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Let p be a fixed prime number. Let K be a totally real number field of discriminant D K and let T K be the torsion group of the Galois group of the maximal abelian p-ramified pro-p-extension of K (under Leopoldt's conjecture). We conjecture the existence of a constant Cp > 0 such that log( # T K ) ≤ Cp • log( √ D K ) when K varies in some specified families (e.g., fields of fixed degree). In some sense, we suggest the existence of a p-adic analogue, of the classical Brauer-Siegel Theorem, wearing here on the valuation of the residue at s = 1 (essentially equal to # T K ) of the p-adic ζ-function ζp(s) of K. We shall use a different definition that of Washington, given in the 1980's, and approach this question via the arithmetical study of T K since p-adic analysis seems to fail because of possible abundant "Siegel zeros" of ζp(s), contrary to the classical framework. We give extensive numerical verifications for quadratic and cubic fields (cyclic or not) and publish the PARI/GP programs directly usable by the reader for numerical improvements. Such a conjecture (if exact) reinforces our conjecture that any fixed number field K is p-rational (i.e., T K = 1) for all p 0.

Abelian p-ramification -Main definitions and notations

Let K be a totally real number field of degree d, and let p ≥ 2 be a prime number fulfilling the Leopoldt conjecture in K. We denote by C K the p-class group of K (ordinary sense) and by E K the group of p-principal global units ε ≡ 1 (mod p|p p) of K.

Let's recall from [START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | The p-adic Kummer-Leopoldt Constant: Normalized p-adic Regulator[END_REF] the diagram of the so called abelian p-ramification theory, in which K c = KQ c is the cyclotomic Z p -extension of K (as compositum with that of Q), H K the p-Hilbert class field and H pr K the maximal abelian p-ramified (i.e., unramified outside p) pro-p-extension of K.

Let U K := p|p U 1
p be the Z p -module (of Z p -rank d) of p-principal local units of K, where each U 1 p := {u ∈ K × p , u ≡ 1 (mod p)} is the group of p-principal units of the completion K p of K at p | p, where p is the maximal ideal of the ring of integers of K p .

For any field k, let µ k be the group of roots of unity of k of p-power order. Then put W K := tor Zp U K = p|p µ Kp and W K := W K /µ K , where µ K = {1} or {±1}.

Let E K be the closure in U K of the diagonal image of E K ; by class field theory this gives in the diagram Gal(H pr K /H K ) U K /E K ; then let C c K be the subgroup of C K corresponding to the subgroup Gal(H K /K c ∩ H K ).

Put (see [9, Chapter III, § 2 (a) & Theorem 2.5] with the set S of infinite places, to get the ordinary sense, and with the set T of p-places):

T K := tor Zp (Gal(H pr K /K)) = Gal(H pr K /K c ). As we know, # T K is essentially the residue of the p-adic ζ-function of K at s = 1 [START_REF] Colmez | Résidu en s = 1 des fonctions zêta p-adiques[END_REF][START_REF] Serre | Sur le résidu de la fonction zêta p-adique d'un corps de nombres[END_REF]; we will detail this in Subsection 2.2.

We have (because of Leopoldt's conjeture) the following exact sequence defining R K , where log p is the p-adic logarithm ([9, Lemma III. [START_REF] Cohen | Class groups of number fields: Numerical heuristics[END_REF] 

1 → W K -→ tor Zp U K E K log p ---→ tor Zp log p U K log p (E K ) =: R K → 0.
The group R K (or its order) is called the normalized p-adic regulator of K and makes sense for any number field (provided one replaces K c by the compositum K of the Z p -extensions):

W K T K C K C c K U K /E K A K H pr K K c H K H bp K R K K c H K K c ∩H K K
The field H bp K , fixed by W K , is the Bertrandias-Payan field, i.e., the compositum of the p-cyclic extensions of K embeddable in p-cyclic extensions of arbitrary large degree.

v-adic analytic prospects

Let K real (resp. K (d) real ) be the set of totally real number fields K of any degree (resp. of fixed degree d). For a fixed prime p and a random K ∈ K real , we have:

# T K = # C c K • # R K • # W K ,
which may be equal to 1 (defining "p-rational fields") or not, and it will be interesting to know if the p-adic valuation of # T K can be bounded according, for instance, to the discriminant D K of K. If so, this would be interpreted as a p-adic version of the archimedean Brauer-Siegel theorem, which is currently pure speculation, but we intend to experiment, algebraically, this context since p-adic analysis does not seem to succeed as explain by Washington in [START_REF] Washington | Zeroes of p-adic L-functions, Séminaire de théorie des nombres[END_REF]:

A Brauer-Siegel theorem using p-adic L-functions fails; in the same way, we have similar comments by Ivanov in [23, Section 1]:

The p-adic analogue of Brauer-Siegel and hence also of Tsfasman-Vladȗt ¸fails.

But this requires some explanation: 2.1. The Siegel zeros. In fact, there is a possible ambiguity about the definitions and the role of the discriminant in a p-adic Brauer-Siegel frame.

Let K ∈ K real , let h K be its class number, R K,p its classical p-adic regulator, D K its discriminant; in [40, § 3], Washington considers a sequence of such number fields K, fulfilling the condition

[K : Q] vp( √ D K )
→ 0, and study the limit:

lim K vp(h K • R K,p ) vp( √ D K )
, where v p denotes the p-adic valuation; thus the above condition implies that p must be "highly ramified" in the fields of the sequence, which eliminates for instance families of fields of constant degree d. So, with Washington's definition, K belongs in general to some towers of number fields (e.g., the cyclotomic one).

Washington shows examples and counterexamples of the p-adic Brauer-Siegel property

vp(h K • R K,p ) vp( √ D K ) → 1 ([40, Proposition 2 & Theorem 2]
). In his Theorem 3, he uses the formula of Coates [5, p. 364], which implies lim inf

K vp(h K • R K,p ) vp( √ D K ) ≥ 1 
as

[K : Q] vp( √ D K )
→ 0. We shall consider instead

vp h K • R K,p √ D K • log ∞ (p) log ∞ ( √ D K )
, where log ∞ is the usual complex logarithm, or more precisely we shall study:

C p (K) := vp( # T K ) • log ∞ (p) log ∞ ( √ D K ) = log ∞ ( # T K ) log ∞ ( √ D K )
, for any K ∈ K real , then the existence of sup 2). However, there are some connections between the two definitions since the quantity v p (h K •R K,p ) appears in each of them; only the measure of the order of magnitude differs for the analysis of sequences of fields. It is therefore not surprising to find, for instance in [START_REF] Shanks | Zeros of 2-adic L-functions and congruences for class numbers and fundamental units[END_REF][START_REF] Washington | Zeroes of p-adic L-functions, Séminaire de théorie des nombres[END_REF][START_REF] Washington | Siegel zeros for 2-adic L-functions, Number Theory[END_REF], some allusions to the group T K . Let's finish these comments with a quote from Washington's paper illustrating the crucial fact that a great v p ( # T K ) is related to the existence of zeros, of the p-adic ζ-function, or of the L p -functions (see [START_REF] Shanks | Zeros of 2-adic L-functions and congruences for class numbers and fundamental units[END_REF][START_REF] Washington | Siegel zeros for 2-adic L-functions, Number Theory[END_REF][START_REF] Washington | Séminaire de Théorie des Nombres de Bordeaux[END_REF][START_REF] Washington | A Family of Cubic Fields and Zeros of 3-adic L-Functions[END_REF] for complements about these zeros and for some numerical data):

In the proof of the classical Brauer-Siegel theorem, one needs the fact that there is at most one Siegel zero, that is, a zero close to 1. The fact that the Brauer-Siegel theorem fails p-adically could be taken as further evidence for the abundance of p-adic zeroes near 1.

(• • • ) Finally, we remark that the possible existence of p-adic Siegel zeroes and the failure of results such as the p-adic Brauer-Siegel theorem indicate that it could be difficult, if not impossible, to do analytic number theory with p-adic L-functions. For example, I do not know how to obtain estimates on π(x), the number of primes less that or equal to x, using the fact that the p-adic zeta function has a pole at 1. Remark 2.1. One may explain what appens as follows, for simplicity in the case of a real quadratic field K of character χ K :

Roughly speaking, v p (L p (1, χ K )) is closely related to v p ( # T K ) and v p (L p (0, χ K )) is closely related to v p (B 1 (ω -1 χ K )) (ω
is the Teichmüller character and B 1 (ω -1 χ K ) the generalized Bernoulli number of character ω -1 χ K ), which is closely related to the order of a suitable component of the p-class group of the "mirror field K * " (e.g., for p = 3 and

K = Q( √ m), K * = Q( √ - 3 
m)); but since ω -1 χ K is odd, no unit intervenes and v p (L p (0, χ K )) is usually "small" compared to v p ( # T K ) assumed to be "very large" (e.g., m = 150094635296999122 giving v 3 ( # T K ) = 19 but v 3 ( # C K * ) = 1). Thus, there exist in general "Siegel zeros" of L p (s, χ K ), i.e., very close to 1, which is an obstruction to a Brauer-Siegel strategy (see numerical illustrations for p = 2, 3 in [START_REF] Washington | Siegel zeros for 2-adic L-functions, Number Theory[END_REF][START_REF] Washington | Séminaire de Théorie des Nombres de Bordeaux[END_REF][START_REF] Washington | A Family of Cubic Fields and Zeros of 3-adic L-Functions[END_REF]).

Consequently we will adopt another point of view. Let K ∈ K real and let p ≥ 2 be any fixed prime number. As we have recalled it, # T K is in close relationship with padic L-functions (at s = 1) of even Dirichlet characters in the abelian case (Kubota-Leopoldt, Barsky, Amice-Fresnel,...), or more generally with the residue at s = 1 of the p-adic ζ-function of K, built or study by many authors (Coates, Shintani, Barsky, Serre, Cassou-Noguès, Deligne-Ribet, Katz, Colmez,...). Conversely, there is no algebraic invariant (like a Galois group) interpreting the residue of the complex ζ-function, but we have in this (archimedean) case numerous inequalities. So, we shall compare the complex and p-adic cases to try to unify the set of all the points of view. For this, we define normalizations of the ζ-functions of a totally real number field (from [START_REF] Coates | p-adic L-functions and Iwasawa's theory[END_REF][START_REF] Colmez | Résidu en s = 1 des fonctions zêta p-adiques[END_REF], then [START_REF] Gras | The p-adic Kummer-Leopoldt Constant: Normalized p-adic Regulator[END_REF] for the regulators).

2.2. Definitions and normalizations. Let K ∈ K real be of degree d and let: P := {p ∞ , 2, 3, . . . , p, . . .} be the set of places of Q, including the infinite place p ∞ (we also use the symbol ∞ for real or complex functions, like log-function, in the same logic as for p-adic ones; for instance, R K,∞ and R K,p shall be the usual regulators built with log ∞ and log p , respectively). We shall use, for any place v ∈ P, subscripts (•) K,v for all invariants considered; when the context is clear, we omit v (p-adic in most cases).

2.2.1. v-Cyclotomic extensions and v-conductors. The p-cyclotomic Z pextension is denoted Q c,p and we introduce Q c,p∞ := Q as the "p ∞ -cyclotomic extension". We put Q c,v =: Q c for any v ∈ P if there is no ambiguity. We attribute to the field

Q the "v-conductor" f Q,v := p (resp. 4, 2) if v = p = 2 (resp. 2, p ∞ ).
We shall put ∼ for equalities up to a p-adic unit.

2.2.2. Normalized ζ-functions at p ∞ . We define at the infinite place p ∞ : [9, Remark III.2.6.5 (ii)] for justifications about the factor 1 2 d ); then, let h K be the class number (ordinary sense), R K,∞ the classical regulator, D K the discriminant of K, and W K,p∞ := w|p∞ µ Kw µ K , of order 2 d-1 since K is totally real.

(2.1) ζ K,p∞ (s) := f K∩ Q c 2 d • ζ K,p∞ (s) = 1 2 d-1 • ζ K,p∞ (s), s ∈ C (see
Then consider, with a perfect analogy with the p-adic case:

(2.2) # T K,p∞ := h K • R K,∞ 2 d-1 • √ D K • # W K,p∞ = h K • R K,∞ √ D K . 1 1 The factor R K,∞ 2 d-1 • √ D K
is by definition the normalized regulator R K,p∞ for v = p∞, using the normalized log-function 1 2 • log ∞ instead of log ∞ ; from [START_REF] Amice | Fonctions zêta p-adiques des corps de nombres abéliens réels[END_REF], it is defined without ambiguity.

Let κ K,p∞ be the residue at s = 1 of ζ K,p∞ (s). From the so-called complex "analytic formula of the class number" of K (see, e.g., [START_REF] Washington | Introduction to Cyclotomic Fields[END_REF]Chap. 4]), we get:

(2.3) κ K,p∞ = h K • R K,∞ √ D K = # T K,p∞ . 2.2.3. Normalized ζ p -functions at v = p.
We define at a finite place p: [START_REF] Coates | p-adic L-functions and Iwasawa's theory[END_REF][START_REF] Colmez | Résidu en s = 1 des fonctions zêta p-adiques[END_REF][START_REF] Serre | Sur le résidu de la fonction zêta p-adique d'un corps de nombres[END_REF], the residue of ζ K,p (s) at

(2.4) ζ K,p (s) := f K∩ Q c 2 d • ζ K,p (s), s ∈ Z p , where f K∩ Q c is the conductor of K ∩ Q c (if K ∩ Q c is the nth stage in Q c , then f K∩ Q c ∼ 2 p • [K ∩ Q c : Q] ∼ 2 p n+1 ); since from
s = 1 is κ K,p ∼ 2 d-1 • h K • R K,p √ D K
, we get the normalized p-adic residue:

(2.5) Subsection 2.4 for the abelian case). So, the residues of the normalized ζ v -functions of K are, for all v ∈ P, such that:

κ K,p = f K∩ Q c 2 d • κ K,p ∼ # T K,p (see
κ K,v := lim s→1 (s -1) • f K∩ Q c 2 d • ζ K,v (s) ∼ # T K,v ,
which is the order of an arithmetical invariant for finite places v = p and the measure of a real volume for v = p ∞ (see the last footnote).

2.3.

Abelian complex L-functions -Upper bounds. In the abelian case:

(2.6) # T K,p∞ = h K • R K,∞ √ D K = χ =1 1 2 L p∞ (1, χ),
where χ goes through all the corresponding Dirichlet characters of K with conductor f χ , and where L p∞ denotes the complex L-function.

If K = Q( √ m)
, of fundamental unit ε K and quadratic character χ K , one gets:

# T K,p∞ = h K • log ∞ (ε K ) √ D K = 1 2 • L p∞ (1, χ K ).
For each L p∞ (1, χ) one has many upper bounds which are improvements of the classical inequality

1 2 • L p∞ (1, χ) ≤ 1 + o(1) • log ∞ ( f χ ).
In [32, Corollaire 1] one has, for even primitive characters:

1 2 • L p∞ (1, χ) ≤ 1 2 • log ∞ ( f χ ),
giving from the previous definition (2.2) and formula (2.6):

(2.7) log ∞ ( # T K,p∞ ) ≤ C p∞ • log ∞ ( D K ),
with an explicit constant C p∞ if K runs trough the set of real abelian fields such that

d log ∞ ( √ D K )
→ 0, for instance in the simplest form of Brauer-Siegel theorem.

We shall give numerical complements in Subsection 7.2 by means of computations of lower and upper bounds of:

C p∞ (K) = BS K := log ∞ ( # T K,p∞ ) log ∞ ( √ D K )
(see Definition 7.1).

Thus, the factor W K,p∞ does exist as in the p-adic case. The invariant T K,p∞ is related to the Arakelov class group of K (see [START_REF] Schoof | Computing Arakelov class groups, Algorithmic Number Theory[END_REF] and its bibliography), which gives the best interpretation.

Remark 2.2. For the sequel, we do not need any sophisticated upper bound (only the existence of C p∞ ), but one may refer to [START_REF] Granville | Upper bounds for |L(1, χ)[END_REF][START_REF] Louboutin | Upper bounds for residues of Dedekind zeta functions and class nuumbers of cubic and quartic number fields[END_REF][START_REF] Louboutin | Explicit upper bounds for residues of Dedekind zeta functions[END_REF][START_REF] Pintz | Elementary methods in the theory of L-functions VII, Upper bounds for L(1, χ)[END_REF][START_REF] Ramaré | Approximate formulae for L(1, χ)[END_REF] for other inequalities; for instance, one gets, for real abelian fields K of degree d, with our notations:

# T K,p∞ := h K • R K,∞ √ D K ≤ 1 2 log ∞ ( √ D K ) d -1 d-1
, thus in the cases d = 2 and d = 3:

# T K,p∞ = h K • log ∞ (ε K ) √ D K ≤ 1 2 log ∞ ( D K ), # T K,p∞ = h K • R K,∞ √ D K ≤ 1 16 log ∞ ( D K ) 2 ,
respectively. In the quadratic and cubic cases one shows that:

(2.8)

h K ≤ 1 2 • D K , h K ≤ 2 3
• D K , respectively. 

h K • R K,p √ D K ∼ χ =1 1 2 L p (1, χ) • χ =1 1 - χ(p) p -1
.

The "p-adic class number formula" for real abelian fields uses the formula of [START_REF] Coates | p-adic L-functions and Iwasawa's theory[END_REF]:

# T K,p ∼ [K ∩ Q c : Q] • p p|p Np • h K • R K,p √ D K . Thus, since χ 1 - χ(p) p -1 = p|p (1 -Np -1 ) -1 ∼ p|p Np, this yields: (2.9) # T K,p ∼ p p|p Np • χ =1 1 2 L p (1, χ)• χ =1 1 - χ(p) p -1 ∼ χ =1 1 2 L p (1, χ) = κ K,p .
But no upper bound of the p-adic valuation of this residue is known. So we must, on the contrary, try to study directely # T K,p with arithmetic tools.

2.5. Arithmetical study of κ K,p . To study this residue, consider (2.9) giving κ K,p ∼ # T K,p .

In # T K = # C c K • # R K • # W K , the computation of # W K is obvious. Then # C c K = # C K [H K ∩ K c : K] = # C K • 1 ep • ( -1 : -1 ∩ N K/Q (U K )) • [K ∩ Q c : Q],
where e p is the ramification index of p in K/Q [9, Theorem III.2.6.4]. So, for p 0 we get

# C c K • # W K = 1.
Then the main factor is (whatever the field K and the prime p [12, Proposition 5.2]):

(2.10) # R K = # tor Zp log p U K log p (E K ) ∼ 1 2 • Zp : log p (N K/Q (U K )) # W K • p|p Np • R K,p √ D K ,
which is unpredictible and more complicate if p ramifies in K or if p = 2.

In the non-ramified case for p = 2, it is given by the classical detrminant provided that one replaces log p by the "normalized logarithm" 1 p log p . Remarks 2.3. Let K = Q( √ m) and let p D K with residue degree f ∈ {1, 2}.

(i) For p = 2, # R K ∼ 1 p log p (ε K ) ∼ p δp(ε K ) , where δ p (ε K ) = v p ε p f -1 K -1 p . (ii) For p = 2, the good definition of the δ 2 -function is δ 2 (ε K ) := v 2 ε 2 K -1 8 if f = 1 and v 2 ε 6 K -1 4 if f = 2, in which cases # R K ∼ 2 δ2(ε K ) .
(iii) The existence of an upper bound for v p ( 1 2 L p (1, χ K )) would be equivalent to an estimation of the order of magnitude of δ p (η K ) for the cyclotomic number

η K := a,χ(a)=1 (1 -ζ a D K )
, where ζ D K is a primitive D K th root of unity (interpretation of the class number formula via cyclotomic units). The study given in [10, Théorème 1.1], and applied to the number ξ = 1 -ζ D K , suggests that if p → ∞, the probability of δ p (η K ) ≥ 1 for the χ K -component η K Z = ξ eχ K , of the Galois module generated by ξ, tends to 0 at least as O(1) • p -1 and conjecturaly as p -(log(log(p))/log(c0(η K ))-O(1)) , where c 0 (η K ) = |η K | > 1; this does not apply to small p. This explains the specific difficulties of the p-adic case, which is not surprising since the study of v p ( # T K ) represents a refinement of Leopoldt's conjecture.

We intend to give estimations of v p ( # T K ) (p fixed) related to the discriminant D K when K varies in a family K ⊆ K real (as in [START_REF] Tsfasman | Infinite global fields and the generalized Brauer-Siegel theorem, Dedicated to Yuri I. Manin on the occasion of his 65th birthday[END_REF], we call family of number fields any infinite set of non-isomorphic number fields K; thus, the condition D K → ∞ makes sense in K). In a numerical point of view, we shall analyse the set K

(2) real of real quadratic fields and the subset K

(3) ab of K (3)
real (totally real cubic fields), of cyclic cubic fields of conductor f , described by the polynomials (see, e.g., [START_REF] Ennola | On Cyclic Cubic Fields[END_REF]):

(2.11)

P = X 3 + X 2 - f -1 3 • X + 1 + f (a -3) 27 , if 3 f , P = X 3 - f 3 • X - f a 27 , if 3 | f , where f = a 2 + 27 b 2 4
with a ≡ 2 (mod 3) (if 3 f ), a ≡ 6 (mod 9) & b ≡ 0 (mod 3) (if 3 | f ). Some non-cyclic cubic fields will also be considered.

In the forthcoming Sections, we deal only with finite places p; so we simplify some notation in an obvious way.

Direct calculation of v p ( # T K ) via PARI/GP

The programs shall try to verify a p-adic analogue of the relation (2.7), for quadratic and cubic fields; for each fixed p, they shall give the successive minima of the expression ∆ p (K) :

= log ∞ ( √ D K ) log ∞ (p)
-v p ( # T K ) and the successive maxima of:

(3.1) C p (K) := vp( # T K ) • log ∞ (p) log ∞ ( √ D K )
, when D K increases in the selected family K. It seems that a first minimum of ∆ p (K) (on an interval I for D K ) is rapidely obtained and is negative of small absolute value, giving C p (K) > 1; whence the interest of the computation of C p (K) and the question of the existence of

C p = sup K∈K (C p (K)). If C p = ∞, this means that (for example) v p ( # T Ki ) = log ∞ ( D Ki ) • O log ∞ (log ∞ ( D Ki ))
for infinitely many K i ∈ K, whence, in our opinion, the "excessive relations" # T Ki D Ki . We shall observe that sup D<x (C p (K)) increases and stabilizes rapidely, for a rather small D 0 ; this means that C p (K) is locally decreasing for D K D 0 , whence the interest of calculating C p (K) for discriminants as large as possible to expect the existence of lim sup K∈K (C p (K)) of a different nature (see the very instructive example discussed in the § 4.2.3 (i)).

We shall adapt the following PARI program [13, § 3.2] (testing the p-rationality of any number field K), that we recall for the convenience of the reader (for this, choose any monic irreducible polynomial P and any prime p; the program gives in S the signature (r 1 , r 2 ) of K, then r := r 2 +1; recall that from K = bnf init(P, 1), one gets D K = component(component(K, 7), 3) and that from C8 = component(K, 8), the structure of the class group, the regulator and a fundamental system of units are given by component(C8, 1), component(C8, 2), and component(C8, 5), respectively; whence the class number given by h K = component(component(C8, 1), 1)):

For n = 0 one gets C K [2, 2, 2, 2, 2] 
. Taking n large enough in the program allows us to compute directely the structure of T K as is done by a precise (but longer) program in [START_REF] Pitoun | Computing the torsion of the p-ramified module of a number field[END_REF]. This gives the p-valuation in vptor of # T K as rapidely as possible; for this, explain some details about PARI (from [START_REF]PARI/GP, version 2.9.0[END_REF]).

Let K ∈ K real be linearly disjoint from Q c ; let K(p n ) be the ray class field of modulus (p n ), n ≥ 2 (resp. n ≥ 3) if p = 2 (resp. p = 2); indeed, from [13, Theorem 2.1], these conditions on n are sufficient to give the p-rank t K =: t of T K . Thus, for n large enough, the p-structure of Gal(

K(p n )/K) is of the form [p a , p a1 , . . . , p at ], with a ≥ a 1 ≥ • • • ≥ a t , in Hpn := component(component(Kpn, 5), 2), where Kpn = bnrinit(K, p n ) and p a = [K(p n ) ∩ K c : K]. Then # T K = [K(p n ) : K] × p -a (up to a p-adic unit)
, where p a is the largest component given in Hpn (whence the first one in the list, under the condition n max(a 1 , . . . , a t )); so we have only to verify that p n is much larger than the exponent max(p a1 , . . . , p at ) of T K .

In practice, and to obtain fast programs, we must look at the order of magnitude of the results to increase n if necessary; in fact, once the part K = bnf init(P, 1) of the program is completed, a large value of n does not significantly increase the execution time. For instance, with P = x2 -4194305 and p = 2, one gets the successive structures for 2 ≤ n ≤ 16:

showing that n must be at least 13 to give T K Z/2 11 Z × Z/2Z. In the forthcomming numerical results, if any doubt occurs for a specific field, it is sufficient to use the previous program with bigger n.

Numerical investigations for real quadratic fields

Let K = Q( √ m), m > 0 squarefree. We have # W K = 2 for p = 2 & m ≡ ±1 (mod 8), # W K = 3 for p = 3 & m ≡ -3 (mod 9
), and we are mainely concerned with the p-class group C K and the normalized regulator

R K . When p > 2 is unramified, we have v p ( # R K ) = δ p (ε) for the fundamental unit ε of K and if p = 2 is unramified, we have δ 2 (ε) := v 2 ε 2•(2 f -1) -1 2 4-f
where f is the residue

degree of 2 in K (see Remarks 2.3 (i), (ii)). So, we may compute v p ( # T K ) as v p ( # C c K ) + δ p (ε) + v p ( # W K )
and we shall compare with the direct computation of the structure of T K as explain above. Remark that, for p = 2,

# C K = 2 • # C c K (instead of # C c K ) if and only if m ≡ 2 (mod 8), in which case H K ∩ K c = K( √ 2) is unramified over K.
We have the following result, about v p ( # R K ), when p ≥ 2 ramifies:

Proposition 4.1. For K = Q( √ m) real and p | D K , v p ( # R K ) is given as follows: (i) For p 6 ramified, # R K ∼ 1 √ m • log p (ε) and v p ( # R K ) = δ if v p (ε p-1 -1) = 1 + 2 δ, where p | p, δ ≥ 0. (ii) For p = 3 ramified, # R K ∼ 1 √ m • log 3 (ε) (resp. # R K ∼ 1 3 √ m • log 3 (ε)) if m ≡ -3 (mod 9) (resp. m ≡ -3 (mod 9)). Then v 3 ( # R K ) = (v p (ε 6 -1) -2 -δ)/2 where p | 3 and δ = 1 (resp. δ = 3) if m ≡ -3 (mod 9) (resp. m ≡ -3 (mod 9)). (iii) For p = 2 ramified, # R K ∼ log 2 (ε) 2 √ m (resp. log 2 (ε) 4 ) if m ≡ -1 (mod 8) (resp. m ≡ -1 (mod 8)). Then, v 2 ( # R K ) = (v p (ε 4 -1) -4 -δ)/2
, where p | 2 and where δ = 1, 2, 3, 4 if m ≡ 2, 3, 6, 7 (mod 8), respectively).

Proof. Exercise using the expression (2.10) of # R K where N K/Q (U K ) is of index 2 in U Q (local class field theory), the fact that N K/Q (ε) = ±1 (i.e., Tr K/Q (log p (ε)) = 0), and the classical computation of a p-adic logarithm.

Remark 4.2. A first information is then the order of magnitude of δ p (ε) as D K → ∞ (p fixed). Its non-nullity for p 0 (K fixed) is a deep problem for which we can only give some numerical experiments. For p 0 and any K ∈ K real , an extensive schedule is discussed in [START_REF] Gras | Les θ-régulateurs locaux d'un nombre algébrique : Conjectures p-adiques[END_REF], for the study of p-adic regulators of an algebraic number η ∈ K × (giving "Frobenius determinants"), whose properties are characterized by the Galois Z p -module generated by its "Fermat quotient" 1 p (η p f -1 -1). These questions, applied in our study to a "Minkowski unit", are probably the explanation of the failure of the classical p-adic analysis of ζ p -functions (among many other subjects in number theory) since such Fermat quotients problems are neither easier nor more difficult than, for instance, the famous problem of Fermat quotients of the number 2, for which no one is able to say, so far, how much p are such that 1 p (2 p-1 -1) ≡ 0 (mod p).

4.1.

Maximal values of v p ( # R K ). Consider a prime p fixed and the family K

real . The following programs find the successive maxima of δ p (ε) with the corresponding increasing D K ∈ [bD, BD]; the programs use the fact that for p unramified, in the inert case,

ε p+1 ≡ N K/Q (ε) (mod p), otherwise, ε p-1 ≡ 1 (mod p).
We shall indicate if necessary the maximal value obtained for C p (K) defined by the expression (3.1) by computing The next discriminant in [5•10 7 , 5•10 8 ] (two days of computer) is For For large p (ramified or not) there are few solutions in a reasonable interval since we have, roughly speaking, Prob δ p (ε) ≥ δ ≈ p -δ , otherwise, the solutions are often with δ p (ε) = 1, large D K , C p (K) being rather small as we shall analyse now.

v p ( # T K ) = δ p (ε) + v p ( # C c K ) + v p ( # W K ).
D K = 214203013, where δ 2 (ε) = 26, v 2 (h K ) = 1, v 2 ( # W K ) = 0, v 2 ( # T K ) = 27, C 2 (K) = 1.951261.
D K = 80882380 = 4 • 5 • 239 • 16921, δ 2 (ε) = 28, v 2 (h K ) = 2, v 2 ( # W K ) = 0, v 2 ( # T K ) = 30, C 2 (K) = 2.
v 3 (h K ) = v 3 ( # W K ) = 0, v 3 ( # T K ) = 19, C 3 (K) = 2.307828.

4.2.

Experiments for a conjectural upper bound -Quadratic fields. We only assume K = Q( √ 2) when p = 2 to always have K ∩ Q c = Q. We have given previously programs for the maximal values of v p ( # R K ); we now give the behaviour of the whole v p ( # T K ) for increasing discriminants; for this purpose, we compute: The larger computations in § 4.1.1 show the largest case D K = 214203013 with h K = 2 and δ 2 (ε) = 26, giving ∆ 2 (K) ≈ -13.1628, the best local minimum and gives C 2 (K) = 1.951261. For the ramified case

∆ p (K) := log ∞ ( √ D K ) log ∞ (p) -v p ( # T K ) and C p (K) := vp( # T K ) • log ∞ (p) log ∞ ( √ D K ) . 4.
D K = 4 • 20220595, we obtained δ 2 (ε) = 28, C 2 (K) = 2.284033. But the case D K = 81624 = 8 • 3 • 19 • 179, for which h K = 8, with the valuation v p ( # T K ) = 20, gives C 2 (K) = 2.
4514 and shows, once again, that genera theory may modify the results for p = 2 and more generally for p | d. Note that in the above results, there is no solution D K ∈ [20406, 10 6 ]. To illustrate this, we use the same program for D K ∈ [81628, 5 • 10 5 ]: 4.2.2. Program for p ∈ [START_REF] Cohen | Heuristics on class groups of number fields, Number Theory[END_REF]50]. In this case, genera theory does not intervenne. We do not write the cases where v p ( # T K ) = 0 (p-rational fields). The constant C p (K) has some variations for very small D K but stabilizes and seems locally decreasing for larger D K ; so we mention the maximal ones, but the last value is more significant to evaluate an upperbound: {n=16;bD=5;BD=10^6;forprime(p=3,50,print(" ");print("p=",p);ymin=10; for(D=bD,BD,e=valuation(D,2) 

;M=D/2^e;if(core(M)!=M,next); if((e==1 || e>3)||(e==0 & Mod(M,4)!=1)||(e==2 & Mod(M,4)==1),
real be the family of real quadratic fields; we consider C p (K) and try to understand its behavior regarding p and D K : (i) For p 0, an estimation of C

(2) 

p := sup K∈K (2) real (C p (K))
p 0 = 13599893, one has v p0 ( # T Q( √ 19 
) ) = 1, whence C

(2) p0 ≥ 7.5855. The following program can be used for huge values of p to find quadratic fields K such that v p ( # R K ) ≥ 1; in practice one never finds v p ( # R K ) ≥ 2 for "usual" discriminants. However, for these solutions, one must compute v p ( # T K ) with the classical program of Section 3 to be sure of the result (we treat separately the case p 0 | D K ). {p=13599893;pp=p^2;for(D=5,5*10^8,e=valuation(D,2);M=D/2^e;if(core(M)!=M,next); if((e==1||e>3)||(e==0 & Mod(M,4)!=1)||(e==2 & Mod(M,4)==1),next);s=kronecker(D,p); if(s==0,next);E=quadunit(D);nu=norm(E);u=(1+nu-nu*s+s)/2;P=component(E,1)+Mod(0,pp); e1=component(E,2);e2=component(E,3);A=Mod(e1+e2*x,P)^(p-s)-u;if(A==0,print(D)))}

The next discriminants D K > 4 • 19, up to 5 • 10 8 (more that two days of computer), for which v p0 ( # T K ) ≥ 1 (in fact = 1), are: Thus we notice, as expected, a significant decrease of the function C p0 (K) since we did not find any v p0 ( # T K ) > 1, until D K ≤ 5 • 10 8 , knowing that other quadratic fields with arbitrary v p0 ( # T K ) exist with huge discriminants, as:

D K = p 4 0 + 4 = 34209124997537575597791879605, for which C p0 (K) = 0.4999.
This field is the first element of families [START_REF] Amice | Fonctions zêta p-adiques des corps de nombres abéliens réels[END_REF]. Note that for ρ -1 = 10 and p 0 = 13599893, D K ≈ 10 157 . Unfortunately, we ignore what happens for 5 • 10 8 < D K < p 4 0 + 4 because of the order of magnitude; to get C p0 (K) < 1.3, we must have for instance v p0 ( # T K ) = 1 and D K > 94334377272, then D K > 9333929793774 to get C p0 (K) < 1.1. We then have the following alternative: either C p0 (K) < 7.5855 for all D K > 4 • 19, whence C

K = Q a 2 •p 2ρ 0 + b 2 , a ≥ 1, b ∈ {1, 2}, described in Subsection 4.3, for which δ p0 (ε K ) = ρ -1, whence v p0 ( # T K ) ≥ ρ -1 and C p (K) < 1 + o
(2) p0 = 7.5855, or C

(2) p0 is greater than 7.5855 or infinite. The existence of infinitely many K ∈ K [START_REF] Byeon | Indivisibility of class numbers and Iwasawa λ-invariants of real quadratic fields[END_REF] real such that C p0 (K) > 7.5855 remains possible but assumes the strong condition v p0

( # T K ) > 0.4618 • log ∞ ( √ D K ) for infinitely many K ∈ K (2)
real . The most credible case should be that, for each p, there exist finitely many

K ∈ K (2) real for which v p ( # T K ) log ∞ ( √ D K ), whence C p (K) log ∞ (p); so for "almost all" K ∈ K (2)
real , we would have C p (K) 1 (and often 0 as explained in (iii)), except for some critical infinite families for which C p (K) ≤ 1 + o(1); if there is no other possibilities, C

(2) p does exist and is equal to max D K ≤D0 (C p (K)) for a sufficiently large D 0 .

(ii) The existence of C p (over K real ) essentially depends on v p ( # R K ) since the influence of v p ( # C c K ) seems negligible, which is reinforced by classical heuristics on class groups [START_REF] Cohen | Heuristics on class groups of number fields, Number Theory[END_REF][START_REF] Cohen | Class groups of number fields: Numerical heuristics[END_REF], or by specific results in suitable towers [START_REF] Tsfasman | Infinite global fields and the generalized Brauer-Siegel theorem, Dedicated to Yuri I. Manin on the occasion of his 65th birthday[END_REF]Proposition 7.1], then, mainely, by strong conjectures (and partial proofs) in [START_REF] Ellenberg | Reflection principles and bounds for class group torsion[END_REF] as # C K ,p,d |D K | for any number field of degree d, i.e., for all > 0 the existence of C ,p,d such that:

log ∞ ( # C K ) ≤ log ∞ (C ,p,d ) + • log ∞ ( |D K |),
strengthening the classical Brauer theorem (existence of an universal constant C 0 such that, log ∞ (h K ) ≤ C 0 • log ∞ ( |D K |) for all number field K); for quadratic and cyclic cubic fields, C 0 = 1 (Remark 2.2).

(iii) For any fixed p, lim inf where a lower boud of the density of p-rational fields is given for p > 3). Indeed, as D K → ∞, statistically, "almost all" real quadratic fields K are such that # T K = 1.

(iv) Now, if K is fixed and p → ∞, lim inf p (C p (K)) = 0. One may see this as an unproved generalization, for v p ( # R K ), of theorems of Silverman [START_REF] Silverman | Wieferich's criterion and the abc-conjecture[END_REF], Graves-Murty [START_REF] Graves | The abc conjecture and non-Wieferich primes in arithmetic progressions[END_REF] and others about Fermat quotients of rationals, showing the considerable difficulties of such subjects, despite the numerical obviousness since in practice, "for almost all p", v p ( # T K ) = 0. We have conjectured, after numerous calculations and heuristics, that, for K ∈ K real fixed, the set of primes p, such that T K = 1, is finite [10, Conjecture 8.11], i.e., C p (K) = 0 for all p 0; otherwise lim sup

p (C p (K)) = ∞.
If this conjecture is false for the field K, there exists an infinite set of prime numbers

p i such that v pi ( # T K ) ≥ 1 giving C pi (K) ≥ log ∞ (p i ) log ∞ ( √ D K )
arbitrary large as i → ∞.

But this is not incompatible with the existence, for each i, of C pi < ∞; indeed, in that case, C pi (K) may be very large with decreasing values of the C pi (K ), for D K D K as shown, for instance in K

(2) real , by the example given in (i). If, on the contrary, the conjecture is true over K [START_REF] Byeon | Indivisibility of class numbers and Iwasawa λ-invariants of real quadratic fields[END_REF] real (or more generaly over K real ), for each fixed non-p-rational field K, let p K = sup T K,p =1 (p); then it will be interesting to have a great lot of C p K (K), which is of course non-effective.

4.3.

A special family of quadratic fields. Consider, for p fixed, the field:

K = Q( a 2 •p 2ρ + 1), with ρ ≥ 2, a ≥ 1, p a ;
assuming that m := a 2 • p 2ρ + 1 is a squarefree integer, its fondamental unit is ε K = a • p ρ + √ m and D K = m (for a•p even) or 4 m (for a • p odd); the case of m = a 2 •p 2ρ + 4 would be similar. From the formula (2.8), we have

h K < 1 2 • √ D K ,
and an upper bound being a • p ρ , this allows to get v p ( # C K ) ≤ ρ + log ∞ (a) log ∞ (p) to take into account the possible (incredible) case where h K is a maximal pth power. As

δ p (ε K ) + v 2 ( # W K ) = ρ -1 for these fields, it follows: ρ -1 ≤ v p ( # T K ) = v p ( # C K ) + δ p (ε K ) + v p ( # W K ) < 2 ρ + log ∞ (a) log ∞ (p) .
Thus, since

log ∞ ( √ D K ) log ∞ (p) ≈ ρ + log ∞ (a)
log ∞ (p) , we have proved, in this particular case, that:

ρ -1 ρ + log ∞ (2 a) log ∞ (p) ≤ C p (K) < 2 ρ + log ∞ (a) log ∞ (p) ρ + log ∞ (a) log ∞ (p) ∈ [1, 2[.
We shall assume the conjecture that, for all p, m := a 2 • p 2ρ + 1 is squarefree 2 for infinitely many integers ρ ≥ 2. Whence the partial result:

Theorem 4.4. Let K (2)
real be the family of real quadratic fields and let:

C p (K) := vp( # T K ) • log ∞ (p) log ∞ ( √ D K ) , for K ∈ K (2) 
real and p ≥ 2.

Then, under the above conjecture on m := a 2 • p 2ρ + 1, ρ ≥ 2, one has, for each fixed p, C p (K) ∈ [0, 2[ for an infinite subset of K

real . Moreover, if we consider the estimation of v p ( # C K ) largely excessive, as explained in the § 4.2.3 (ii), one may conjecture that, for the above family of fields K = Q( a 2 • p 2ρ + 1), ρ ≥ 2, one has:

ρ -1 ≤ v p ( # T K ) < ρ • (1 + o(1)),
and the statement of the theorem becomes:

For each p ≥ 2, C p (K) is asymptotically equal to 1 for an infinite subset of K

(2) real . Indeed, v p ( # T K ) (in vptor) and v p ( # C K ) (in vph) are given by the following program, to illustrate the relation ρ -

1 ≤ v p ( # T K ) < ρ • (1 + o(1)).
We vary p and ρ in intervals such that, for instance, log ∞ (m) < 40 (just choose a, n large enough, and copy and paste the program to get complete tables): {a=1;B=40;n=26;forprime(p=2,20,for(rho=2,B/(2*log(p)),m=a^2*p^(2*rho)+1; if(core(m)!=m,next);D=m;if(Mod(m,4)!=1,D=4*m);P=x^2-m;K=bnfinit(P,1); Kpn=bnrinit(K,p^n);C5=component(Kpn,5);Hpn0=component(C5,1); Hpn=component(C5,2);Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p); Cp=vptor*log(p)/log(sqrt(D));h=component(component(component(K,8),1),1); vph=valuation(h,p); print("p=",p," m=",m," rho=",rho," vptor=",vptor," Cp=",Cp," vph=",vph)))} a=1, p=2, D=m m=17 rho=2 vptor=1 Cp=0.4893010842... vph=0 m=65 rho=3 vptor=3 Cp=0.9962858772... vph=1 2 The conjecture is true for integers of the form n 2 + 1 [START_REF] Heath-Brown | Square-Free Values of n 2 + 1[END_REF], but we ignore if this remains true for n = a • p ρ , p prime, ρ ∈ N, a ≥ 1; but this is not so essential (see Remark 4.5). , X and Y of same parity for m ≡ 1 (mod 4), since this only concerns the cases p = 2 (in which case this can modify ρ into ρ -1) and p = 3 (since any cube of unit is of the suitable form and this also modifies the choice of ρ).

For K = Q( a 2 • p 2ρ + 4), a odd, ε K = a • p ρ + √ m 2 , K is unramified
In K = Q( √ m), η may be a p-power of the fundamental unit ε K , but this goes in the good direction to get an upper bound of

C p (K), if we use δ p (η) instead of δ p (ε K ) to compute v p ( # T K ), since δ p (ε K ) ≤ δ p (η). Lemma 4.6. The number η = 1 + p ρ • (X + Y • √ m), X, Y ∈ Z, is a unit of Q( √ m) if and only if X = p ρ • a and a • (2 + p 2ρ • a) = m • b 2 (resp. a • (1 + 2 2ρ-2 • a) = m • b 2 ) if p = 2 (resp. p = 2), a, b ∈ Z.
Proof. We have N K/Q (η) = ±1 if and only if:

1 + p ρ • (X + Y • √ m) + p ρ • (X -Y • √ m) + p 2ρ • (X 2 -m • Y 2 ) = ±1 which is equivalent (since -1 is absurd for ρ ≥ 2) to 2 • X + p ρ • X 2 = m • p ρ • Y 2 . For p = 2, this yields X = p ρ • a, Y = b, such that a • (2 + p 2ρ • a) = m • b 2 . For p = 2, one must consider the relation a • (1 + 2 2ρ-2 • a) = m • b 2 , whence in practice the relation a • (1 + 2 2ρ • a) = m • b 2 replacing ρ by ρ -1.
So, we shall fix ρ large enough, increase a in some interval and write a•(2+p 2ρ •a) (resp. a • (1 + 2 2ρ • a)) under the form m • b 2 , m sqarefree. We then compute the successive minima of D K for K = Q( √ m), to try to get maximal values for C p (K):

{p=3;rho=21;n=rho+6;ba=10^8+1;Ba=2*10^8;pp=p^(2*rho);Dmin=10^100;d=2; if(p==2,d=1);for(a=ba,Ba,B=a*(d+pp*a);m=core(B);D=m;if(Mod(m,4)!=1,D=4*m); if(D<Dmin,Dmin=D;b=component(core(B,1),2);P=x^2-m;K=bnfinit(P,1); Kpn=bnrinit(K,p^n);C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2); Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p);Cp=vptor*log(p)/log(sqrt(D)); h=component(component(component(K,8),1),1);vph=valuation(h,p); print("D=",D," a=",a," b=",b," vptor=",vptor," vph=",vph," Cp=",Cp)))}

We have done a great lot of experimentations with very large discriminants without obtainig any C p (K) > 2, except, for p = 2 and the known case (see § 4.2.1):

D=81624 a=9728 b=557872 vptor=20 vph=3 Cp=2.45147522
which corresponds to a too small discriminant since the stabilisation of C p (K) seems better and better as soon as Same remarks as for the case p = 3; despite genera theory, it seems that C p (K) remains close to 1 and is not increasing substantially in the process.

D K 0. Moreover, v 2 (C K ) = 3

Numerical investigations for cyclic cubic fields

For the computations in the set K

(3) ab of cyclic cubic fields, we shall use the direct calculation of # T K from the program testing the p-rationality, taking n large enough.

See [START_REF] Hofmann | Valuations of p-adic regulators of cyclic cubic fields[END_REF] for statistics on v p (R K,p ) = v p ( # R K ) + 2 (resp. v p ( # R K ) + 1) in the non-ramified (resp. ramified) case for cyclic cubic fields of conductors up to 10 8 ; this gives, for cubic fields, the analogue of the computation of δ p (ε) for quadratic fields in Subsection 4.1.

Note that, due to Galois action, the integers v p ( # T K ) are even if p ≡ 2 (mod 3) and arbitrary if not (same remark for v p ( # C K ) and

v p ( # R K )); then v 2 ( # W K ) = 2 if 2 splits in K, otherwise v 2 ( # W K ) = 0 and v p ( # W K ) = 0 for p > 2.
5.1. Maximal values of v p ( # T K ). The program uses the well-known classification of cyclic cubic fields [START_REF] Ennola | On Cyclic Cubic Fields[END_REF] with conductor f K ≤ Bf (see the formulas 2.11 giving the corresponding polynomials defining K), and processes as for the quadratic case. We give first the case p = 3 to see the influence of genera theory; we compute the successive maxima of v p ( # T K ) (in vptor) with the corresponding f K and the polynomial defining the field of conductor f K . We print in the first line the maximal value obtained for C p (K) in the selected interval.

5.2.

Experiments for a conjectural upper bound -Cubic fields. In the same way as for quadratic fields, we give, for each prime p, the successive minima of 

∆ p (K) = log ∞ (f K ) log ∞ (p) -v p ( # T K ) (in Ymin) with the value of C p (K) = vp( # T K ) • log ∞ (p) log ∞ (f K ) (in
v 2 ( # T K ) = 12 & ∆ 2 (K) ≈ -3.98595, seems exceptional, but the discriminant D K = 66825 is rather small. The Galois closure L of K contains Q( √ 33 
) and is defined by the polynomial:

Q = x 6 -60x 5 + 1131x 4 -6380x 3 -15708x 2 + 145200x + 170368; then v 2 ( # T L ) = 25, giving C 2 (L) ≈ 1.3476 instead of C 2 (K) ≈ 1.4973.
(ii) For p = 5 and P = x 3 + 197 x 2 + 718 x + 508, v 5 ( # T K ) = 8 is large, but D K = 1069350637 = 769 • 1390573 is rather large, giving C 5 (K) ≈ 1.2386.

(iii) For p = 7, P = x 3 + 95 x 2 + 839 x + 252, v 7 ( # T K ) = 5, with C 7 (K) ≈ 0.8856, but D K = 3486121421, while for P = x 3 + 114 x 2 + 804 x + 142, v 7 ( # T K ) = 2 with C 7 (K) ≈ 1.2286, but D K = 564.

(iv) We have computed C p (L) for the Galois closure L of the above fields K (Galois group S 3 ). The values C p (L) are smaller, although the v p ( # T L ) are roughly speaking twice of v p ( # T K ) (cf. Example (i)). This reinforces the idea that extensions L/K may give in general values of C p (L) smaller than those of C p (K).

7. Conjectures on v p ( # T K ) 7.1. p-adic statements. The numerical results (quadratic and cubic cases, with the particular family of quadratic fields studied in Subsections 4.2, 4.3, 4.4) suggest the following conjecture that we state in its strongest form; we shall discuss about some conditions of application of such a conjecture, for instance assuming that the fields K are of given degree or are elements of specified families.

The points (i) and (ii) are equivalent statements: Conjecture 7.1. Let K ∈ K real (or any element of a specified family K ⊆ K real ), and let p ≥ 2 be a prime number. Let T K be the torsion group of the Galois group of the maximal abelian p-ramified pro-p-extension of K (under Leopoldt's conjecture).

(i) There exists a constant C p (K) =: C p , independent of K ∈ K, such that:

v p ( # T K ) ≤ C p • log ∞ ( √ D K ) log ∞ (p)
, for all K ∈ K.

(ii) The residue κ K,p of the normalized ζ-function ζ K,p (s) = p • [K ∩ Q c : Q] 2 d-1
ζ K,p (s) at s = 1 (see Subsection 2.2), is conjecturaly such that:

v p ( κ K,p ) ≤ C p • log ∞ ( √ D K ) log ∞ (p)
, for all K ∈ K.

We may propose the following conjecture which takes into account the numerical behaviour of the C p (K) that we have observed; but unfortunately, this would need inaccessible computations to be more convincing: Conjecture 7.2. Let K real be the set of all totally real number fields and let p ≥ 2 be any fixed prime number. Then lim sup Proof.

K∈K real ,D K →∞ vp( # T K ) • log ∞ (p) log ∞ ( √ D K ) = 1.
Let K ∈ K (d) ab . As p [K : Q], T K χ T eχ K
, where χ runs trough the set of irreducible rational characters of Gal(K/Q) (a set which is in bijection with that of cyclic subfields of K), e χ being the corresponding idempotent; then T eχ K is isomorphic to a submodule of T kχ , where k χ (cyclic) is the subfield of K fixed by the kernel of χ, and v p ( # T K ) = χ v p ( # T eχ K ). We have:

C p (K) = vp( # T K ) • log ∞ (p) log ∞ ( √ D K ) = χ vp( # T eχ K ) • log ∞ (p) log ∞ ( √ D K ) ≤ χ vp( # T kχ ) • log ∞ (p) log ∞ ( √ D K ) ; but D K = D [K:kχ] kχ • N kχ/Q (D K/kχ ) yields log ∞ ( √ D K ) ≥ [K : k χ ] • log ∞ D kχ for all χ.
Thus, if we have the inequalities

C p (k χ ) = vp( # T kχ ) • log ∞ (p) log ∞ D kχ ≤ C p for all χ,
the theorem follows with a constant C p , depending on the maximal number of cyclic subfields for elements of the set K

(d)
ab , which may be explicited. Let's illustrate this by means of random real biquadratic fields K for which we compute the invariants of K and its subfields (then vptor = v1 + v2 + v3 for p = 2): {p=3;n=18;N=2*10^2;B=10^6;vmax=0;for(j=1,B,m1=random(N)+1;m2=random(N)+1; P1=x^2-m1;P2=x^2-m2;P3=x^2-m1*m2;P=component(polcompositum(P1,P2),1); if(poldegree(P)!=4,next);D1=nfdisc(P1);D2=nfdisc(P2);D3=nfdisc(P3);D=nfdisc(P); K1=bnfinit(P1,1);Kpn=bnrinit(K1,p^n);C5=component(Kpn,5);Hpn0=component(C5,1); Hpn=component(C5,2);Hpn1=component(Hpn,1);v1=valuation(Hpn0/Hpn1,p); K2=bnfinit(P2,1);Kpn=bnrinit(K2,p^n);C5=component(Kpn,5);Hpn0=component(C5,1); Hpn=component(C5,2);Hpn1=component(Hpn,1);v2=valuation(Hpn0/Hpn1,p); K3=bnfinit(P3,1);Kpn=bnrinit(K3,p^n);C5=component(Kpn,5);Hpn0=component(C5,1); Hpn=component(C5,2);Hpn1=component(Hpn,1);v3=valuation(Hpn0/Hpn1,p); K=bnfinit(P,1);Kpn=bnrinit(K,p^n);C5=component(Kpn,5);Hpn0=component(C5,1); Hpn=component(C5,2);Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p); Cp1=v1*log(p)/log(sqrt(D1));Cp2=v2*log(p)/log(sqrt(D2)); Cp3=v3*log(p)/log(sqrt(D3));Cp=vptor*log(p)/log(sqrt(D)); if(vptor>vmax,vmax=vptor;print(D1," ",D2," ",D3," ",D," ", v1," ",v2," ",v3," ",vptor," ",Cp1," ",Cp2," ",Cp3," ",Cp)))} 

(K n ) ≤ λ n + µ p n + ν α • n • p n + O(p n )
for n 0, where the limit of the upper bound is 0; whence the result giving an example of family (K c ) for which the Conjecture 7.1 is verified.

Note that if K ∈ K real is p-rational (i.e., C p (K) = 0), then C p (K n ) = 0 for all n ≥ 0: see [START_REF] Gras | Class Field Theory: from theory to practice[END_REF], Proposition IV.3.4.6 from the formula of invariants (Theorem 3.3) giving C p (L) = 0 for any p-primitively ramified p-extension L of K (Definition 3.4).

Remark 7.5. In [START_REF] Hajir | On the invariant factors of class groups in towers of number fields[END_REF], Hajir and Maire define, in the spirit of an algebraic p-adic Brauer-Siegel theorem, the logarithmic mean exponent of a finite p-group A r i=1 Z/p ai Z, by the formula M p (A) :=

1 r • log ∞ ( # A) log ∞ (p) = 1 r r i=1 a i = 1 r
• v p ( # A), and applied to tame generalized class groups. In the case of T K , we get v p ( # T K ) = rk p (T K ) • M p (T K ), and we would have conjecturally, for any K ∈ K real :

M p (T K ) ≤ C p • 1 rkp(T K ) • log ∞ ( √ D K ) log ∞ (p) ≤ C p • log ∞ ( √ D K ) log ∞ (p) .
But in [21, Theorems 0.1, 1.1, Proposition 2.2], this function M p is essentially used for class groups in particular infinite towers with tame restricted ramification for which some explicit upper bounds are obtained.

In this context, we can suggest the following direction of search: Proposition 7.6. Let K be a totally real number field and let L be the (totally real) p-Hilbert tower of K; we assume that L/K is infinite. Let K be a set of subfields K n of L, with K n ⊂ K n+1 and [K n : K] = p n for all n ≥ 0.

Then C p (K n ) = vp( # T Kn ) • log ∞ (p) p n • log ∞ ( √ D K )
, and Conjecture 7.1 is true for K as soon as

v p ( # T Kn ) is "essentially" a linear function of the degree [K n : K] = p n as n → ∞ (i.e., v p ( # T Kn ) = α n + β p n + γ for all n 0, α, β ∈ N, γ ∈ Z). Proof. Since K n /K is unramified, D Kn = D [Kn:K] K • N K/Q (D Kn/K ) = D p n K . So, for all n 0, C p (K n ) = (α n + β p n + γ) • log ∞ (p) p n • log ∞ ( √ D K )
, equivalent to the constant

β • log ∞ (p) log ∞ ( √ D K ) at infinity. Whence the existence of C p over K. If β = 0, then C p (K n ) → 0.
The orders # C Kn have this property of "linearity" and rk p (C Kn ) → ∞ under some conditions [19, Theorem A]; thus, it would remain the question of a similar linearity for the valuations, according to [K n : K], of the normalized regulators R Kn .

7.2.

Comparison "archimedean" versus "p-adic". The above considerations are, in some sense, a p-adic approach of some deep results (Brauer-Siegel-Tsfasman-Vladȗt ¸theorems [START_REF] Tsfasman | Infinite global fields and the generalized Brauer-Siegel theorem, Dedicated to Yuri I. Manin on the occasion of his 65th birthday[END_REF][START_REF] Zykin | Brauer-Siegel and Tsfasman-Vladȗt ¸theorems for almost normal extensions of global fields[END_REF] and broad generalizations in [START_REF] Tsimerman | Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points[END_REF], then [START_REF] Louboutin | The Brauer-Siegel Theorem[END_REF] for quantitative bounds from the Brauer-Siegel theorem) on the behavior, in a tower L := n≥0 K n of finite extensions K n /K, of the quotient

BS Kn := log ∞ (h Kn • R Kn,∞ ) log ∞ ( D Kn )
.

Of course, in order to infer the p-adic case, our purpose is to deal, in the archimedean one, with any K ∈ K real or with families K fulfilling some specific conditions (e.g.,

[K : Q] = d, [K : Q] log ∞ ( √ D K )
→ 0), which is possible thanks to [44, Theorem 1], at least for Galois fields. For any

K ∈ K real , let BS K := log ∞ (h K • R K,∞ ) log ∞ ( √ D K )
.

We shall consider the following normalized quotient

BS K = BS K -1 using # T K,p∞ instead of h K • R K,∞ : (7.1) BS K := log ∞ h K • R K,∞ √ D K log ∞ ( √ D K ) = log ∞ ( # T K,p∞ ) log ∞ ( √ D K ) , K ∈ K (from formula (2.2)),
and presume that this function is bounded over K. When the degree is constant in the family, the classical Brauer-Siegel theorem applies since

[K : Q] log ∞ ( √ D K ) → 0.
The following program gives, for the family K In the same way, the family K 

log ∞ ( # T K,p∞ ) ≤ O(1) • log ∞ ( √ D K ) written log ∞ ( # T K,p∞ ) ≤ C p∞ • log ∞ ( √ D K ),
giving, in some sense, the inequality of the p-adic Conjecture 7.1 with the audacious convention for the infinite place p ∞ and

T K,p∞ = h K • R K,∞ √ D K : log ∞ (p ∞ ) = 1 & v p∞ ( # T K,p∞ ) = log ∞ ( # T K,p∞ ).
in which case, the constant C p∞ is the maximal value reached by BS K = BS K -1 over the given family K.

(ii) One may wonder about the differences of behaviour and properties between C p∞ (K) and C p (K), as D K → ∞, because of the choosen normalizations and the role of the discriminant in the definitions. The only change could be to define:

T K,p∞ = h K • R K,∞ and C p∞ (K) = log ∞ (T K,p∞ ) log ∞ ( √ D K ) = C p∞ (K) + 1 = BS K ,
by reference to Brauer-Siegel context, but in that case, we should have (from (2.3)) T K,p∞ = κ K,p∞ • √ D K , with κ K,p∞ = 1 2 d-1 • κ K,p∞ , which cannot be a suitable normalization of the ζ-function and its residue; indeed, on the interval [2, 10 6 ] of discriminants of real quadratic fields, the local maxima of (κ K,p∞ , κ K,p∞ • √ D K ) increase excessively from (0.215204, 0.481211) to (2.732814, 2705.305810).

(b) The family of Subsection 4.3 shows that p-adic regulators may tend p-adically to 0, even in simplest cases, and it should be of great interest to find other such critical sub-families of units, depending on arbitrary large p-powers, to precise the relation between v p ( # R K,p ) and log ∞ (

√ D K ), K ∈ K (d)
real , for degrees d > 2. After the writing of this paper we have found the reference [START_REF] Washington | A Family of Cubic Fields and Zeros of 3-adic L-Functions[END_REF] about the family of cyclic cubic fields K defined by P = x 3 -(N 3 -2N 2 + 3N -3) x 2 -N 2 x -1 for any N ∈ Z, N = 1, near 1 in Z 3 ; this paper of Washington deals with p = 3, to obtain 3-adic L-functions with zeros arbitrarily close to 1, but we observed that any p ≥ 2 gives interesting non-p-rational fields with large v p ( # T K,p ) and C p (K) < 1 for all. The reader may play with the following program (choose p ≥ 2, the intervals defining N = 1 + a p k , a lower bound vp for vptor and n large enough): {p=2;bk=2;Bk=10;ba=1;Ba=12;vp=10;n=36;print("p=",p);for(k=bk,Bk,for(a=ba,Ba, if(Mod(a,p)==0,next);N=1+a*p^k;P=x^3-(N^3-2*N^2+3*N-3)*x^2-N^2*x-1;K=bnfinit(P,1); Kpn=bnrinit(K,p^n);C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2); Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p); if(vptor>vp,D=component(component(K,7),3);Cp=vptor*log(p)/log(sqrt(D)); print("a=",a," k=",k," D=",D," vptor=",vptor," Cp=",Cp);print("P=",P))))} giving for instance the interesting cases with a = 1 (p = 2, 3, 5): (i) The existence of C K < ∞, for a given K, only says that the conjecture proposed in [START_REF] Gras | Les θ-régulateurs locaux d'un nombre algébrique : Conjectures p-adiques[END_REF]Conjecture 8.11], claiming that any number field is p-rational for all p 0, is true for the field K; for this field, lim sup p (C p (K)) = 0.

(ii) If C p does exist for a given p, we have an universal p-adic analog of Brauer-Siegel theorem (Conjecture 7.1). The existence of C p < ∞ may be true taking instead sup K∈K (C p (K)), for particular families K (e.g., extensions of fixed degree or subfields of some infinite towers as in [START_REF] Hajir | On the invariant factors of class groups in towers of number fields[END_REF][START_REF] Ivanov | Reconstructing decomposition subgroups in arithmetic fundamental groups using regulators[END_REF][START_REF] Tsfasman | Infinite global fields and the generalized Brauer-Siegel theorem, Dedicated to Yuri I. Manin on the occasion of his 65th birthday[END_REF][START_REF] Zykin | Brauer-Siegel and Tsfasman-Vladȗt ¸theorems for almost normal extensions of global fields[END_REF]); but we must mention that for the invariants T K,p , the transfer map T K,p -→ T L,p is injective in any extension L/K in which Leopoldt's conjecture is assumed [9, Theorem IV.2.1], which leads to a major difference from the case of p-class groups.

(iii) Furthermore, it seems that lim sup (d) When p and D K are not independent, this yields some interesting potential results as the following one: let K real (p e ) be the set of fields K ∈ K real of discriminant D K = p e , for any fixed p-power p e , e ≥ 1; then, as soon as C p (K) < 2 e for all K in some subfamily K(p e ) of K real (p e ), K is p-rational since then C p (K) = 2 e • v p ( # T K ). For instance, if we were able to prove that C p (K) < 2 for all K ∈ K 

K∈K(

  C p (K)), and of lim sup K∈K (C p (K)), for any given infinite set K ⊆ K real , and sup p (C p (K)), lim sup p (C p (K)) ∈ {0, ∞} for K fixed (see Conjectures 7.1, 7.

K∈K

  

  (K)) = 0 (see Byeon [2, Theorem 1.1], after Ono,

4 .

 4 at 2 giving a maximal C p (K) = 1.2222222215... (for a = 1, p = 3, ρ = 9, vptor = 11, vph = 3): a=1, p=3, D=m m=85 rho=2 vptor=1 Cp=0.4945750747656077295917504 vph=0 m=733 rho=3 vptor=3 Cp=0.9991705549452351082457751 vph=1 (...) m=109418989131512359213 rho=21 vptor=23 Cp=1.0952380952380952380943703 vph=3 m=984770902183611232885 rho=22 vptor=22 Cp=0.9999999999999999999999159 vph=1 a=1, p=5, D=m m=629 rho=2 vptor=1 Cp=0.4995050064384236683280022 vph=0 m=15629 rho=3 vptor=2 Cp=0.6666489958698626477868625 vph=0 (...) m=37252902984619140629 rho=14 vptor=13 Cp=0.9285714285714285714263589 vph=0 m=931322574615478515629 rho=15 vptor=16 Cp=1.0666666666666666666665717 vph=2 a=1, p=7, D=m m=2405 rho=2 vptor=1 Cp=0.4998930943437939009946102 vph=0 m=117653 rho=3 vptor=2 Cp=0.6666647253436162691864834 vph=0 (...) m=3909821048582988053 rho=11 vptor=10 Cp=0.9090909090909090908873656 vph=0 m=191581231380566414405 rho=12 vptor=12 Cp=0.9999999999999999999995529 vph=1 a=1, p=11, D=m m=14645 rho=2 vptor=1 Cp=0.4999857604139424915125214 vph=0 m=1771565 rho=3 vptor=2 Cp=0.6666665620428398909421335 vph=0 (...) m=5559917313492231485 rho=9 vptor=10 Cp=1.1111111111111111110925908 vph=2 m=672749994932560009205 rho=10 vptor=9 Cp=0.8999999999999999999998884 vph=0 a=1, p=17, D=m m=24137573 rho=3 vptor=2 Cp=0.6666666601676951315812133 vph=0 m=6975757445 rho=4 vptor=3 Cp=0.7499999999810259247791427 vph=0 (...) m=168377826559400933 rho=7 vptor=6 Cp=0.8571428571428571423437840 vph=0 m=48661191875666868485 rho=8 vptor=8 Cp=0.9999999999999999999981866 vph=1 One sees, from these excerpts, the weak influence of vph = v p (C K ) giving very few C p (K) = 1 + o(1). Larger values of a, p, yields the same kind of results. Remark 4.5. Without assuming that m = a 2 • p 2ρ ± 1 (or m = a 2 • p 2ρ ± 4) is squarefree (which is indeed impossible for minus signs), the same program gives always C p (K) near 1 and in any case in [0, 2[ as far as we have tested this property; of course, if m = b 2 m with m squarefree, the unit ε = a • p ρ + b • √ m is not necessarily fundamental so that δ p (ε K ) ≤ δ p (ε ) and D K = m or 4 m may be very small (the program deals only with non-squarefree integers m): {B=60;for(a=1,18,forprime(p=2,19,for(rho=1,B/(2*log(p)),m=a^2*p^(2*rho)+1; n=rho+6;if(core(m)!=m,P=x^2-m;K=bnfinit(P,1);D=component(component(K,7),3); Kpn=bnrinit(K,p^n);C5=component(Kpn,5);Hpn0=component(C5,1); Hpn=component(C5,2);Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p); Cp=vptor*log(p)/log(sqrt(D)); print("a=",a," p=",p," m=",m," rho=",rho," vptor=",vptor," Cp=",Cp)))))} Then the biggest C p (K) are for trivial cases (m = 5 2 •41 and m = 250001 = 53 2 •89): Reciprocal study. We fix p ≥ 2, ρ ≥ 2, and we try to build units of the form η = 1 + p ρ • (X + Y • √ m), where X, Y ∈ Z and where m is a squarefree integer. It is not necessary to consider the case X+Y • √ m 2
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 73 Let d be a fixed positive integer and let p d. Let K (d) ab be the set of real abelian extension of Q whose degree divides d. Then the conjecture 7.1 is true for K (d) ab if and only if it is true for the subset of cyclic extensions of K (d) ab .

( 2 )

 2 real of real quadratic fields of discriminants D, consistent verifications for the original function BS: {Max=0;Min=1;for(D=10^8,10^8+10^6,e=valuation(D,2);M=D/2^e;if(core(M)!=M,next); if((e==1||e>3)||(e==0 & Mod(M,4)!=1)||(e==2 & Mod(M,4)==1),next);P=x^2-D; K=bnfinit(P,1);C8=component(K,8);h=component(component(C8,1),1); reg=component(C8,2);BS=log(h*reg)/log(sqrt(D));if(BS<Min,Min=BS; print(D," ",Min," ",Max));if(BS>Max,Max=BS;print(D," ",Min," ",Max)))} 0.647 < BS < 1.155 for D ∈ [10 5 , 2•10 5 ], 0.734 < BS < 1.136 for D ∈ [10 7 , 10 7 +10 5 ], 0.7657 < BS < 1.1239 for D ∈ [10 8 , 10 8 + 10 5 ], and 0.75738 < BS < 1.12713 for D ∈ [10 8 , 10 8 + 10 6 ] (more than two days of computer), showing: BS K = O(1) < 1. Then 0.773 < BS < 1.113 for the family K = Q( √ a 2 + 1), a ∈ [10 4 , 2 • 10 4 ].

( 3 )

 3 ab of cyclic cubic fields of conductors f , gives: 0.6653 ≤ BS ≤ 1.1478 for f ∈ [10 4 , 10 6 ], 0.7547 ≤ BS ≤ 1.1385 for f ∈ [10 6 , 2•10 6 ]. Remarks 7.7. (i) In the archimedean viewpoint, we have C p∞(K) = log ∞ ( # T K,p∞ ) log ∞ ( √ D K ), giving, from the expression (7.1) of BS K , log ∞ ( # T K,p∞ ) = BS K • log ∞ ( √ D K ); thus we obtain about the above calculations for the examples of fixed families K:

  p=2 k=9 D=17213619969^2 vptor=28 Cp=0.8234 P=x^3-134480895*x^2-263169*x-1 p=3 k=9 D=150102262056706213^2 vptor=23 Cp=0.6388 P=x^3-7625984944841*x^2-387459856*x-1 p=5 k=5 D=95397978509379^2 vptor=10 Cp=0.4999 P=x^3-30527349999*x^2-9771876*x-1 (c) Consider, for any p ≥ 2 and any K ∈ K real :C p (K) := vp( # T K,p ) • log ∞ (p) log ∞ ( √ D K ) , C p := sup K (C p (K)), C K := sup p (C p (K)).

K∈K(

  C p (K)) may be ≤ 1 for any p; then lim sup p (C p (K)) = ∞ or 0, for any K, depends on [10, Conjecture 8.11]. But computations for very large discriminants (of a great lot of quadratic fields for instance) is out of reach (see the Remarks of the § 4.2.3).

( 2 )

 2 real (p) (quadratic fields K = Q( √ p), p ≡ 1 (mod 4)), this would imply the conjecture of Ankeny-Artin-Chowla (see[39, § 5.6]), affirming that ε K =: u + v √ p is such that v ≡ 0

  .2.4 & Corollary III.3.6.3], [12, Lemma 3.1 & § 5]):

  4.1.1. Program for p = 2 unramified. For p = 2 unramified, we use the particular formula given in Remark 2.3 (ii).

	{bD=5;BD=5*10^7;Max=0;for(D=bD,BD,if(core(D)!=D,next);ss=Mod(D,8);s=0;
	if(ss==1,s=1);if(ss==5,s=-1);if(s==0,next);E=quadunit(D)^2;A=(E^(2-s)-1)/(2*s+6);
	A=[component(A,2),component(A,3)];delta=valuation(A,2);		
	if(delta>Max,Max=delta;print("D=",D," delta=",delta)))}		
	D=21	delta=1	D=1185	delta=8	D=115005 delta=13	D=1051385	delta=19
	D=41	delta=3	D=1201	delta=10	D=122321 delta=14	D=12256653 delta=21
	D=469 delta=5	D=3881	delta=11	D=222181 delta=16	D=14098537 delta=22
	D=645 delta=6	D=69973 delta=12	D=528077 delta=18	D=28527281 delta=25

  4.1.2. Program for p = 2 ramified. A similar program using Proposition 4.1(iii) gives analogous results for maximal values of δ 2 (ε):

	{bm=3;Bm=5*10^7;Max=0;for(m=bm,Bm,s=Mod(m,4);ss=Mod(m,8);	
	if(core(m)!=m || s==1,next);A=(quadunit(4*m)^4-1)/4;N=norm(A);v=valuation(N,2);
	if(s==2,delta=v-3);if(ss==3,delta=v-2);if(ss==7,delta=v-4);delta=delta/2;
	if(delta>Max,Max=delta;print("D=",4*m," delta=",delta)))}	
	D=28	delta=1	D=508	delta=6	D=28664	delta=13	D=15704072 delta=21
	D=124 delta=2	D=1784	delta=7	D=81624	delta=17	D=29419592 delta=22
	D=264 delta=3	D=10232 delta=8	D=1476668 delta=18	D=36650172 delta=23
	D=456 delta=5	D=21980 delta=9	D=2692776 delta=19	D=80882380 delta=28

  2.1. Program for p = 2. The numerical data are D K , v p ( # T K ) (in vptor; for this choose n large enough), the successive ∆ p (K) (in Ymin) and the corresponding C

					}
	D=17	m=17	vptor=1	Ymin=1.04373142...	Cp=0.4893
	D=28	m=7	vptor=2	Ymin=0.40367746...	Cp=0.8320
	D=41	m=41	vptor=4	Ymin=-1.32122399...	Cp=1.4932
	D=508	m=127	vptor=7	Ymin=-2.50565765...	Cp=1.5575
	D=1185	m=1185	vptor=10	Ymin=-4.89466432...	Cp=1.9587
	D=1201	m=1201	vptor=11	Ymin=-5.88498978...	Cp=2.1505
	D=3881	m=3881	vptor=12	Ymin=-6.03889364...	Cp=2.0130
	D=11985	m=11985	vptor=13	Ymin=-6.22552885...	Cp=1.9189
	D=26377	m=26377	vptor=14	Ymin=-6.65650356...	Cp=1.9064
	D=81624	m=20406	vptor=20	Ymin=-11.84164710...	Cp=2.4514

p (K) (in Cp); we omit the 2-rational fields (for them, vptor = 0): {p=2;n=36;bD=5;BD=10^6;ymin=5;for(D=bD,BD,e=valuation(D,2);M=D/2^e; if(core(M)!=M,next);if((e==1||e>3)||(e==0&Mod(M,4)!=1)||(e==2 & Mod(M,4)==1),next); m=D;if(e!=0,m=D/4);P=x^2-m;K=bnfinit(P,1);Kpn=bnrinit(K,p^n);C5=component(Kpn,5); Hpn0=component(C5,1);Hpn=component(C5,2);Hpn1=component(Hpn,1); vptor=valuation(Hpn0/Hpn1,p);Y=log(sqrt(D))/log(p)-vptor; if(Y<ymin,ymin=Y;Cp=vptor*log(p)/log(sqrt(D)); print("D=",D," m=",m," vptor=",vptor," Ymin=",Y," Cp=",Cp)))

  The interval[2, 10 6 ] was not always sufficient (see the cases p = 5, 7, 19, 29, above). For instance for p = 7, we ignore if the bound C p (K) = 1.8578 can be exceeded; we have computed up to D K ≤ 2 • 10 7 , where v p ( # T K ) takes at most the values 6 or 7 with C p (K) < 1.7821. So v p ( # T K ) ≥ 8 does exist for greater discriminants, but ) ≈ 1.8520, which is significant of the evolution of C p (K) as D K → ∞. The same program with p = 3, n > 18, taking discriminants, D K ∈ [10 6 , 2.5 • 10 7 ] then in [10 8 , 5 • 10 6 ] (two days of computer for each part), gives (p = 3):The case D K = 21242636 leads to C 3 (K) = 2.0837; but it is difficult to predict the behavior of C 3 at infinity. In the second part, no data between the two discriminants, which suggests an irregular decreasing of C 3 (K) as D K → ∞.Remark 4.3. From these calculations in the quadratic case, one may consider, in an heuristic framework, that we have the good following lower bounds for C p :C 3 ≈ 2.0837, C 5 ≈ 2.0926, C 7 ≈ 1.8578, C 11 ≈ 1.9971, C 13 ≈ 1.9955, C 17 ≈ 1.9805, C 19 ≈ 2.2379, C 23 ≈ 1.8559, C 29 ≈ 2.4759, C 31 ≈ 1.9520, C 37 ≈ 1.8471, C 41 ≈ 1.8354, C 43 ≈ 1.7974, C 47 ≈ 1.8025.

	D=8972 D=1014693	m=2243 m=1014693	vptor=4 vptor=9	Ymin=-2.39372069... Ymin=-2.70565175... Cp=2.4902 Cp=1.4298
	D=1631753 m=1631753 D=1074760 m=268690	vptor=5 vptor=10	Ymin=-2.47545212... Ymin=-3.67947724...	Cp=1.9805 Cp=1.5821
	p=19 D=1185256	m=296314	vptor=11	Ymin=-4.63493860...	Cp=1.7281
	D=109 D=2354577	m=109 m=2354577	vptor=1 vptor=12	Ymin=-0.20335454... Ymin=-5.32254344...	Cp=1.2552 Cp=1.7970
	D=193 D=6099477	m=193 m=6099477	vptor=2 vptor=13	Ymin=-1.10633396... Ymin=-5.88934151...	Cp=2.2379 Cp=1.8282
	D=2701 D=13495160	m=2701 m=3373790	vptor=3 vptor=14	Ymin=-1.65825418... Ymin=-6.52791825... Cp=2.2359 Cp=1.8736
	(...) D=21242636	m=5310659	vptor=16	Ymin=-8.32143995...	Cp=2.0837
	D=1482837 m=1482837 (...)	vptor=4	Ymin=-1.58706704...		Cp=1.6577
	D=6839105 m=6839105 D=100025621 m=100025621 vptor=13 vptor=5 D=24 m=6 vptor=1 D=29 m=29 vptor=2 D=105 m=105 vptor=3 D=488 m=122 vptor=4 D=1213 m=1213 vptor=6 D=1896 m=474 vptor=7 D=13861 m=13861 vptor=8 D=21713 m=21713 vptor=10 D=168009 m=168009 vptor=11 D=321253 m=321253 vptor=12 D=53 m=53 vptor=1 D=73 m=73 vptor=2 D=217 m=217 vptor=3 D=1641 m=1641 vptor=4 D=25037 m=25037 vptor=5 D=71308 m=17827 vptor=6 D=304069 m=304069 vptor=7 D=4788645 m=4788645 vptor=10 D=24 m=6 vptor=1 D=145 m=145 vptor=2 D=797 m=797 vptor=3 D=30556 m=7639 vptor=4 D=92440 m=23110 vptor=5 D=368013 m=368013 vptor=3 D=26321 m=26321 vptor=2 D=301 m=301 vptor=1 p=47 D=283596 m=70899 vptor=3 p=7 D=6520 m=1630 vptor=2 D=88 m=22 vptor=1 (...) p=43 D=187113 m=187113 vptor=3 D=2141 m=2141 vptor=2 D=73 m=73 vptor=1 p=41 D=124129 m=124129 vptor=3 D=3340 m=835 vptor=2 D=33 m=33 vptor=1 p=5 p=37 D=1294072 m=323518 vptor=4 D=90273 m=90273 vptor=3 D=6168 m=1542 vptor=2 D=8 m=2 vptor=1 p=31 D=30596053 m=30596053 vptor=5 D=53093 m=53093 vptor=4 D=41 m=41 vptor=2 D=33 m=33 vptor=1 p=29 p=3 D=740801 m=740801 vptor=4 print("D=",D," m=",m," vptor=",vptor," Ymin=",Y," Cp=",Cp))))} Ymin=-2.32747604... Cp=1.8709 Ymin=-4.61627031... Cp=1.5506 next); Ymin=0.44639463... Ymin=-0.46747762... Ymin=-0.88189136... Ymin=-1.18266604... Ymin=-2.76826302... Ymin=-3.56498395... Ymin=-3.65959960... Ymin=-5.45532735... Ymin=-5.52410420... Ymin=-6.22909046... Ymin=0.23344053... Ymin=-0.66709383... Ymin=-1.32864091... Ymin=-1.70010976... Ymin=-1.85352571... Ymin=-2.52836443... Ymin=-3.07782014... Ymin=-5.22138818... Ymin=-0.18340170... Ymin=-0.72123238... Ymin=-1.28335992... Ymin=-1.34640462... Ymin=-2.06196222... Cp=1.7018 Ymin=-1.33566464... Cp=1.8025 Cp=1.5074 Ymin=-0.67821659... Cp=1.5131 Cp=1.7476 Ymin=-0.25884526... Cp=1.3492 Cp=1.5640 Cp=1.2246 Ymin=-1.33094416... Cp=1.7974 Ymin=-0.83246977... Cp=1.7130 Cp=2.0926 Ymin=-0.40479944... Cp=1.6801 Cp=1.7847 Ymin=-1.36552680... Cp=1.8354 Cp=1.7283 Ymin=-0.96743241... Cp=1.9369 Cp=1.5890 Ymin=-0.42232716... Cp=1.7311 Cp=1.7392 Cp=1.7949 Ymin=-1.37588711... Cp=1.8471 Cp=1.5005 Ymin=-0.87650089... Cp=1.7801 Cp=0.8107 Ymin=-0.51584228... Cp=2.0654 Cp=2.0793 Ymin=-1.95087990... Cp=1.9520 Cp=2.0088 Ymin=-1.33857946... Cp=1.8056 Cp=2.2003 Ymin=-0.72930075... Cp=1.5739 Cp=1.8431 Ymin=-0.69722637... Cp=3.3028 Cp=2.0378 Cp=1.8565 Ymin=-2.44061964... Cp=1.9536 Cp=1.4197 Ymin=-2.38448997... Cp=2.4759 Cp=1.4163 Ymin=-1.44858244... Cp=3.6270 Cp=1.3050 Ymin=-0.48081372... Cp=1.9261 Cp=0.6913 Ymin=-1.84475964... Cp=1.8559 D=10433 m=10433 vptor=3 Ymin=-1.52451822... Cp=2.0332 Y=log(sqrt(D))/log(p)-vptor;if(Y<ymin,ymin=Y;Cp=vptor*log(p)/log(sqrt(D)); D=493 m=493 vptor=2 Ymin=-1.01123893... Cp=2.0227 Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p); D=140 m=35 vptor=1 Ymin=-0.21198348... Cp=1.2690 C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2); p=23 m=D;if(e!=0,m=D/4);P=x^2-m;K=bnfinit(P,1);Kpn=bnrinit(K,p^n); D=8736541 m=8736541 vptor=5 Ymin=-2.28589639... Cp=1.8422 D=104326449 m=104326449 vptor=16 Ymin=-7.59711043... Cp=1.9041
	D=287516	m=71879	vptor=6	Ymin=-2.77039718...	Cp=1.8578
	(...)				
	D=4354697 m=4354697	vptor=7	Ymin=-3.07207825...		Cp=1.7821
	p=11				
	D=29	m=29	vptor=1	Ymin=-0.29786428...		Cp=1.4242
	D=145 D=424 D=35068 D=163873 p=13 D=8 8•log ∞ (7) log ∞ ( √ 2•10 7 D=1000005	m=145 m=106 m=8767 m=163873 m=2 m=1000005	vptor=2 vptor=3 vptor=4 vptor=5 vptor=1 vptor=1	Ymin=-0.96227041... Ymin=-1.73853259... Ymin=-1.81786877... Ymin=-2.49637793... Ymin=-0.59464276... Ymin=5.28771209... Cp=1.9272 Cp=2.3781 Cp=1.8330 Cp=1.9971 Cp=2.4669 Cp=0.1590
	D=2285 D=1000049	m=2285 m=1000049	vptor=3 vptor=2	Ymin=-1.49234424... Ymin=4.28773212... Cp=1.9898 Cp=0.3180
	D=98797 D=1000104	m=98797 m=250026	vptor=4 vptor=3	Ymin=-1.75808000... Ymin=3.28775715...	Cp=1.7842 Cp=0.4771
	D=382161 D=1000133	m=382161 m=1000133	vptor=5 vptor=4	Ymin=-2.49437601... Ymin=2.28777034... Cp=1.9955 Cp=0.6361
	p=17 D=1000169	m=1000169	vptor=5	Ymin=1.28778673...	Cp=0.7951
	D=69 D=1000380	m=69 m=250095	vptor=2 vptor=6	Ymin=-1.25277309... Ymin=0.28788273...	Cp=2.6765 Cp=0.9542
	D=3209 D=1001177	m=3209 m=1001177	vptor=3 vptor=8	Ymin=-1.57516648... Ymin=-1.71175481...	Cp=2.1055 Cp=1.2722

4.2.3. Remarks and Heuristics. Let K

  in this example. Let a ∈ [10 8 + 1, 2 • 10 8 ] (an interval of negative values of a gives similar results): There is no solution a ∈ [10 8 + 966886, 2 • 10 8 ] giving smaller discriminants.

	p=3, rho=21					
	D	a	b	vptor	vph	Cp
	4376759652795686111245843894049436844 100000001 1		22	2	0.5729
	1094189935082719682370900209849436840 100000002 2		21	0	0.5560
	6474496916274063005939132968034008	100000004 26		21	1	0.5926
	(...)					
	780348725011642441673212	100250343 2374203	21	0	0.8387
	97192908950160977396761	100966886 3387724	21	1	0.8717
	p=2, rho=30, n=2*rho					
	D	a	b	vptor	vph	Cp
	11529215276652771834290899906846977	100000001 1		35	5	0.6186
	17055053207700727651215465398745	100000004 26		42	11	0.8096
	(...)					
	48025975228418415280613	100175668 490822	37	6	0.9821
	28578131029527067857561	100311617 637139	34	4	0.9115
	617974038061148975453	100469200 4339580 36	4	1.0424

  Program for a given p and random cubic polynomials. The program tries polynomials in a random way, so that the discriminants are not obtained in the natural order; we then write, in the first line, the largest C p (K) obtained:

	(...)			
	f=497647	vptor=1	x^3 + x^2 -165882*x + 7114509	Cp=0.720372
	f=547903	vptor=1	x^3 + x^2 -182634*x -12804696	Cp=0.715127
	(...)			
	f=859621	vptor=1	x^3 + x^2 -286540*x + 49348613	Cp=0.691556
	f=865189	vptor=1	x^3 + x^2 -288396*x -7818745	Cp=0.691229
	(...)			
	f=1680543	vptor=1	x^3 -560181*x + 55084465	Cp=0.659214
	f=1744477	vptor=1	x^3 + x^2 -581492*x -143305555	Cp=0.657501
	(...)			
	f=2477313	vptor=1	x^3 -825771*x + 262870435	Cp=0.641839
	f=2486871	vptor=1	x^3 -828957*x -138988457	Cp=0.641671
	(...)			
	f=3616141	vptor=1	x^3 + x^2 -1205380*x + 483625376 Cp=0.625762
	f=3628081	vptor=1	x^3 + x^2 -1209360*x -96883200	Cp=0.625626
	(...)			
	f=4036591	vptor=1	x^3 + x^2 -1345530*x + 122293757 Cp=0.621237
	f=4037779	vptor=1	x^3 + x^2 -1345926*x -499488217 Cp=0.621225
	6.2.			

Cp), obtained for some polynomial P and the corresponding conductor f K : {p=3;N=1000;n=18;ymin=10;for(k=1,10^6,a=random(N);b=random(N);c=random(N); P=x^3+a*x^2+b*x+c;if(polisirreducible(P)==1 & poldisc(P)>0,K=bnfinit(P,1); Remarks 6.1. (i) The case p = 2 with P = x 3 + 30 x 2 + 165 x + 220, where:

  For two random discriminants of quadratic fields, taken up to 2 • 10 2 , the program did not find any v 3 ( # T K ) > 13. We have C p (K) < max(C p (K 1 ), C p (K 2 ), C p (K 3 )) (obvious for the biquadratic case). It is likely that the compositum K of two fields K 1 , K 2 , gives in general smaller C p (K), except if v p ( # T K1 ) and v p ( # T K2 ) are small regarding v p ( # T K ) and if the number of subfields of K is important, but in that case C p (K) remains very small, as is shown by the following rare examples obtained as compositum of two random non-Galois cubic fields giving large v p ( # T K ) (the last line gives v1, v2, vptor, Cp1, Cp2, Cp): Theorem 7.4. Let K be a totally real number field and let K c be the set of subfields K n of the p-cyclotomic tower K c of K (with [K n : K] = p n , for all n ≥ 0). Then, under the Leopoldt conjecture in K c , C p (K n ) -→ 0 as n → ∞.Proof. From [40, § 3, Proposition 2], we get D Kn ≥ p α•n•p n +O(p n ) with α > 0; then from Iwasawa's theory, there exist λ, µ ∈ N and ν ∈ Z such that # T Kn = p λ n+µ p n +ν for n 0. So we obtain C p

	1896 1096 32469	67471101504	7 0 1	8		2.0378 0	0.2115	0.7049
	1896 13	24648	607523904	7 0 2	9		2.0378 0	0.4345	0.9777
	1976 1896 234156 877264517376	2 7 1	10	0.5790 2.0378 0.1777	0.7989
	1896 824	97644	152549611776	7 4 0	11	2.0378 1.3090 0	0.9385
	1896 488	14457	13376310336	7 4 1	12	2.0378 1.4197 0.2293	1.1308
	449	1896 851304 724718500416	1 7 5	13	0.3597 2.0378 0.8045	1.0459
		p=2					
	P1=x^3-45*x^2+24*x-1,P2=x^3-36*x^2+27*x-1,P=x^9+27*x^8-2844*x^7-54486*x^6
		+2141829*x^5+20969253*x^4-10466577*x^3-5546475*x^2+1542807*x+10233
	766017	77433 23187342173591131003005670474209
	1		1	9	0.102317	0.123147		0.172756
	P1=x^3-12*x^2+9*x-1,P2=x^3-20*x^2+23*x-1,P=x^9-24*x^8-192*x^7+5728*x^6
		+10131*x^5-301710*x^4+238483*x^3+148968*x^2-83460*x-8520
	3753	15465 21724158202972986227625		
	1		1	10	0.168437	0.143712		0.269535
	P1=x^3-23*x^2+22*x-1,P2=x^3-19*x^2+42*x-1,P=x^9+12*x^8-634*x^7-4844*x^6
		+112245*x^5+317540*x^4-1892181*x^3+376428*x^2+2193504*x+51904
	173857 1937 38191384824694383099923729		
	1		1	8	0.114892	0.183156		0.188276
	P1=x^3-27*x^2+35*x-1,P2=x^3-11*x^2+8*x-1,P=x^9+48*x^8+303*x^7-10953*x^6
		-72549*x^5+825678*x^4+1083824*x^3-357201*x^2-414609*x+57421
	10309	1929 7864050646576255644981		
	2		1	11	0.300038	0.183256		0.302464
	P1=x^3-18*x^2+31*x-1,P2=x^3-30*x^2+43*x-1,P=x^9-36*x^8-426*x^7+18708*x^6
		+66213*x^5-2207940*x^4-1980725*x^3+5522748*x^2+2482560*x+22464
	178889	1261265 11486029882117782845780928107151625
	2		3	17	0.229243	0.296055		0.300498
		p=3					
	P1=x^3-47*x^2+27*x-1,P2=x^3-14*x^2+26*x-1,P=x^9+99*x^8+2110*x^7-39581*x^6
		-841754*x^5+12433359*x^4-31915251*x^3+12891832*x^2+16161948*x+8084
	284788	57741 4446496553844548173991089269312
	1		1	7	0.174945	0.200408		0.217948
	P1=x^3-31*x^2+25*x-1,P2=x^3-24*x^2+38*x-1,P=x^9+21*x^8-1152*x^7-17265*x^6
		+370464*x^5+2658657*x^4-5851191*x^3-1210464*x^2+3554288*x+55138
	432884	573349 15288742990049019447046087884332096
	1		1	10	0.169300	0.165712		0.279145
	P1=x^3-22*x^2+41*x-1,P2=x^3-9*x^2+18*x-1,P=x^9+39*x^8+288*x^7-3470*x^6
		-23571*x^5+176589*x^4-88881*x^3-684987*x^2+578139*x-18043
	511537 321 4427374441992552457143633		
	2		1	14	0.334301	0.380706		0.542048
	P1=x^3-23*x^2+35*x-1,P2=x^3-24*x^2+30*x-1,P=x^9-3*x^8-906*x^7+1667*x^6
		+206130*x^5-144453*x^4-552539*x^3+378690*x^2+168384*x-876
	110580	368037 7489652934283408190167772904000
	1		1	7	0.189195	0.171444		0.216350
	P1=x^3-23*x^2+17*x-1,P2=x^3-36*x^2+27*x-1,P=x^9-39*x^8-1017*x^7+37436*x^6
	D1	D2 +322812*x^5-7556721*x^4-95099*x^3+3294255*x^2-9906*x-2367 D3 D v1 v2 v3 vptor Cp1 Cp2	Cp3	Cp
	41 91572	840 77433 39611733265845206525895660864 34440 1186113600 0 0 2	2		0	0	0.4206	0.2103
	12 1		1896 632 1 8	14379264 0.192319	0 7 0 0.195184	7	0 0.266941	2.0378 0	0.9332

[START_REF] Byeon | Indivisibility of class numbers and Iwasawa λ-invariants of real quadratic fields[END_REF][START_REF] Byeon | Indivisibility of class numbers and Iwasawa λ-invariants of real quadratic fields[END_REF] 6[START_REF] Ramaré | Approximate formulae for L(1, χ)[END_REF][START_REF] Greenberg | Galois representations with open image[END_REF][START_REF] Byeon | Indivisibility of class numbers and Iwasawa λ-invariants of real quadratic fields[END_REF] 

Acknowledgments. I thank Christian Maire for discussions about some aspects of Brauer-Siegel-Tsfasman-Vladȗt ¸theorems, Stéphane Louboutin for references on complex ζ-functions, Thong Nguyen Quang Do for confirming to me the critical role of T K,p H 2 (G p (K), Z p (0)) * , from the cohomological viewpoint recalled above.

D=81628 m=20407 vptor=2 Ymin=6.15838824... Cp=0.2451 D=81640 m=20410 vptor=4 Ymin=4.15849428... Cp=0.4902 D=81713 m=81713 vptor=5 Ymin=3.15913899... Cp=0.6128 D=81788 m=20447 vptor=7 Ymin=1.15980078... Cp=0.8578 D=82684 m=20671 vptor=8 Ymin=0.16766028... Cp=0.9794 D=83144 m=20786 vptor=9 Ymin=-0.82833773... Cp=1.1013 D=84361 m=84361 vptor=10 Ymin=-1.81785571... Cp=1.2221 D=86284 m=21571 vptor=11 Ymin=-2.80159728... Cp=1.3417 D=100045 m=100045 vptor=14 Ymin=-5.69485522... Cp=1.6857 D=115005 m=115005 vptor=16 Ymin=-7.59433146... Cp=1.9034 D=376264 m=94066 vptor=17 Ymin=-7.73930713... Cp=1.8357 D=495957 m=495957 vptor=19 Ymin=-9.54007224... Cp=2.0084 D=1476668 m=369167 vptor=20 Ymin=-9.75304296... Cp=1.9518 (...) m=4398046511105 rho=21 vptor=29 Cp=1.3809523809... vph=10 m=17592186044417 rho=22 vptor=24 Cp=1.0909090909... vph=3 (...) m=18014398509481985 rho=27 vptor=29 Cp=1.074074074... vph=6 m=72057594037927937 rho=28 vptor=26 Cp=0.9285714285... vph=2 a=1, p=3, D=4*m m=82 rho=2 vptor=1 Cp=0.3792886959... vph=0 m=730 rho=3 vptor=3 Cp=0.8260927150... vph=1 (...) m=16677181699666570 rho=17 vptor=17 Cp=0.9642146068... vph=1 m=150094635296999122 rho=18 vptor=19 Cp=1.0198095452... vph=2 a=1, p=5, D=4*m m=626 rho=2 vptor=1 Cp=0.4113240423... vph=0 m=15626 rho=3 vptor=2 Cp=0.5829720101... vph=0 (...) m=2384185791015626 rho=11 vptor=11 Cp=0.9623227412... vph=1 m=59604644775390626 rho=12 vptor=11 Cp=0.8849075871... vph=0 a=2, p=3, D=m m=2917 rho=3 vptor=3 Cp=0.8261991487... vph=1 m=26245 rho=4 vptor=3 Cp=0.6478156494... vph=0 (...) m=66708726798666277 rho=17 vptor=16 Cp=0.9074961005... vph=0 m=600378541187996485 rho=18 vptor=19 Cp=1.0198095452... vph=2 a=2, p=5, D=m m=2501 rho=2 vptor=1 Cp=0.4113870622... vph=0 m=62501 rho=3 vptor=2 Cp=0.5829745440... vph=0 (...) m=9536743164062501 rho=11 vptor=10 Cp=0.8748388557... vph=0 m=238418579101562501 rho=12 vptor=11 Cp=0.8849075871... vph=0 Recall that

for distinct primes i ≡ 1 (mod 3): {p=3;n=26;bf=7;Bf=10^7;Max=0;for(f=bf,Bf,e=valuation(f,3);if(e!=0 & e!=2,next); F=f/3^e;if(Mod(F,3)!=1 || core(F)!=F,next);F=factor(F);Div=component(F,1); d=component(matsize(F),1);for(j=1,d-1,D=component(Div,j);if(Mod(D,3)!=1,break)); for(b=1,sqrt(4*f/27),if(e==2 & Mod(b,3)==0,next);A=4*f-27*b^2; if(issquare(A,&a)==1,if(e==0,if(Mod(a,3)==1,a=-a); P=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27); if(e==2,if(Mod(a,9)==3,a=-a);P=x^3-f/3*x-f*a/27); K=bnfinit(P,1);Kpn=bnrinit(K,p^n);C5=component(Kpn,5);Hpn0=component(C5,1); Hpn=component(C5,2);Hpn1=component(Hpn,1); vptor=valuation(Hpn0/Hpn1,p);Cp=vptor*log(p)/log(f); if(vptor>Max,Max=vptor;print("f=",f," vptor=",vptor," P=",P," Cp=",Cp)))))} p=3 Cp=1.1492 f=19 vptor=1 P=x^3 + x^2 -6*x -7 f=199 vptor=2 P=x^3 + x^2 -66*x + 59 f=427 vptor=4 P=x^3 + x^2 -142*x -680 f=1843 vptor=5 P=x^3 + x^2 -614*x + 3413 f=2653 vptor=6 P=x^3 + x^2 -884*x -8352 f=17353 vptor=7 P=x^3 + x^2 -5784*x -145251 f=30121 vptor=8 P=x^3 + x^2 -10040*x + 306788 f=114079 vptor=9 P=x^3 + x^2 -38026*x + 2822399 f=126369 vptor=10 P=x^3 -42123*x + 3046897 f=355849 vptor=11 P=x^3 + x^2 -118616*x -15235609 f=371917 vptor=12 P=x^3 + x^2 -123972*x + 15854684 f=1687987 vptor=15 P=x^3 + x^2 -562662*x -116533621 p=2, n=36 Cp=1.2475 f=31 vptor=2 P=x^3 + x^2 -10*x -8 f=171 vptor=6 P=x^3 -57*x -152 f=2689 vptor=8 P=x^3 + x^2 -896*x + 5876 f=6013 vptor=12 P=x^3 + x^2 -2004*x -32292 f=6913 vptor=13 P=x^3 + x^2 -2304*x -256 f=311023 vptor=16 P=x^3 + x^2 -103674*x + 5068523 f=544453 vptor=18 P=x^3 + x^2 -181484*x -19862452 f=618093 vptor=24 P=x^3 -206031*x + 21289870 p=7 Cp=1.3955 f=9 vptor=1 P=x^3 -3*x + 1 f=313 vptor=2 P=x^3 + x^2 -104*x + 371 f=721 vptor=3 P=x^3 + x^2 -240*x -988 f=1381 vptor=4 P=x^3 + x^2 -460*x -1739 f=29467 vptor=6 P=x^3 + x^2 -9822*x -20736 f=177541 vptor=7 P=x^3 + x^2 -59180*x + 3051075 f=1136587 vptor=10 P=x^3 + x^2 -378862*x + 58428991

The first minimum occurs for f := f K = 7 and vptor := v p ( # T K ) = 0; we omit these cases of p-rationality. For some p, we have been obliged to consider larger conductors f to get significant solutions, especially for p = 11 for which the first non-trivial example is for f = 5000059 and P = x 3 + x 2 -1666686 x -408523339. p=2, Cp=1.247565 P=x^3 -57*x -152 f=171 vptor=6 Ymin=1.41785251... Cp=0.8088 P=x^3 + x^2 -2004*x -32292 f=6013 vptor=12 Ymin=0.55386924... Cp=0.9559 P=x^3 + x^2 -2304*x -256 f=6913 vptor=14 Ymin=-1.24490378... Cp=1.0976 P=x^3 -206031*x + 21289870 f=618093 vptor=24 Ymin=-4.76253559... Cp=1.2475 p=3, Cp=1.149252 P=x^3 + x^2 -6*x -7 f=19 vptor=1 Ymin=1.68014385... Cp=0.3731 P=x^3 + x^2 -142*x -680 f=427 vptor=4 Ymin=1.51312239... Cp=0.7255 P=x^3 + x^2 -884*x -8352 f=2653 vptor=6 Ymin=1.17582211... Cp=0.8361 P=x^3 -42123*x + 3046897 f=126369 vptor=10 Ymin=0.69254513... Cp=0.9352 P=x^3 + x^2 -118616*x -15235609 f=355849 vptor=11 Ymin=0.63491606... Cp=0.9454 P=x^3 + x^2 -123972*x + 15854684 f=371917 vptor=12 Ymin=-0.32488392... Cp=1.0278 P=x^3 + x^2 -562662*x -116533621 f=1687987 vptor=15 Ymin=-1.94803671... Cp=1.1492 p=5, Cp=1.462906 P=x^3 + x^2 -50*x -123 f=151 vptor=2 Ymin=1.11741123... Cp=0.6415 P=x^3 + x^2 -1002*x + 6905 f=3007 vptor=4 Ymin=0.97608396... Cp=0.8038 P=x^3 + x^2 -2214*x + 19683 f=6643 vptor=8 Ymin=-2.53143306... Cp=1.4629 p=7, Cp=1.395563 P=x^3 -3*x + 1 f=9 vptor=1 Ymin=0.12915006... Cp=0.8856 P=x^3 + x^2 -460*x -1739 f=1381 vptor=4 Ymin=-0.28422558... Cp=1.0765 P=x^3 + x^2 -9822*x -20736 f=29467 vptor=6 Ymin=-0.71145865... Cp=1.1345 P=x^3 + x^2 -59180*x + 3051075 f=177541 vptor=7 Ymin=-0.78853291... Cp=1.1269 P=x^3 + x^2 -378862*x + 58428991 f=1136587 vptor=10 Ymin=-2.83443766... Cp=1.3955 p=11, Cp=0.621490 P=x^3 + x^2 -1666686*x -408523339 f=5000059 vptor=2 Ymin=4.43270806... Cp=0.3109 P=x^3 -1680483*x -503584739 f=5041449 vptor=4 Ymin=2.43614601... Cp=0.6215 p=13, Cp=1.632521 P=x^3 + x^2 -20*x -9 f=61 vptor=1 Ymin=0.60271151... Cp=0.6239 P=x^3 + x^2 -196*x -349 f=589 vptor=2 Ymin=0.48676495... Cp=0.8042 P=x^3 + x^2 -1064*x + 12299 f=3193 vptor=3 Ymin=0.14576042... Cp=0.9536 P=x^3 + x^2 -1824*x + 8919 f=5473 vptor=4 Ymin=-0.64415121... Cp=1.1919 P=x^3 + x^2 -19920*x + 615317 f=59761 vptor=7 Ymin=-2.71215372... Cp=1.6325 p=17, Cp=0.910481 P=x^3 -399*x -3059 f=1197 vptor=2 Ymin=0.50160254... Cp=0.7994 P=x^3 -84837*x + 1046323 f=254511 vptor=4 Ymin=0.39327993... Cp=0.9105 p=19, Cp=0.974463 P=x^3 + x^2 -30*x + 27 f=91 vptor=1 Ymin=0.53199286... Cp=0.6527 P=x^3 + x^2 -404*x + 629 f=1213 vptor=2 Ymin=0.41161455... Cp=0.8293 P=x^3 -3477*x -26657 f=10431 vptor=3 Ymin=0.14237703... Cp=0.9547 P=x^3 + x^2 -1213944*x -503921781 f=3641833 vptor=5 Ymin=0.13102760... Cp=0.9744 p=23, Cp=0.880087 P=x^3 + x^2 -1060*x -11428 f=3181 vptor=2 Ymin=0.57214663... Cp=0.7775 P=x^3 + x^2 -515154*x -19633104 f=1545463 vptor=4 Ymin=0.54500411... Cp=0.8801 p=29, Cp=1.569666 P=x^3 + x^2 -24*x -27 f=73 vptor=2 Ymin=-0.72584422... Cp=1.5696 p=31, Cp=0.981745 P=x^3 + x^2 -30*x + 27 f=91 vptor=1 Ymin=0.31359240... Cp=0.7613 P=x^3 -12027*x + 388873 f=36081 vptor=3 Ymin=0.05578357... Cp=0.9817 p=37, Cp=1.119764 P=x^3 -39*x -26 f=117 vptor=1 Ymin=0.31882641... Cp=0.7582 P=x^3 + x^2 -5300*x + 119552 f=15901 vptor=3 Ymin=-0.32086480... Cp=1.1197 p=41, Cp=0.976052 P=x^3 + x^2 -672*x -2764 f=2017 vptor=2 Ymin=0.04906930... Cp=0.9760 p=43, Cp=0.914939 P=x^3 + x^2 -20*x -9 f=61 vptor=1 Ymin=0.09296866... Cp=0.9149 p=47, Cp=0.878952 P=x^3 + x^2 -2126*x + 11813 f=6379 vptor=2 Ymin=0.27543656... Cp=0.8789 D=component(component(K,7),3);Kpn=bnrinit(K,p^n);C5=component(Kpn,5); Hpn0=component(C5,1);Hpn=component(C5,2);Hpn1=component(Hpn,1); vptor=valuation(Hpn0/Hpn1,p);Y=log(sqrt(D))/log(p)-vptor; if(vptor>0 & Y<ymin,ymin=Y;Cp=vptor*log(p)/log(sqrt(D)); print("P=",P," vptor=",vptor," Ymin=",Y," Cp=",Cp))))} p=2 Cp=1.497370 P=x^3 + 315*x^2 + 151*x + 13 vptor=6 Ymin=4.62049695... P=x^3 + 44*x^2 + 388*x + 962 vptor=7 Ymin=2.65795067... P=x^3 + 78*x^2 + 498*x + 584 vptor=6 Ymin=2.33817139... P=x^3 + 473*x^2 + 759*x + 90 vptor=12 Ymin=1.79924824... P=x^3 + 176*x^2 + 760*x + 472 vptor=14 Ymin=-0.65040380... P=x^3 + 30*x^2 + 165*x + 220 vptor=12 Ymin=-3.98594984... p=3 Cp=1.042763 P=x^3 + 57*x^2 + 251*x + 70 vptor=4 Ymin=2.95145981... P=x^3 + 93*x^2 + 396*x + 396 vptor=4 Ymin=2.08419811... P=x^3 + 53*x^2 + 602*x + 140 vptor=6 Ymin=1.91171871... P=x^3 + 143*x^2 + 672*x + 617 vptor=8 Ymin=1.71414906... P=x^3 + 360*x^2 + 698*x + 132 vptor=4 Ymin=1.11320078... P=x^3 + 194*x^2 + 649*x + 440 vptor=7 Ymin=1.02340828... P=x^3 + 38*x^2 + 343*x + 722 vptor=6 Ymin=0.41712275... P=x^3 + 77*x^2 + 512*x + 874 vptor=8 Ymin=-0.32807458... p=5 Cp=1.238605 P=x^3 + 177*x^2 + 590*x + 456 vptor=1 Ymin=4.94615149... P=x^3 + 222*x^2 + 789*x + 180 vptor=2 Ymin=1.62797441... P=x^3 + 45*x^2 + 362*x + 772 vptor=3 Ymin=1.32811388... P=x^3 + 83*x^2 + 400*x + 251 vptor=2 Ymin=1.22069007... P=x^3 + 197*x^2 + 718*x + 508 vptor=8 Ymin=-1.54112474... p=7 Cp=1.201178 P=x^3 + 784*x^2 + 964*x + 288 vptor=1 Ymin=3.97483926... P=x^3 + 505*x^2 + 710*x + 134 vptor=2 Ymin=2.57552488... P=x^3 + 73*x^2 + 492*x + 196 vptor=3 Ymin=1.85163167... P=x^3 + 57*x^2 + 695*x + 263 vptor=1 Ymin=1.35093638... P=x^3 + 95*x^2 + 839*x + 252 vptor=5 Ymin=0.64570147... P=x^3 + 114*x^2 + 804*x + 142 vptor=2 Ymin=-0.37221306... P=x^3 + 97*x^2 + 829*x + 122 vptor=5 Ymin=-0.83742084... p=19 Cp=1.139412 P=x^3 + 50*x^2 + 631*x + 470 vptor=1 Ymin=1.58556226... P=x^3 + 57*x^2 + 777*x + 801 vptor=1 Ymin=1.54028119... P=x^3 + 549*x^2 + 732*x + 39 vptor=3 Ymin=0.69038895... P=x^3 + 93*x^2 + 891*x + 383 vptor=2 Ymin=0.64611301... P=x^3 + 123*x^2 + 375*x + 217 vptor=1 Ymin=0.46422353... P=x^3 + 226*x^2 + 777*x + 408 vptor=2 Ymin=0.20875475... P=x^3 + 196*x^2 + 849*x + 918 vptor=2 Ymin=-0.24470848... p=1009 Cp=1.227512 P=x^3 + 171*x^2 + 667*x + 604 vptor=1 Ymin=0.49598190... P=x^3 + 89*x^2 + 567*x + 36 vptor=1 Ymin=0.37961552... P=x^3 + 54*x^2 + 435*x + 719 vptor=1 Ymin=0.29433117... P=x^3 + 93*x^2 + 636*x + 944 vptor=1 Ymin=0.07490160... P=x^3 + 432*x^2 + 347*x + 19 vptor=1 Ymin=-0.06432442... P=x^3 + 130*x^2 + 942*x + 899 vptor=1 Ymin=-0.06692434... P=x^3 + 70*x^2 + 553*x + 735 vptor=1 Ymin=-0.18534377...

Examples of non-Galois totally real number fields

We shall consider (non necessarily Galois) cubic fields, with an approach using randomness. The tested polynomials of dgree 3 define almost always Galois groups isomorphic to S 3 . It is more difficult to find non-p-rational fields for large p and to obtain a lower bound of C

(3) p for the family K

(3) real of totally real cubic fields. 6.1. Program for a given cubic polynomial and increasing p. The program concerns fields K defined by P = x 3 + a x 2 + b x + 1, for random a, b and increasing p in [2, 10 5 ]. It tests the irreducibility of P and that D K > 0 (real roots). We give only the non-p-rational cases for which one prints the corresponding C p (K). {n=4;N=100;bp=2;Bp=10^5;ymin=10;a=random(N);b=random(N);P=x^3+a*x^2+b*x+1; if(polisirreducible(P)==1 & poldisc(P)>0,print(P);K=bnfinit(P,1); D=component(component(K,7),3);forprime(p=bp,Bp,Kpn=bnrinit(K,p^n); C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2); Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p);Y=log(sqrt(D))/log(p)-vptor; if(vptor > 0 & Y<ymin,ymin=Y;Cp=vptor*log(p)/log(sqrt(D)); print("p=",p," vptor=",vptor," Ymin=",Y," Cp=",Cp))))}

We obtain, after several tries and p up to 10 But the comparison must take into account the difference of nature of the sets of values of the functions C p∞ and C p :

The first one takes its values in an explicitely bounded interval of R, containing 0, given by the Brauer-Siegel-Tsfasman-Vladȗt ¸-Zykin results:

, while the second one takes its values in a discrete set of the form:

) is equal to 0 for infinitely many fields K, probably with a positive density which increases significantly as p → ∞; but, symmetrically, we have seen that the integers v p ( # T K,p ) take infinitely many strictly positive values for huge discriminants.

To compare the two situations one must probably compute some "integrals" when D K varies in some intervals. Whatever the choice of the family K, the sets of real coefficients

are homothetic discrete subsets of R + as v varies, so that the comparison is based on the coefficients v p∞

The following programs compute the means of

real , for p ∞ and p ≥ 2, but many other means may be interesting: giving obvious heuristics about the behaviour of each mean.

Conclusions

The analysis of the archimedean case, depending on the properties of the complex ζ-function of K, is sufficiently significant to hope the relevance of the p-adic one for which we give some observations, despite the lack of proofs:

(a) In the p-adic Conjecture 7.1, the most important term is v p ( # R K,p ), the valuation of the normalized p-adic regulator, the contribution of v p ( # C K,p ) being probably negligible compared to v p ( # R K,p ) as shown, among other, by classical heuristics [START_REF] Cohen | Heuristics on class groups of number fields, Number Theory[END_REF][START_REF] Cohen | Class groups of number fields: Numerical heuristics[END_REF], and reinforced by the recent conjectures cited in the § 4.2.3 (ii).

Furthermore, for K fixed, v p ( # C K,p ) ≥ 1 for finitely many primes p, but the case of v p ( # R K,p ) is an out of reach conjecture [START_REF] Gras | Les θ-régulateurs locaux d'un nombre algébrique : Conjectures p-adiques[END_REF]Conjecture 8.11].

The cyclic quartic fields of conductor p (i.e., K ∈ K

real (p 3 )) give no solution in the selected interval, although

real (p 2 ) (cyclic cubic fields of conductor p) is interesting since, in this case, C p (K) = v p ( # T K ), for which v p ( # T K ) = 1 is more credible if we consider that for instance C p (K) < 2 over K In other words, a more general "Ankeny-Artin-Chowla Conjecture" should be that the set of non-p-rational K ∈ K (d) real (p e ) (or any suitable subfamily) is finite. Thus the existence (if so), and then the order of magnitude of C p , would govern many obstructions and/or finiteness theorems in number theory.

(e) On another hand, the difficult Greenberg's conjecture [START_REF] Greenberg | On the Iwasawa invariants of totally real number fields[END_REF], on the triviality of the Iwasawa invariants λ, µ for the p-class groups in K c , in the totally real case, goes in the sense of rarity of large p-class groups as we have mentioned at the § 4.2.3 (ii), and this conjecture also depends on Fermat's quotients of algebraic numbers ([11, § 7.7], [14, § 4.2]) or of a similar logarithmic framework as in [START_REF] Jaulent | Note sur la conjecture de Greenberg[END_REF]. In the same way, some other conjectures of Greenberg [START_REF] Greenberg | Galois representations with open image[END_REF] depend, in a crucial manner, of the existence of p-rational fields with given Galois groups.

(f) But all this is far to be proved because of a terrible lack of knowledge of p-Fermat quotients of algebraic numbers, a notion which gives a weaker information than the p-adic logarithms or regulators, but which governs many deep arithmetical problems, even assuming the Leopoldt conjecture which appears as a rough step in the study of Gal(H pr K /K); indeed, if Leopoldt's conjecture is not fulfilled in a given field K, there exists a sequence ε i ∈ E K , ε i / ∈ E p K , such that δ p (ε i ) → ∞ with i, which shows the extreme uncertainty about the T K,p groups.

(g) Recal to finish that T K,p is the dual of H 2 (G p (K), Z p ) ([28, Chapitre 1], then [9, Appendix, Theorem 2.2]), where G p (K) is the Galois group of the maximal p-ramified pro-p-extension of K (for which G p (K) ab Z p × T K,p in the totally real case, under Leopoldt's conjecture), and can be considered as the first of the still mysterious non positive twists H 2 (G p (K), Z p (i)) of the motivic cohomology (whereas the positive twists can be dealt with using K-theory thanks to the Quillen-Lichtenbaum conjecture, now a theorem of Voevodsky-Rost and al.).