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Abstract—Today, permissions management solutions on mobile
devices employ Identity Based Access Control (IBAC) models. If
this approach was suitable when people had only a few games
(like Snake or Tetris) installed on their mobile phones, the current
situation is different. A survey from Google in 2013 showed that,
on average, US users have installed 33 applications on their
Android smartphones. As a result, these users must manage
hundreds of permissions to protect their privacy. Scalability of
IBAC is a well-known issue and many more advanced access
control models have introduced abstractions to cope with this
problem. However, such models are more complex to handle by
non-technical users. Thus, we present a permission management
system for Android devices that 1) learns users’ privacy pref-
erences, 2) proposes them abstract authorization rules, and 3)
provides advanced features to manage these high-level rules. We
prove this approach is more efficient than current permission
management system by comparing it to Privacy Guard Manager.

I. INTRODUCTION

Android software development kit allows developers to

access hardware features of Android devices like GPS location

or the camera but also users’ data such as contact lists or

calendars. To actually have access to each feature, developers

have to request the associated permissions in a manifest file.

On versions 4.4 and 5, which are today the most deployed,

users are informed of the permissions an application requires

during the installation. At that time, they only have one

choice: accept to provide the application with unlimited access

to all the requested permissions or decline and cancel the

installation.

Additional permission management systems (such as Pri-

vacy Guard Manager, Permission Master, XPrivacy or Don-

keyGuard) can be installed to enhance the basic native Android

system by allowing users to modify permissions after the

installation of applications. All these permission management

applications follow an Identity Based Access Control model,

i.e., the user has to control every permission for every installed

application. Although IBAC allows fine-grained access con-

trol, it is not suitable for managing hundreds of permissions.

Scalability issue has been studied by the access control models

research community that proposed the use of abstractions

leading to high-level authorization rules making global access

control policies more understandable. Nonetheless, applying

these models requires to understand the associated abstractions

and thus suffer accessibility for non-technical users.

More than just a need, privacy is a right [1]. We must

give users a way to control the disclosure of their private

data. In this article, we present a recommender-based system,

called Kapuer (KAPUER is an Assistant for Protection of

Users pErsonnal infoRmation), that assists people in managing

permissions on their Android device. Kapuer includes a ma-

chine learning algorithm, which extends the study performed

in [2], to capture users’ preferences in terms of privacy. These

preferences when validated by users, are transformed into

XACML V3 policies. We developed a plug-in based on the

Xposed1 framework that enforces the XACML policies. Ka-

puer also includes additional permission management features

to enhance its efficiency to understand and visualize abstract

authorization rules.

Kapuer is freely available to download at the following

address: http://www.kapuer.org.

The rest of the article is structured as follow: first, we

review and discuss access control management approaches

applied to Android. In Section 3, we present the generic

architecture of Kapuer as well as its problem-solving model for

the machine learning algorithm. Section 4 details our Android

implementation. We analyze available security information

related to Android permissions and propose hierarchies of

criteria for Android. We evaluate Kapuer in Section 5 on a

real life scenario. Finally, we conclude in Section 6.

II. RELATED WORKS

In this section, we summarize different works related to

Android permission management.

A. High level policies in Android

Access control models can be seen as design patterns to

help the specification of policies. They all consider three main

entities: the subject, the action, and the resource. In addition,

some access control models propose abstractions. For Barker

[3], these abstractions (he calls them categories) represent

“any of several fundamental and distinct classes or groups

to which entities may be assigned”. One of the advantages of

1http://repo.xposed.info/



using abstractions is simplifying policies. For instance, Role

Based Access Control (RBAC) [4] uses the concept of role to

group subjects according to their function in an organization.

Other access control models propose abstractions for other

elements. Organization Based Access Control (OrBAC) [5]

uses abstractions on all three main elements: roles abstract

subjects, activities are for actions and views for resources.

Some access control models are designed for privacy like

PBAC [6] that introduces the intent of the subject or P-

RBAC [7] that extends RBAC with concepts like purpose,

condition, and obligation. An exception is Attribute Based

Access Control (ABAC). ABAC does not introduce abstraction

but is a specification pattern to express authorization policies

using any abstraction.

Each model offers concepts and abstractions to guide se-

curity experts in the writing of policies. Even if analyzing

and implementing abstractions is time-consuming, resulting

authorization policies are more powerful and easier to manage.

But it requires security expertise for writing authorization

policies and most of mobile device users lack this skill.

Some systems already use access control models to enforce

Android permissions. For instance, CRêPE [8] uses context-

related policies to control how applications can use their

permissions. Detection of contexts triggers the activation of

the policy to use. MOSES [9] is also a system enforcing

policy based security on Android. MOSES relies on system

compartmenting to create isolated areas. Each area can be

used to separate, for example, data and applications used for

work and those for personal use. Although both CRêPE and

MOSES allow Android to enforce high-level policies, they did

not address the usability issue. Only skilled people can write

those policies or define contexts and security profiles.

B. Writing policies with a graphical editor

Until version 5.x, official Android releases did not provide

any efficient tools to manage permissions. Many custom

releases or applications give users a way to better control

permissions (such as Privacy Guard Manager, Permission Mas-

ter, XPrivacy or DonkeyGuard). Our study will concentrate

only on Privacy Guard Manager (PGM) from CyanogenMod2

since all other applications have the same drawback. PGM is

available in the settings menu of CyanogenMod and presents

all installed applications. For each application, there is the

list of its permissions. Users have the choice to select ON or

OFF for each application to allow or deny the permission. An

option also exists to ask users to decide at the first time the

permission is requested. Thus, the interface is very easy to

master and requires no technical skills: only a simple action

on the device for each permission.

Although the process is easy to learn, checking all per-

missions for every applications is painful. The survey from

Google3 in 2013 shows that a US smartphone’s user has

an average of 33 applications installed on his device. We

2http://www.cyanogenmod.org/
3http://think.withgoogle.com/mobileplanet/fr/

performed an analysis of the 50 most downloaded free appli-

cations on the Google Play Store and found that an application

asks for an average of 11.4 permissions. This gives us a

total of 376 permissions. Few users will browse the whole

list of permissions to protect their privacy. Although PGM

is interesting when dealing with few applications, current

smartphone environment is much more complex and using no

abstraction has difficulties facing scalability.

Google has improved its native permission management

approach in the latest version of Android (version 6.0). First,

permissions are requested at runtime (the first time appli-

cations require them) and users can change allowed/refused

permissions at any time. Now, Android application developers

shall manage the fact that their application may not have

access to all the permissions listed in the manifest file. Google

has also addressed the large number of permissions issue

by introducing protection levels and groups of permissions.

Each permission is associated to one of four protection lev-

els. Permissions with level normal are considered as low-

risk permissions and are automatically granted without any

user approval. Permissions with level signature are related to

communication between applications developed by the same

organization. The requesting application needs to be signed by

the same certificate as the application providing the service and

declaring the permission. In that case, the system automatically

grants the permission without any action required from the

user. Protection level signatureOrSystem works like signature

but concerns also the applications that are in the Android

system image. Finally, the last level, dangerous, contains

permissions with high risk for the user. There are 24 dan-

gerous permissions. To reduce this number, every dangerous

permission is attached to one permission group. Nine different

groups exist and each one of them represents a resource or a

set of resources like CALENDAR, CONTACTS or PHONE. For

example, the group CALENDAR consists in two permissions

read calendar and write calendar. To reduce the number of

interactions with the user, the new permission management

works as follows. When an application requests a dangerous

permission, Android does not ask the user to accept or deny

that particular permission. It asks the user to accept or deny

the whole permission group.

Thus, even if there are more than 130 permissions in

Android, a user will be asked to grant or refuse permissions to

a specific application only nine times at most (one per group).

Although this approach seems more user-friendly, it has signif-

icant drawbacks in terms of security. All permissions to access

any network services (3G/4G, NFC, Bluetooth) are associated

to protection level normal. As consequences, users cannot

control network access and any application can communicate

anywhere. In addition, this loss of control is increased by the

use of groups of permission. Indeed, users’ control regresses

even with dangerous permissions. For instance, group PHONE

includes seven permissions (use SIP, call phone, read phone

state, process outgoing calls, read call log, write call log

and add voicemail). Thus, when a Voice over IP application

requests permission use SIP which seems relevant, the user can



only grant the group of seven permissions. These permissions

are not all relevant to a VoIP application. Thus, to limit the

number of interactions with the users and cope with scalability,

Android 6.0 has decreased the privacy protection capability of

the system. These IBAC coarse-grained permissions only give

the user an illusion of control.

C. Writing policies with a text editor

Textual editors use specific languages to write authorization

policies. Textual editors are less accessible than graphical ones

because the language must be learned and understood before

writing anything. However, these languages provide much

more flexibility and the possibility to create very powerful

rules.

XACML V3 [10] (eXtensible Access Control Markup Lan-

guage) is a language standardized by OASIS, for writing

authorization policies. XACML uses attributes to build policies

thereby works great with ABAC. Every security element can

be represented as an attribute. Then it is possible to create

any kind of abstractions such as roles in RBAC, activities in

OrBAC, etc. Genericity and flexibility are the main advantages

of XACML but also its main flaw. Technical skills are re-

quired: understanding access control models to select suitable

abstractions and write policies according to them. In addition,

XACML is an XML language which is not known to be user-

friendly for non-technical people. Thus, the whole process

demands lots of technical skills and cannot be performed by

owners of smartphones.

Arena et al. [11] have proposed an XACML-based exten-

sion of the Android’s security framework called SecureDroid.

This tool allows users to define situations and specify which

permissions are accepted or denied in these situations. Users

can also be prompted when a permission is requested. This

approach do not use abstraction so scaling up is still a problem.

Stepien and al. [12] have worked on a graphical editor to help

non-technical users write XACML rules. With this editor, it

is possible to choose an attribute, an operator and a value

to compare to. It makes writing rules possible without using

an XML format. Nonetheless, understanding how abstractions

work is still required.

III. A DECISION SUPPORT SYSTEM FOR WRITING HIGH

LEVEL POLICIES

Allowing non-technical users to write policies by them-

selves is not a simple task. A graphical editor like PGM is

easy to use but lacks efficiency. With hundreds of permissions

to handle, using abstractions seems mandatory. These abstrac-

tions can be specified with textual editors but it requires a lot of

technical skills and then it is not accessible to the public. Non-

technical users should be helped by a security expert to write

authorization policies to protect their privacy but, of course, it

is not possible to have an expert behind every smartphone user.

Since none of these approaches is satisfying, we present our

work which aims at: i) requiring no skill before being used

like PGM, ii) allowing non-technical users to write policies

with abstractions.

We have chosen to create a Decision Support System (DSS)

to help users to write their complex policies [13]. DSS are a

set of methods and techniques used to help someone facing a

problem to make a decision [14]. We use a DSS to interact

with users and understand how they wants to protect their

data. We present in this Section our system, named Kapuer,

applied to Android permission management. It informs users

when applications request permissions, it learns how users

react to requests and it uses these preferences to propose

abstract authorization rules. Kapuer consists in an architecture

to interact with users and control applications, and a problem-

solving model to learn users’ preferences.

A. Introduction to Decision Support System

The main goal of a Decision Support System is not to

make the decision on behalf of the user but instead to give

him precious information to understand the situation, to give

parts of solutions or possible alternatives to allow him to

make the final decision [14]. Among the different approaches

of DSS, we have focused on recommender systems. These

systems work with a profile of the user. It filter and analyze

information, extract the most useful to build knowledge about

users, their preferences. By learning these preferences, the

system is able to propose solutions to the user by analyzing

new information each time new preferences are acquired.

Thereby, the system is always learning and adapting itself to

the user. Three types of recommender systems exist [15]:

1) Content-based recommendations rely only on objects

characteristics to make propositions. All available information

on the object can be used to describe it. For example, a book

can be described by a title, an author, a release date, etc.

To make recommendations, the system compares objects to

find those that seems to be the closest to the user’s prefer-

ences. Content-based recommendations are very interesting

with detailed objects. Because they are seen as a set of

characteristics, a new object can be immediately proposed to

users if its characteristics fit their preferences. If users have

always the same behavior, the system will always propose

relevant objects. The drawback is the starting: when the system

has no information about user’s preferences, a learning period

is required before propositions can be relevant. Similarly, if

users suddenly changes their behavior, there will be a certain

latency before the system learns those changes.

2) Recommendations by collaborative filtering work with

the preferences of all people using the system. The idea is

if one user has similar preferences with other users, then he

should like objects chosen by such users. Thereby, they can

be relevant recommendations for him. Unlike content-based,

the system does not need much information to start. It will

quickly find other people with a close profile. Collaborative

filtering also works fine with objects that are hard to describe

like emotions. This approach also has some drawbacks. When

few people are using the system, finding a similar profile might

fail. In this case, recommendations will not be relevant. In the

same way, if a new object is added to the system, as long as

it is not chosen by some users, it will not be recommended.



3) Hybrid systems uses both content-based and collaborative

filtering. It allows getting rid of some flaws of each approach.

Content-based recommendations for new objects in the system,

collaborative filtering for users with few information to work

with. A well known hybrid recommender system is used by

Amazon to create lists of similar items when a customer visits

the page of an object or adds one in his basket.

Despite the hybrid recommender system advantages, we

chose a pure content-based approach in Kapuer for two

reasons. Firstly, using collaborative filtering requires storing

every user’s privacy preferences somewhere on a server.

Protection of users’ preferences is complex [16][17]. With

a content-based recommender system, user’s preferences are

stored locally and are not shared at all. Secondly, privacy

recommendation can also be provided by a set of experts

like in [18]. We think that privacy is by nature personal

and these solutions do not allow experts to customize their

recommendations to specific users. E.g., the four authors of

this article do not agree on what access should be granted to

the Facebook app.
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Fig. 1. The architecture of Kapuer

B. Architecture of Kapuer

Figure 1 shows the architecture of Kapuer with a clear

distinction between the XACML access control part and the

decision support part. The process begins when an application

requests the access to one of the user’s private information.

This request is intercepted by the Policy Enforcement Point

(PEP) (step 1) that creates a request in the XACML V3 format

and transmits it to the Policy Decision Point (PDP) (step 2).

The PDP is the decision unit; it compares the request with the

access control policy. If one of the rules matches, the PDP

sends back the associated decision (Permit or Deny) to the

PEP which applies it on the Android system. If there is no

matching, the PDP returns a “Not Applicable” decision to the

PEP. No matching rule means that our system needs to learn

more about the user’s preferences about this request. As a

consequence, the PEP transfers the request to the DSS. To

get more information about the user’s preferences, the DSS

interacts with him. Kapuer has two sorts of interactions with

the user:

1) When a request is sent by the PEP to the DSS (step 3),

Kapuer informs the user that an application wants to access

one of his private data. If possible, details about the request

are also given such as similar applications asking for the same

permission or indications about the permission asked. The

user just needs to accept or decline that request. Making a

decision in the appropriate context (i.e. when the user runs

the application) is easier than doing it out of the context

of use; it limits the cognitive load. Once the user has made

his decision, the DSS creates the corresponding XACML V3

rule for that specific couple (application, permission) and puts

it in the policy database (step 4). Then, all the preferences

regarding the attributes used in the request are updated (more

information on the preferences update can be found in [2]).

When the update process is completed, Kapuer calculates a

score reflecting the user’s preferences knowledge level.

2) When the score of a request reaches a predetermined

threshold (found by experimentations), the system has ac-

quired enough information to propose a new abstracted rule

that covers a broader range of access requests. In this interac-

tion, Kapuer presents this rule to the user and explains all the

abstract elements (step 5). For example, if a rule is proposed

for all game applications, Kapuer lists all games. If a rule is

proposed for all resources linked to networks, it details all the

associated permissions. This way, user are informed and even

without any technical skills, they are able to understand what

the rule means. Then they can accept or reject the proposed

rule. If accepted, the DSS transforms the rule in XACML V3

and adds it to the policy database (step 4 again).

C. Our problem solving model

The main objective of Kapuer is learning users’ preferences

to recommend them high-level rules. The DSS extracts data

from requests and analyzes them with the user’s decision. In

order to explain how Kapuer learns the users’ preferences, we

must first present our problem-solving model. This model is

independent of any access control model and is based on four

elements :

• Criteria - A criterion is the basic and main element of our

problem-solving model. It represents an attribute of an

access request like the name of an application, a resource

or an action. We have defined criteria to be very similar

to attributes in ABAC. An attribute-based request can be

easily converted into a list of criteria. The set of criteria

is noted CR. Criteria are composed of an identifier

and two values. The first value, gt : CR → [0,∞[,
increments each time the user accepts a request including

this criterion. The second value, f t : CR → [0,∞[, incre-

ments each time the user refuses a request including this

criterion. The preferences score regarding this criterion

can be found by subtracting f t and gt. This dual unipolar

scale gives much more information than a unique bipolar

scale. We can easily differentiate if a criterion has a low

preferences value because we have few information on



user’s preferences or because users do not always behave

in the same way (sometimes they accept requests with

this criterion and sometimes they deny them).

• Classes of criteria - We introduce the notion of class

of criteria to express security objects introduced in the

access control models like visibility, temporal and spatial

aspects, retention or purpose. Each criterion is part of a

class with relation Association Criterion Class: ACC ⊆
CR × C where the set of class of criteria is noted C.

It is possible to create any class depending on the type

of data the system uses. The set of criteria of a class is

defined by the function class :

class : C → PCR

x 7→ {y ∈ CR|(y, C) ∈ ACC} (1)

• Meta-criteria - Access control models propose abstrac-

tions of security objects. We define the notion of meta-

criterion to represent these abstractions. For instance,

“Games” is a meta-criterion for applications describing

this kind of application. A meta-criterion is a criterion,

with the same structure but with a higher level of ab-

straction. The set of meta-criteria is noted MCR where

MCR ⊂ CR. A meta-criterion is also part of a class.

Each criterion is linked to one meta-criterion of the

same class. A meta-criterion can be linked to another

meta-criterion of a higher level. Then, we can create

a hierarchy of criteria and meta-criteria for each class.

Values of meta-criteria are updated each time a criterion

or a meta-criterion linked to it is updated. Then if a

criterion is updated, all meta-criteria in the same branch

of the hierarchy are also updated.

• Groups of criteria - We have defined groups of criteria to

represent relations between criteria or meta-criteria from

different classes. A group of criteria is formed by at least

two criteria and at most by the number of classes. A group

has his own preferences values, they are not calculated

from the values of the criteria or meta-criteria present

in the group. Values of groups are updated each time

all the criteria or meta-criteria of the group are present

in a request. The larger a group is, the more detailed

information about users preferences it gives. Thus, larger

group are more important. The set of groups of criteria

G is defined by:

G ⊆ PCR

A group of criteria is composed by at least two criteria.

∀g ∈ G, |g| ≥ 2

Two criteria of a same group cannot belong to the same

class.

∀g ∈ G, ∀(c1, c2) ∈ g × g, c1 6= c2 ⇒ class(c1) 6=
class(c2)

This solving problem model is implemented by our aggre-

gation operator, called Kagop, to calculate scores of requests

and propose abstract rules (more information on Kagop are

available in [2]).
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IV. THE ANDROID IMPLEMENTATION

Due to Android 4.4 security protections, it is not possible

to intercept permission requests in an application, they must

be intercepted directly from the OS. It has forced us to use the

framework XPosed which allows modifying the source code of

Android without the need to make a custom release. With the

help of XPosed and the Balana4 implementation of XACML

V3, we built the module Kapuer for Android 4.4. We describe

in this Section the instantiation of our problem-solving model

to Android, the interactions during the learning phase and

finally abstract authorization rules management functionalities.

When Kapuer intercepts a permission request, information

about the application and the permission is collected. Thus,

we have defined three classes to implement our problem

solving model: Applications, Actions and Resources. Criteria

of class Applications are represented by the name of the

applications installed on the device. Kapuer gets the first

level of meta-criteria from the application categories provided

by the Google Play Store (e.g., games, entertainment, work,

etc.). We have created a meta-criterion called no category

4https://github.com/wso2/balana
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for applications not included in the Google Play Store. Fi-

nally, we added meta-criterion all applications to group all

the meta-criteria of this class (Figure 2). Criteria of classes

Actions and Resources are extracted from the permissions

(e.g., “android.permission.READ CALENDAR” contains cri-

teria READ and CALENDAR). We chose for class Resources

to use meta-criteria media, network, service, user data and

system data. We added meta-criteria hardware (superior to

media, network, service) and data (superior to user data and

system data). Finally, the root of this hierarchy is meta-

criterion all resources (Figure 3). With the same reasoning,

we have extracted criteria from the permission list for class

Actions. We have defined three meta-criteria : local access

(regrouping criteria execute, control, read and write), external

access (regrouping criteria send and receive) and the root of

the hierarchy called all actions (Figure 4).

Figures 5 and 6 shows the interactions with the user during

the learning phase. Interaction in Figure 5 is displayed when

Kapuer has no rule to handle the request and asks the user

to make a decision (corresponds to the step 3 in Figure 1).

Interaction in Figure 6 is displayed when Kapuer has enough

information on the user’s preferences and proposes a high-

level rule (step 5 in Figure 1). If offers information about all

abstractions used in the rule. In this example, there are only

meta-criteria so we detail all criteria contained in each meta-

criteria to help the user understand exactly what this new rule

will do if the user accepts it.
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Fig. 5. Interactions of Kapuer during the learning phase

Kapuer offers also an interface for viewing the privacy

policy and features to modify it. Figures 7, 8 and 9 shows three

screenshots of the application. Users can access the list of all

rules and have a description for each one (Figure 7). They can

also edit each rule and modify it on four parts: the application,

the resource, the action or the decision (Figure 8). Except

for the decision, they can modify the level of abstraction if

needed. We added a summary of all permissions granted to an

application (Figure 9). This view provides detailed information

about permissions handled by Kapuer.

V. EVALUATION OF KAPUER FOR MANAGING ANDROID

PERMISSIONS

We evaluate in this Section Kapuer’s efficiency. Firstly, we

compare it to PGM in a real scenario. Secondly, we evaluate

the speed of the learning process.

A. Kapuer VS Privacy Guard Manager

We wanted to test the approach with a real life situation.

First, we installed the 50 most downloaded free applications in

the Google Play Store. It resulted in 28 games, 4 social apps, 4

communication apps, 4 widgets apps, 3 tools, 3 entertainment

apps, 2 apps about music and 2 apps about travel. Then, we

defined the following arbitrary high-level authorization policy

we want to enforce on our Android device:

• rule 1: Games can access the Internet.

• rule 2: Social applications can access network and system

data.

• rule 3: Communication applications can access network

and services.

• rule 4: Widget applications can access the Internet.

• rule 5: Music&Audio applications can access network

and audio.

• rule 6: Tools applications can access everything.

• rule 7: Travel&Local applications can access network and

GPS.

• rule 8: Entertainment applications can access the Internet.

Fig. 6. Proposition of a new high level rule



Fig. 7. Rule information screen

Fig. 8. Rule modification screen

We want to evaluate the cost of writing this high-level policy

using PGM and Kapuer. This cost is calculated by the number

of actions the user has to perform. For PGM, an action consists

in all pressures (screen navigation and on/off flipswitches

selection). For Kapuer, any interaction as explained in Figures

5 and 6 is an action. Since Kapuer learning process is not

predetermined and depends on the received requests, a large

number of tests must be executed to get its average behavior.

Thus, we used our simulator [19] that can automate this task.

This simulator is able to generate random requests based on

a set of possible accesses. It also automates the user behavior

by accepting or denying requests based on a predefined high-

level policy. We ran 10 simulations with the same high-level

policy but with different requests each time since they are

generated randomly. After each simulation, we checked the

rules recommended by Kapuer.

Figure 10 illustrates the number of actions needed to write

each rule of our privacy policy. It also shows that Kapuer needs

fewer actions than Privacy Guard Manager for each rule. There

is even a huge difference on the first rule. It concerns all the

applications with the category “Games” and they represent 28

Fig. 9. Application information screen

applications out of 50 so more than the half. For this rule,

Kapuer needs 61 actions and PGM 476, so nearly eight times

more. For rules number 2 and 3, the difference between Kapuer

and PGM is also important when it is closer for all the others.

This is due to the few number of applications involved in the

last rules. If we compare the whole policy, Kapuer required

190 actions only when PGM has needed 848 actions. The

abstractions in the high-level rules proposed by Kapuer are

really providing a faster process for the user to fulfill his

privacy policy. We have also looked at these high-level rules in

details to see if some of them do not fit the user’s preferences.

None of the created rules proposed the opposite of what the

high-level policy stated. Nevertheless, some of them did not

have the right level of abstraction. It happens that a rule is

proposed to the user with a higher abstraction than needed so

it does not totally fit the user’s behavior.

B. Evaluation of the speed at which Kapuer learns privacy

preferences

The number of interactions needed to recreate one rule or

all the policy provides information about the effort needed by

users. It is also interesting to see how fast Kapuer is learning

and how the level of completeness progresses. We compared,

for each simulation, how many requests were needed to reach,

20%, 50%, 80% and 100% of completeness. The results are

shown in Figure 11. At the beginning, Kapuer does not know

anything about the user’s preferences. It needs requests to

learn his behavior and to start proposing high-level rules. The

first rule is proposed on average after 50 requests. Then, the

average number of requests to reach the first threshold, 20%

of completeness, is 75. For the second threshold, 50%, the

average number of requests is 104. For the 80% threshold,

the average number of requests is 123 and finally 100% of
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completeness needs an average of 190 requests. From these

simulations, we calculated the global average completeness.

Figure 12 shows the average of completeness at 10%, 20%,

30% etc. It confirms that after learning from the firsts requests,

Kapuer proposes regularly rules until the policy is nearly

complete. Then, the process to achieve 100% of completeness

is slower. This learning speed could still be improved. Today,

Kapuer starts without any initialization and has to learn

users preferences from scratch. With an initialization on these

preferences, the number of requests needed to propose the first

rule could be reduced.

VI. CONCLUSION AND FUTURE WORK

We have presented in this article a tool for permission

management on Android. Unlike other approaches, Kapuer

does not only provide a way to modify what permissions an

application can use. It learns from users’ behavior to help

them and advise them by proposing rules with different levels

of abstractions. This way, they can protect their privacy more

easily, without needing knowledge about access control mod-

els or policy’s structure. Our evaluations show that hundreds

of permissions can be handled with a limited number of

actions by using abstractions. When Android 6.0 sacrifices

control of privacy for the sake of simplicity with concepts

of protection levels and groups of permissions, Kapuer learns

and proposes both fine-grained and abstract privacy rules. In

addition, Kapuer supplies users with features to control the

level of abstraction of privacy rules.

The current version of Kapuer runs on Android 4.4. For

short term future works, we will upgrade it to Android 6.0

in order to benefit from new features introduced by this

system. For the moment, each time a request is denied, Kapuer

makes Android act as if the application does not have the

permission. Since developers of Android 4.4 applications do

not manage this case, some applications crashed. This issue

will be resolved on Android 6.0 because now developers shall

handle permission verification before trying to use it. We will

also take advantage of the new Android permission request

interception to implement our interactions with users. Finally,

we will integrate new Android 6.0 information (protection

levels and groups of permission) as new meta-criteria. As a

consequence, Kapuer will be easier to maintain.

One of the initial goal when we designed Kapuer was to

inform people about privacy risks. For longer term research,

we want to go further in that direction and not only inform

people but also educate them about privacy issues. As an

example, explain them the consequences of granting some

permissions to an application. The more people understand

these risks, the better their privacy decisions will be.

Finally, Kapuer learns users preferences from scratch. A

large number of requests is needed before any proposition can

be made to the user. It is possible to improve the beginning of

the learning phase by initializing the system. We are currently

making surveys with different kind of users to find the best

way to initialize these users’ preferences.
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