative proportional weight that the
container can access the CPU. Hard limits are set to
give the container a specified amount of resources,
Docker vertical elasticity controller can change these

VM1

VM2

VMn

container-1 container-2 container-n

Container VE
Controller

Docker Engine

Cgroups

Memory
limits

Memory
current usage

CPU
vCores

CPU time
(period, quota)

- - - - - - - - - - - -

Hypervisor

VM Monitor VM Execute
VM VE

Controller

Container
Monitor

Container
Execute

Figure 1: Coordinated elastic controllers between VMs and containers

hard limits dynamically according to the workload.
The CPU access can be scheduled either by using
Completely Fair Scheduler (CFS) or by using Real-
Time Scheduler (RTS) (Red Hat, Inc.,). In CFS, CPU
time is divided proportionately between Docker con-
tainers. On the other hand, RTS provides a way to
specify hard limits on Docker containers or what is re-
ferred to as ceiling enforcement. Docker controller is
integrated with RTS in order to make it elastic. When
limits on Docker containers are set, the elasticity con-
troller scales up or down resources according to de-
mand. Once there is no limits set, it is hard to pre-
dict how much CPU time a Docker container will be
allowed to utilize. In addition, as indicated, Docker
can use all resources on the host machine by default,
there is no control how much resources will be used,
and the customer may not afford to pay the cost of
such resources. The elastic controller of Docker con-
tainers adjusts memory and CPU vcores according to
the application workload. This controller modifies di-
rectly the cgroup filesystems of the container to ex-
ecute the elastic action (scaling up/down). The av-
erage CPU or memory usage values are calculated
over fixed interval of time and compared against up-
per/lower thresholds (70% / 90%) as shown in Ta-
ble 2. When the thresholds are hit and the logical con-
ditions are met, the controller increases or decreases
the resources with values shown in Table 2. For ex-
ample, if the average memory utilization for the last
16 seconds is greater than the upper threshold (90%),
then increase the memory size by 256MB, and wait
10 seconds (breath up duration) before effectuating
another scaling action.

Table 2: System control parameters

Parameters Docker containers VMs
Upper threshold 90% 90%
Lower threshold 70% 70%

Period 4 sec 1 min
Interval 16 sec 1 min

Breath-up/down 10/20 sec 20/40 sec
CPU adaptation 1 vCPU 1 vCPU

Memory adaptation -128/+256 -256/+512

In Table 2, we notice that memory adaptation val-
ues (increase and decrease ratios) are different. The
controller decreases memory size by a small amount
in the scaling down process because the applica-
tions are sensitive to the memory resource, and this
could lead to interrupt the functionality of the appli-
cation. In addition, after each scaling decision, the
controller waits a specific period of time (breath du-
ration). Breath duration is a period of time left to
give the system a chance to reach a stable state af-
ter each scaling decision. As shown in Table 2, we
set two breath durations, breath-up and breath-down.
Breath-up/down is the time to wait after each scal-
ing up/down decision, respectively. We choose small
values for breath-up/down durations because the ap-
plication adapts quickly to the container change .
Breath-up is smaller than breath-down to allow the
system to scale-up rapidly to cope with burst work-
load. Breath-down is larger than breath-up duration
in order to avoid uncertain scaling down action. Our
elastic Docker controller manages all the containers
residing on the virtual machine taking into consider-
ation the available resources on that machine and the
already allocated resources to the containers.

3.2.3 VM Controller

If containers allocate all resources on their hosting
VM, they could reach an overload point of 100%.
At that time the overload could cause errors in the
workload execution since there is no free resources to
provision. Therefore, our VM controller should in-
tervene before such situation takes place. Likewise
Docker containers, the hosting VM is monitored con-
stantly and capacity is increased or decreased in re-
lation to the VM reconfiguration policy involved in
our VM controller. The VM controller performs ver-
tical elasticity actions based on rules and real-time
data captured by the monitoring system. As shown
in Table 2, the monitoring component monitors the
VM resource usage on an interval of one minute. It
uses psutil library to get the resource metrics. The
controller analyzes these collected data using its re-
active model, it triggers its scaling decisions to in-
crease or decrease VM resources, at the same time, it
allows Docker engine to detect the new resources by
updating cgroups of that Docker daemon. The values
to increase/decrease memory, vCPUs are +512MB/-
256MB, +1/-1, respectively.

3.3 Interactions Between Components

As shown in Figure 1, the VM controller can trig-
ger elastic actions based on two cases: (i) when the
VM resources utilization reaches certain thresholds,
(ii) when it receives a demand from the Docker con-
troller to increase or decrease resources. Here, the
VM controller can increase resources without receiv-
ing a demand from the Docker controller if we sup-
pose that there are other processes running on the
VM alongside with containers. When the VM con-
troller adds more vCPUs to the VM, the Docker en-
gine does not detect these resources whether it uses
hard or soft limits. Therefore, upon each scaling de-
cision, the VM controller compares the resources on
the VM and Docker engine, it then identifies the ids of
the newly added vCPUs, then it updates the cgroups
of Docker engine. Now, Docker engine can allocate
these resources to containers. The coordination be-
tween the controllers is our major concern, we take
the below scenario to illustrate a case of such coor-
dination. Suppose that a VM has 3 vCPUs and three
containers are deployed where hard limits are set and
each container has 1 vCPU. If the first container us-
age is 100%, and the other two containers are idle (1
vCPU is 100%, 2 vCPUs are idle), the VM controller
will try to decrease the vCPUs, but if it decreases the
vCPUs, this will lead to destroy the container whose
vCPU is withdrawn. Therefore, the coordination will

prevent the VM controller to scale down, and the
Docker controller will demand the VM controller to
allocate more resources in order to give the first con-
tainer more resources.

4 VALIDATION

4.1 Experimental Setup

We evaluated our work using RUBiS (OW2, 2008),
a well-known Internet application that has been
modeled after the internet auction website eBay. Our
deployment of RUBiS uses two tiers: application
tier, a scalable pool of JBoss application servers that
run Java Servlets, and a MySQL database to store
users and their transactions. We performed all our
experiments on Scalair2 infrastructure. Scalair is
a private cloud provider company. We developed
the experiments using the following technologies:
(a) KVM version 1.5.3-105.el7 2.7 (x86 64), libvirt
version 1.2.17, virt-manager 1.2.1, the number of
VMs used and their characteristics will be described
in the specific experiment subsections because we
have used different configurations based on the
objective of the experiment. (b) VMWare VCenter
version 6.0. (c) Docker engine version 17.04.0-ce.
(d) Kubernetes v1.5.2 (Brewer, 2015), the Kubernetes
cluster consists of 3 machines. (e) ab (Apache HTTP
server benchmarking tool) version 2.3 to generate
workloads. The hardware specifications consist of 4
powerful servers: 2 HP ProLiant DL380 G7 and 2
HP Proliant XL170r Gen9. The experiments answer
the following research questions (RQ):

• RQ#1: how can containers automatically use the
hot added resources to their hosting VM?

• RQ#2: what is the efficiency of performing scal-
ing decisions made by our coordinated controller?

• RQ#3: is our coordinated vertical elasticity of
both VMs and containers better than vertical elas-
ticity of VM only or vertical elasticity of contain-
ers only (i.e., Vcont .Vvm >Vvm⊕Vcont)?

• RQ#4: is our coordinated vertical elasticity of
both VMs and containers better than horizontal
elasticity of containers (i.e., Vvm.Vcont > Hcont)?

4.2 Evaluation Results

We describe each experiment and analyze the results
in response to the RQs.

2https://www.scalair.fr

RQ#1. In this experiment, we configure two VMs,
each with Ubuntu Server 16.04.2 LTS. Initially, VM1
has 2 vCPUs with 2GB of RAM. We deploy RU-
BiS application inside two containers on VM1. The
ab benchmark is installed on VM2, then we gener-
ate a workload to the RUBiS application (i.e., 600K
requests, concurrency rate 200). The workload’ re-
quests query RUBiS database to retrieve lists of prod-
ucts, categories, items, etc of the auction website.
The difference between workloads is the intensity and
concurrency levels. We let the default policy for
Docker containers which allow them to use all the
available resources. The VM controller is enabled,
we register the response time when the workload re-
quests are finished, it was 588.846 seconds. In the
second case, we run the same workload, however in
this case, we enabled our coordinating controller and
we set limits to Docker containers that will be recon-
figured by the container controller to accommodate
the charge and the response time was 487.4 seconds
when the workload is finished. Based on these results,
we conclude the following findings:

• The response time is high in the first case because
Docker engine does not detect the added resources
at the VM level. VM controller has added one
vCPU to the VM (the total of CPUs moves to 3 on
VM1), however, the two containers used only two
CPUs, the third vCPU is idle because containers
do not detect automatically the added resources.

• In the second case, the response time becomes
smaller, thanks to our coordinated controller
which allows containers to demand more re-
sources and subsequently update the Docker en-
gine with the added resources.

• The combined controller augments performance
by 20.8% in this experiment. However if the
workload increases, the coordinated controller
will accommodate resources in contrary to the
first case where the containers can not use more
that the initially allocated 2 vCPUs.

RQ#2. In this evaluation, we measure the execu-
tion time of elastic actions. Elastic action is the pro-
cess of adding or removing resources (CPU or mem-
ory) to a container, a KVM VM, or a VMware VM.
We repeat the experiment eleven times for each re-
source (CPU or memory) on each target (i.e., con-
tainer, KVM VM, VMware VM), and each time the
action consists of 15 scaling up or down actions. Dur-
ing the experiments, the resources experience dif-
ferent stress workloads. We execute elastic actions
and we measure the time they take to resize the re-
source, and then the median and variance is calcu-
lated. We take these measures to illustrate the ef-
ficiency of our approach to execute auto-scaling ac-

tions and to show the differences between the differ-
ent virtualization units and technologies. We compute
the average execution time, median time, and vari-
ance for Containers, KVM and VMware VM respet-
cively: (0.010s,0.009s, 0.000004), (3.29, 3.02s, 2.97)
and (47.58, 44.14s, 45.44).

Based on the these values, we conclude:
• The average execution time is close to median

time which indicates that the execution of the elas-
tic actions are stable.

• The elastic actions performed in containers are
faster than resizing KVM VM or VMware VM.
There is no comparison between containers adap-
tation and hypervisors, the containers adapt more
quickly to the reconfiguration changes while it
takes more time to execute scaling actions against
hypervisors. The VMware hypervisor manged by
VCenter takes more time. High workloads lead to
slow execution of elastic actions, particularly in
VMware, i.e., why the variance is high.
RQ#3. This experiment provides a comparison

among vertical elasticity of containers (Vcont), ver-
tical elasticity of VMs (Vvm), and our proposed ap-
proach, coordinating elasticity of both containers and
VM (Vvm.Vcont), in terms of performance, i.e., the ex-
ecution time of workloads and mean response time of
concurrent requests. We run three scenarios in this
experiment, each scenario has its specific configura-
tion. Five workloads drive each scenario. The exper-
iment runs on 4 VMs: VM1, VM2, VM3, and VM4.
VM4 used to generate the ab benchmark. In the first
scenario (scenario1), RUBiS application is deployed
on two containers in VM1 which has 3vCPUs, 2GB
of RAM, initially, each Docker container has 1vCPU
and 512MB of RAM. We enabled the elastic con-
tainer controller (which will allow to use the resources
available on the hosting VM) and it is named Elas-
ticDocker controller. We measure the total execution
time and the mean response time of concurrent re-
quests for each workload as shown in Figure 2. In
scenario2, we deploy RUBiS application on one VM
(VM2) and its database in another VM (VM3). The
VMs have 1 vCPU and 1GB of RAM each. We en-
abled the vertical VM controller to adjust resources
according to workload demand and then register the
total execution time and the mean response time of
concurrent requests for each workload as shown in
Figure 2. In scenario3, we use the same configura-
tion as in scenario1, except that we enabled our coor-
dinating controller which controls elasticity of con-
tainers on the VM, and if there are no enough re-
sources, it will add resources to the VM level. In
Figure 2, the red color represents scenario1, the green
color represents scenario2 and the blue color repre-

0	

500	

1000	

1500	

2000	

2500	

3000	

workload1	 workload2	 workload3	 workload4	 workload5	

ex
ec
u3

on
	3
m
e	
(s
)	

Coordinated	controller	 Elas3c	Docker	 VM	controller	

Figure 2: Workloads execution time

sents scenario3. Based on the analysis of this experi-
ment, we concluded the following findings:

• In scenario1, the average total execution time,
and the mean response time across concurrent re-
quests for the five workloads is 443,7 seconds and
0,91 ms, respectively. Similarly, the average total
execution time for the five workloads in scenario2
and scenario3 is 1383,4 seconds and 362,1 sec-
onds, and the mean response time across concur-
rent requests is 3,1 ms and 0,76 ms, respectively.

• The combined vertical elasticity (scenario3)
outperforms the container vertical elasticity
(scenario1) by 18.34% and the VM vertical elas-
ticity (scenario2) by more than 70%. However, if
more workloads are being added to the scenario1,
it will not handle them because the available re-
sources will be consumed and performance will
be degraded. This demonstrates that the equation
Vcont .Vvm >Vvm⊕Vcont is true.
RQ#4. The aim of this experiment is to provide a

comparison between horizontal elasticity of contain-
ers and our coordinating vertical elasticity of VMs
and containers. We use Kubernetes horizontal elastic-
ity. Kubernetes is an open-source system for automat-
ing deployment, scaling, and management of con-
tainerized applications. To achieve the experiment,
we use Kubernetes version v1.5.2. Our deployment
of RUBiS on Kubernetes uses three tiers: a load-
balancer (we use Kubernetes service to perform this
role), a scalable pool of JBoss application servers, and
a MySQL database. Kubernetes platform is deployed
on 3 nodes running CentOS Linux 7.2. RUBiS is de-
ployed in two containers, in addition to a load bal-
ancer. Then, we set the Kubernetes Horizontal Pod
Autoscaling (HPA) to scale RUBiS containers based
on rule-based thresholds. We use the same thresholds
used in scenario3 in the previous section (in RQ#3).
We generate two workloads to both our coordinated
controller and Kubernetes cluster. The total execution
time across all concurrent requests are measured for
each workload as shown in Figure 3. According to
these results, we conclude the following findings:

• The total execution time for the workloads is

0	

50	

100	

150	

200	

250	

300	

350	

workload1	 workload2	

exe
cu2

on
	2m

e	(
s)	

Coordinated	controller	 Kubernetes	elas2city	

Figure 3: workloads total execution time

340,66 seconds when our elastic controller is
used, while it is 475,558 seconds when Kuber-
netes HPA is used. The execution time is longer
when Kubernetes is used due to the slow Kuber-
netes integrated monitoring system (Heapster).

• Our combined vertical elasticity outperforms the
horizontal elasticity by 39.6% according to the re-
sults of this experiment.

• This proves the equation Vvm.Vcont > Hcont is true.

5 RELATED WORK

We present works related to elasticity particularly
the vertical elasticity of both VMs and containers.
For the VM vertical elasticity, there are some works
which focus on CPU resizing, e.g, (Lakew et al.,
2014) and (Dawoud et al., 2012), while others con-
centrate on memory resizing, e.g., (Baruchi and Mi-
dorikawa, 2011) as well as combination of both such
as the work of (Farokhi et al., 2015). (Monsalve
et al., 2015) proposed an approach that controls CPU
shares of a container, this approach uses CFS schedul-
ing mode. Nowadays, Docker can use all the CPU
shares if there is no concurrency by other containers.
(Paraiso et al., 2016) proposed a tool to ensure the de-
ployability and the management of Docker contain-
ers. It allows synchronization between the designed
containers and those deployed. In addition, it allows
to manually decrease and increase the size of con-
tainer resources. (Baresi et al., 2016) proposed hor-
izontal and vertical autoscaling technique based on a
discrete-time feedback controller for VMs and con-
tainers. This novel framework allows resizing the
container in high capacity VM, however, it does not
control VM in response to container workload. It
triggers containers to scale out horizontally to cope
with workload demand. In addition, the application
requirements and metadata must be precisely defined
to enable the system to work. It also adds overhead
by inserting agents for each container and VM. (Al-
Dhuraibi et al., 2017a) describe an approach that man-
ages container vertical elasticity, and when there is no
more resources on the host, they invoke live migra-

tion. Kubernetes and Docker Swarm are orchestra-
tion tools that permit container horizontal elasticity.
They allow also to set limit on containers during their
initial creation. The related works either trigger hor-
izontal elasticity or migration to another high capac-
ity machines. Our proposed approach supports auto-
matic vertical elasticity of both containers and VMs,
at the same time, container controller invokes VM
controller to trigger scaling actions if there is no more
resources on the hosting machine. Our work is the
first one that explores the coordination between verti-
cal elasticity of containers and VMs.

6 CONCLUSION

This paper proposes a novel coordinated vertical elas-
ticity controller for both VMs and containers. It al-
lows fine-grained adaptation and coordination of re-
sources for both containers and their hosting VMs.
Experiments demonstrate that: (i) our coordinated
vertical elasticity is better than the vertical elasticity
of VMs by 70% or the vertical elasticity of contain-
ers by 18.34%, (ii) our combined vertical elasticity of
VMs and containers is better than the horizontal elas-
ticity of containers by 39.6%. In addition, the con-
troller performs elastic actions efficiently. We plan
to experiment this approach with different classes of
applications such as RTMP to verify if same results
will be obtained with the predefined thresholds. Our
future work also comprises the integration of a proac-
tive approach to anticipate future workloads and re-
acts in advance. Furthermore, we plan to address hy-
brid elasticity or what we called diagonal elasticity:
integrating both horizontal and vertical elasticity.

ACKNOWLEDGEMENTS

This work is supported by Scalair company (scalair.fr)
and OCCIware (www.occiware.org) research project.

REFERENCES

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., and Merle, P.
(2017a). Autonomic Vertical Elasticity of Docker
Containers with ElasticDocker. In 10th IEEE Inter-
national Conference on Cloud Computing (CLOUD),
Hawaii, US. To appear.

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., and Merle, P.
(2017b). Elasticity in Cloud Computing: State of the
Art and Research Challenges. IEEE Transactions on
Services Computing, PP(99):1–1.

Appuswamy, R., Gkantsidis, C., Narayanan, D., Hodson,
O., and Rowstron, A. (2013). Scale-up vs Scale-out
for Hadoop: Time to Rethink? In Proceedings of the
4th Annual Symposium on Cloud Computing, SOCC
’13, pages 20:1–20:13, New York, NY, USA. ACM.

Baresi, L., Guinea, S., Leva, A., and Quattrocchi, G.
(2016). A Discrete-time Feedback Controller for Con-
tainerized Cloud Applications. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016,
pages 217–228, New York, NY, USA. ACM.

Baruchi, A. and Midorikawa, E. T. (2011). A Survey Anal-
ysis of Memory Elasticity Techniques. In Proc. of
the 2010 Conf. on Parallel Processing, Euro-Par 2010,
pages 681–688, Berlin, Heidelberg. Springer-Verlag.

Brewer, E. A. (2015). Kubernetes and the Path to Cloud Na-
tive. In Proc. of the Sixth ACM Sym. on Cloud Comp.,
SoCC ’15, pages 167–167, New York, USA. ACM.

Cecchet, E., Marguerite, J., and Zwaenepoel, W. (2002).
Performance and Scalability of EJB Applications.
SIGPLAN Not., 37(11):246–261.

Checkpoint/Restore (2017). Website https://criu.org/
Checkpoint/Restore.

Coutinho, E. F., de Carvalho Sousa, F. R., Rego, P. A. L.,
Gomes, D. G., and de Souza, J. N. (2015). Elasticity
in Cloud Computing: a Survey. Annals of Telecommu-
nications, pages 1–21.

Dawoud, W., Takouna, I., and Meinel, C. (2012). Elastic
virtual machine for fine-grained cloud resource provi-
sioning. In Global Trends in Computing and Commu-
nication Systems, pages 11–25. Springer.

Farokhi, S., Lakew, E. B., Klein, C., Brandic, I., and Elm-
roth, E. (2015). Coordinating CPU and Memory
Elasticity Controllers to Meet Service Response Time
Constraints. In 2015 International Conf. on Cloud and
Autonomic Computing (ICCAC), pages 69–80.

IBM (2006). An Architectural Blueprint for Autonomic
Computing. IBM White Paper.

Lakew, E. B., Klein, C., Hernandez-Rodriguez, F., and Elm-
roth, E. (2014). Towards Faster Response Time Mod-
els for Vertical Elasticity. In Proceedings of the 2014
IEEE/ACM 7th Int. Conf. on Utility and Cloud Com-
puting, UCC ’14, pages 560–565, Washington, USA.

Monsalve, J., Landwehr, A., and Taufer, M. (2015). Dy-
namic CPU Resource Allocation in Containerized
Cloud Environments. In 2015 IEEE International
Conference on Cluster Computing, pages 535–536.

OW2 (2008). RUBiS: Rice University Bidding System.
http://rubis.ow2.org [Accessed: Whenever].

Pahl, C. (2015). Containerization and the PaaS Cloud. IEEE
Cloud Computing, 2(3):24–31.

Paraiso, F., Challita, S., Al-Dhuraibi, Y., and Merle, P.
(2016). Model-Driven Management of Docker Con-
tainers. In 9th IEEE Int. Conf. on Cloud Computing
(CLOUD), pages 718–725, San Franc., United States.

Red Hat, Inc. Managing system resources on Red Hat En-
terprise Linux. .

Sztrik, J. (2012). Basic queueing theory. Univ. of Debrecen,
Fac. of Informatics, 193.

