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Blind Model-Based Fusion of Multi-band and Panchromatic Images*

Qi Wei1, José Bioucas-Dias2, Nicolas Dobigeon3, Jean-Yves Tourneret3, and Simon Godsill1

Abstract— This paper proposes a blind model-based fusion
method to combine a low-spatial resolution multi-band image
and a high-spatial resolution panchromatic image. This method
is blind in the sense that the spatial and spectral responses in
the degradation model are unknown and estimated from the
observed data pair. The Gaussian and total variation priors
have been used to regularize the ill-posed fusion problem. The
formulated optimization problem associated with the image
fusion can be attacked efficiently using a recently developed
robust multi-band image fusion algorithm in [1]. Experimental
results including qualitative and quantitative ones show that
the fused image can combine the spectral information from the
multi-band image and the high spatial resolution information
from the panchromatic image effectively with very competitive
computational time.

Index Terms— image fusion, inverse problems, optimization,
Sylvester equation

I. INTRODUCTION

Multi-band imaging generally suffers from the limited

spatial resolution of the data acquisition devices, mainly due

to an unsurpassable trade-off between spatial and spectral

sensitivities [2]. To enhance its spatial resolution, fusing a

multi-band image, more specifically, a multispectral (MS)

image, with a high spatial resolution panchromatic (PAN)

image, referred to as pansharpening, has been receiving

particular attention in remote sensing [3], [4]. Note that an

PAN image is a one-band image which has much higher

spatial resolution than than a MS image.

Generally, the linear degradations modelled in the ob-

served images, including the multi-band and PAN images,

with respect to (w.r.t.) the target high-spatial and high-

spectral image reduce to spatial and spectral transformations.

Thus, the pansharpening problem can be interpreted as restor-

ing a three dimensional data-cube from two degraded data-

cubes. A more precise description of the problem formulation

is the well-admitted linear degradation model provided as

YM = XBS+NM

yP = rX+ nP

(1)

where

• X ∈ R
p×n is the full resolution target MS image and

each row is a vector obtained by rearranging each band.
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• YM ∈ R
p×m is the spatially degraded MS image.

• yP ∈ R
1×n is the spectral degraded PAN image.

• B ∈ R
n×n is a cyclic convolution operator.

• S ∈ R
n×m is a uniform downsampling operator.

• r ∈ R
1×p is the spectral response of the PAN sensor.

• NM ∈ R
p×m and nP ∈ R

1×n are additive terms that

include both modeling errors and sensor noise.

• p is the number of bands in the MS image.

• m is the number of pixels in each MS band.

• n(> m) is the number of pixels in the PAN image.

Since the fusion problem is usually ill-posed, the Bayesian

methodology offers a convenient way to regularize the prob-

lem by defining appropriate prior distribution for the scene

of interest given the observed MS and PAN images. More

specifically, the posterior, which is the Bayesian inference

engine, has two factors: a) the likelihood function, which is

the probability density of the observed MS and PAN images

given the target image, and b) the prior probability density of

the target image, which promotes target images with desired

properties, such as being segmentally smooth.

Computing the Bayesian estimators is a challenging task,

mainly due to the large size of X and to the presence of the

downsampling operator S, which prevents any direct use of

the Fourier transform to diagonalize the blurring operator B.

To overcome this difficulty, several computational strategies

have been designed to approximate the estimators. Based on

a Gaussian prior modeling, a Markov chain Monte Carlo

(MCMC) algorithm has been implemented in [5] to generate

a collection of samples asymptotically distributed according

to the posterior distribution of X. The Bayesian estimators of

X can then be approximated using these samples. Despite

this formal appeal, MCMC-based methods have the major

drawback of being computationally expensive, which pre-

vents their effective use when processing images of large

size. Relying on exactly the same prior model, the strategy

developed in [6] exploits an alternating direction method

of multipliers (ADMM) embedded in a block coordinate

descent method (BCD) to compute the maximum a posterior

(MAP) estimator of X. This optimization strategy allows

the numerical complexity to be greatly decreased when

compared to its MCMC counterpart. Based on a prior built

from a sparse representation, the fusion problem is solved

in [7], [8] with the split augmented Lagrangian shrinkage

algorithm (SALSA) [9], which is an instance of ADMM. In

[10], contrary to the algorithms described above, a much

more efficient method is proposed to solve explicitly an

underlying Sylvester equation (SE) associated with the fusion

problem derived from (1), leading to an algorithm referred



to as Fast fUsion based on Sylvester Equation (FUSE). The

MAP estimators associated with a Gaussian prior similar to

[5], [6] can be directly computed thanks to the proposed

strategy. When handling more complex priors such as [7],

[8], the FUSE solution can be conveniently embedded within

a conventional ADMM or a BCD algorithm. A more robust

version of FUSE algorithm, which is termed as R-FUSE has

been proposed recently in [1], getting rid of the invertibility

assumption of blurring kernel. Besides, the core of this fast

fusion algorithm has been extended and applied in single

image super-resolution [11], [12].

In terms of the spatial blurring B and spectral response r,

they are very often assumed known [5], [8]. In practice, how-

ever, the information that is available about these responses is

often scarce and/or somewhat inaccurate. In [7], the authors

formulated an convex problem to estimate the spatial and

spectral response, making only minimal assumptions, i.e., the

spatial response has limited support and that both responses

are relatively smooth.

In this work, we propose to first estimate the spatial and

spectral responses, i.e., B and r, using the method in [7] and

then fuse the offered MS and PAN images using the method

in [1], leading to a blind multi-band image fusion method.

II. PROBLEM FORMULATION AND METHODOLOGY

A. Estimating the spatial and spectral responses

Following the strategy proposed in [7] and taking model

(1) into account, we infer B and r by solving the following

optimization problem

minimize
B,r

‖rYM − yPBS‖2
2
+ λbφb(B) + λrφr(r) (2)

where φb(·) and φr(·) are quadratic regularizers, and

λb, λr ≥ 0 are the respective regularization parameters. Note

that S is a uniformly downsampling operator, which contains

only zeros and ones. This operator is uniquely defined by

the downsampling ratio d = n/m, which can be obtained

directly from the size of MS and PAN images. We refer the

reader to [7] for more details about the estimation of B and

r.

B. Fusing the multispectral and panchromatic images

Following statistical inference, i.e., maximizing the pos-

terior distribution of the target image X, the optimization

problem associated with the fusion problem following the

linear model (1) can be formulated as

argmin
X

1

2
‖YM −XBS‖2F +

1

2
‖yP − rX‖2

2
+ λφ(X) (3)

where the first two data fidelity terms are associated with the

MS and PAN images and the last term φ(X) is a penalty

ensuring appropriate prior/regularization. Note that ‖ · ‖F
represents the Frobenius norm. In this work, we propose to

use a Gaussian prior [5] and a Total Variation (TV) prior [7]

as follows.

Gaussian :φ(X) = ‖X− X̄‖2F

TV :φ(X) =

n
∑

j=1

√

√

√

√

p
∑

i=1

{

[(XDh)ij ]
2
+ [(XDv)ij ]

2
}

Note that the matrix X̄ represents the prior mean of target

image and right multiplying by the matrices Dh and Dv

computes the horizontal and vertical discrete differences of

an image, respectively. This optimization problem can be

solved efficiently using the recently developed algorithm in

[1].

Algorithm 1: Multi-band and PAN image fusion

Input: YM, yP

// Estimating the blurring kernel B and

spectral response r

1 {B̂, r̂} ← HySure (YM,yP); // cf. [7]

// Fusing YM and yP

2 X̂ ← R-FUSE
(

YM,yP, B̂, r̂
)

; // cf. [1]

Output: X̂

C. Complexity Analysis

The most computationally expensive part of the proposed

algorithm is the FFT and iFFT operations to the target image,

which has a complexity of order O(pn log n). More details

about the complexity analysis of the HySure and R-FUSE

algorithms can be found in [1], [7].

III. DATA COLLECTION

The dataset used in our experiments was acquired on May

30th, 2015, over Vancouver, Canada (49◦15′N 123◦6′W),

from the DEIMOS-2 satellite. It includes a PAN image at

1m resolution and a 4-band (red (R), green (G), blue (B) and

near infrared (NIR) bands) MS image at 4m resolution [13].

The MS and PAN images are calibrated and radiometrically

corrected, by being manually orthorectified and resampled to

a map grid. The two images cover exactly the same ground

area, which are shown in Figs. 1. The size of selected MS

image is 500 × 500 × 4 and the size of PAN image is

2000× 2000. The target image considered here as the high-

spatial multi-band image is of size 2000 × 2000 × 4. Thus,

we have p = 4, n = 20002 and m = 5002.

IV. EXPERIMENTAL RESULTS

In this section, the proposed algorithm are used to fuse the

observed MS and PAN images with two different priors. The

algorithm has been implemented using MATLAB R2015b on

a computer with Intel(R) Core(TM) i7-4790 CPU@3.60GHz

and 16GB RAM.

A. Fusion quality metrics

As there is no ground-truth for this real dataset, we

evaluate the fusion results by computing the reconstruction

error (RE) defined in (4), the Sharpness Index (SI), and the

S Index of an image as defined in [14]. The smaller RE and

the larger SI and the S Index, the better the fusion.

RE = ‖YM − X̂BS‖2F + ‖yP − rX̂‖2
2

(4)

The SI and the its simplified version S Index are two

interesting no-reference quality measures. The key idea was



Fig. 1. Observed MS and PAN images (top) with their zoomed parts
(bottom).
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Fig. 3. Estimated blurring kernel (left) and spectral response (right).

to quantize how much the regularity or total variation of

the image was affected by the destruction of the phase

information. As a sharp (or noise-free) image is generally

much more sensitive to phase degradations than a blurry (or

noisy) image, such a characterization of phase coherence is

directly related to image quality.

B. Estimation of the spatial and spectral responses

The spectral and spatial responses of the sensors (B and r)

were first estimated from the real-life data using the strategy

in [7]. The values of λb and λr were both fixed to 10 by

cross-calibration. The estimated spatial (blurring kernel) and

spectral responses are shown in Figs. 3. The blurring kernel

is approximately Gaussian shape and looks quite reasonable.

The spectral ranges for MS and PAN images in Deimos-2

satellite is given in Table I. Note that the wavelength of the

PAN image (560-900nm) covers the green (532 − 599nm),

red (640− 697nm) and NIR (770− 892nm) bands and does

not overlap with the blue band (466−525nm). This explains

why the estimated weighting coefficient of the blue band

(corresponding to the last point in the right of Figs. 3) is

around zero.

C. Fusion of Multi-band and PAN images

In this section, we consider the Bayesian fusion of MS

and PAN images with a Gaussian prior [5] and a TV

TABLE I

BANDS AND SPECTRAL RANGES FOR DEIMOS-2 SATELLITE

λ @ FWHM (nm)

Band min max

PAN 560 900
MS-1 (NIR) 770 892
MS-2 (Red) 640 697
MS-3 (Green) 532 599
MS-4 (Blue) 466 525

prior [7]. The associated optimization problem were solved

using the R-FUSE algorithm in [1] and their performances

were measured. To better illustrate the role of the priors,

the fused result using a non-informative prior (e.g., setting

the Gaussian prior regularization parameter to a very small

constant), i.e., the maximum likelihood (ML) estimator has

also been considered. For the Gaussian prior, its prior mean

X̄ was fixed to an interpolated MS image following the

strategy in [5]. The regularization parameters λ for the ML,

Gaussian and TV cases were fixed to 10−13, 0.001 and

0.0001 respectively by manually tuning. For the Gaussian

case, the problem (3) was solved analytically. For the TV

case, an iterative ADMM update was used and the evolution

of the cost function in (3) w.r.t. the iterations has been plotted

in Fig. 4, showing that the cost function descended fast in a

few steps.

The fused images (including the whole image and three

zoomed parts) obtained with different priors (or no prior) are

depicted in the 3rd to 5th columns in Figs. 2. Visually, the

fused images combined finer spectral information from MS

image and spatial information from PAN image. Compared to

the two Bayesian results, the ML result (in the 3th column)

was much noisy because of its sensitivity to noise in the

inversion process. The fused images using the Gaussian prior

(in the 4th column) and using the TV prior (in the last

column) can both depress the noise effectively as well as

keep preserving edges and details. This good result using

the TV prior can be expected as the TV prior is well

known due to its ability to preserve sharp features. The

good performance using the Gaussian prior can be attributed

to using a high-quality prior mean X̄ which was obtained

following the strategy in [5], making the Gaussian prior be

different from a simple ℓ2 norm regularization. Besides, the

corresponding quantitative results were reported in Table II.

The ML and two Bayesian methods gave very similar REs

while the fusion using the TV prior gave better SI and S

index than using the Gaussian prior. The ML fusion gave

the worst results in terms of SI and S index. Regarding

to the computational cost, all the algorithms cost less than

one minute, which was quite efficient considering that the

size of the fused image was 2000× 2000× 4. Furthermore,

the Gaussian and ML cases used much less time, i.e.,

only seconds, than the TV case due to the existence of

an analytical solution and thus avoidance of any iterative

operation.



Fig. 2. MS+PAN fusion results. 1st row: MS (column 1), PAN (column 2), ML fusion (column 3), Bayesian fusion using a Gaussian prior (column 4)
and a TV prior (column 5) , 2nd-4th rows: zoomed details including containers, trees, houses, roads, stadiums, of the corresponding images in the 1st row.

TABLE II

PERFORMANCE OF MS+PAN FUSION METHODS: RE (IN 10
5), SI (IN

10
3), S INDEX (IN 10

3) AND TIME (IN SECOND)

Prior RE SI S Index Time

ML 1.15176 18.4 18.7 3.62
Gaussian 1.15180 21.0 21.3 3.63

TV 1.15176 23.4 23.8 53.24

V. CONCLUSION

This paper developed a blind model-based multi-band

image fusion method using a recently developed model

estimation method in [7] and a Sylvester equation based

fusion method in [1]. First, the spatial and spectral responses

were reasonably estimated by solving an optimization prob-

lem (2). Then, two priors including Gaussian and TV were

used to regularize the ill-posed inverse problem associated

with the multi-band image fusion. Following the strategy in

[1], an analytical solution of (3) was obtained directly for

the Gaussian prior and an alternating direction method of

multipliers was used to solve (3) for the TV prior. Numerical

experiments showed that the Gaussian and TV priors could

effectively remove unwanted noise whilst preserving impor-

tant details such as edges. Besides, the proposed method can

be implemented with low computational cost.
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Fig. 4. Cost function using a TV prior vs iterations
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