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ABSTRACT: Anion-templated aqueous self-assembly re-
sulted in the formation of an endohedrally functionalized
FeII4L4 tetrahedron from azaphosphatrane-based subcom-
ponents. This new water-soluble cage is flexible and able to
encapsulate anions with volumes ranging from 35 to 219
Å3 via hydrogen bonding and electrostatic interactions. It
structurally adapts in response to the size and shape of the
template anions, dynamically adopting a conformation
either where all four azaphosphatrane +P−H vectors point
inward, or else where one points outward and the other
three inward. The two cage isomers can coexist in solution
and interconvert. A shape memory phenomenon was
observed during guest displacement because guest
exchange occurs more rapidly than structural reconfigura-
tion.

Self-assembly is an efficient tool for the construction of diverse
functional architectures.1One subset of these,metal−organic

polyhedral complexes, have proven useful in a range of
applications, including molecular recognition,2 chirality sensing,3

gas separation,4 stabilization of reactive species,5 and catalysis.6

The strategy of subcomponent self-assembly7 allows the
preparation of a variety of capsules with different shapes and
sizes, which bind many different guests.8 Most such capsules
contain cavities surrounded by aromatic panels.7a−d The
elaboration of the cavity microenvironment, through incorpo-
ration of functional moieties,7e,f represents an attractive means by
which specific substrate encapsulation might be achieved.
Azaphosphatranes, the conjugate acids of Verkade superbases,9

are attractive functional moieties for incorporation into the faces
of tetrahedral capsules. Their polarized +P−H groups enable
them to be employed as catalysts for CO2 activation and lactide
ring-opening polymerization.10 Although both of these applica-
tions benefit from the hydrogen-bond donor ability of the +P−H
group, their use as anion receptors has not been reported.
Importantly, these cationic species can be rendered water-soluble
via selection of a suitable counterion, potentially enabling their
use as anion binders in water, the development of which has been
identified as a key challenge in supramolecular chemistry.11

Anion recognition in water is intimately involved in many
chemical, biological, and environmental processes.11 However,
hydration of both the host and guest often hinders complex-

ation.11f Nonetheless, several synthetic anion receptors able to
operate in water have been reported, employing hydrophobic
effects, metal-anion coordination, C−H hydrogen bonds, and
halogen bonds.11f

Here we report a new azaphosphatrane-functionalized
tetrahedron 1 (Scheme 1), assembled from cationic triamine

subcomponentA. The design of 1was based on the following four
principles. First, the cationic azaphosphatranes together with the
metal ions provide an overall +12 charge, offering a strong
electrostatic driving force for anion binding. Second, the cationic
framework also inductively increases the affinity of the +P−H
hydrogen bond donor for anionic species.12 Third, the sulfate
counterion was chosen to maximize the water solubility of 1.
Fourth, methylene groups between the phenyl rings and
azaphosphatrane nitrogen atoms were introduced to enhance
cage flexibility, enabling the cavity to fit a diverse array of anions.
We first prepared cage 1 as the bis(trifluoromethanesulfonyl)-

imide (triflimide, Tf2N
−), hexafluorophosphate (PF6

−), and
trifluoromethanesulfonate (triflate, TfO−) salts, all of which were
soluble in acetonitrile (Scheme 1). The chloride salt of
subcomponent A was obtained in four steps (Scheme S1). The
Cl− of A readily exchanged with Tf2N

−, PF6
−, or TfO− via anion

metathesis. The subsequent reaction of A (4 equiv) with the
corresponding FeX2 salt (4 equiv) and 2-formylpyridine (12
equiv) in acetonitrile gave a single product with one
azaphosphatrane capping each face (Scheme 1). Products were
characterized byNMRandmass spectrometry (Figures S1−S36).
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Scheme 1. Subcomponent Self-Assembly of Cage 1 in
Acetonitrile
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19F NMR spectra (Figures S5, S17, and S29) indicated the
encapsulation of one anion inside the cavity, in slow exchange on
the NMR time scale with the external anions.
Single-crystal X-ray diffraction confirmed the structure of 1 in

the solid state. As shown in Figure 1, 1 has a face-capped

tetrahedral framework with approximate T-symmetry. Both
enantiomers (ΔΔΔΔ and ΛΛΛΛ) are present in the unit cell.
The +P−Hgroups of the azaphosphatrane units point inward into
the cavity, where a disordered TfO− is encapsulated. The FeII

centers are separated by an average of 14.7 Å, and the volume of
the central cavity approximates 166Å3 (51%occupancy for TfO−,
Figure S72).
We then attempted the preparation of a water-soluble cage by

employing SO4
2− counterions.13 The initial Cl− of A was

exchanged for SO4
2− (Scheme S2). However, the subsequent

reaction of the sulfate salt ofA (4 equiv)with FeSO4 (4 equiv) and
2-formylpyridine (12 equiv) in water failed to give the expected
cage complex (Figure S37). We infer that the hydrophilic
character of SO4

2− prevents it from acting as a template for the
formation of 1.14 Therefore, a series of other anions with different
shapes and volumes, listed in Figure 2, were added to the aqueous
reaction mixture to investigate their template effects (1 equiv of
anion was added in each case with regard to the final cage).
All of the anions listed in Figure 2, with volumes ranging from

35 Å3 (I−) to 219 Å3 (CB11H12
−), were observed to serve as

competent templates for 1 in water, indicating that its cavity
adapted readily to guests having different sizes and shapes.
Cage 1 manifested this adaptability in a novel way: for the

smaller template anions, with volumes ≤53 Å3, part of the
population of 1 consisted of a C3-symmetric isomer (C3-1) in
which one of the azaphosphatrane +P−H groups was oriented
away from the inner cavity (exo) with the other three pointed
inward (endo). AT-symmetric isomer (T-1), containing four endo
+P−H groups, constituted the other part of the population. For
the larger anionic templates, having volumes ≥55 Å3, the T-
symmetric isomer (T-1) of the cage was observed exclusively.
The 1H NMR spectra of 1 templated by BF4

−, NO3
−, or I− in

water thus show five sets of ligand signals (Figures S38) in which
one set belongs to T-1, while the other four sets in a 1:1:1:1 ratio
belong to C3-1 (for full structural assignment of C3-1, see Figure
S43). The corresponding 31P NMR spectra exhibit three peaks,
one for T-1 and two in a 3:1 ratio for C3-1 (Figure S39). The two

cage isomers were observed to interconvert, taking at least 2
weeks at 298K to reach equilibrium, asmonitored by both 1H and
31P NMR.
For the self-assembly with NO3

− as a template, gradual
conversion from T-1 to C3-1 was observed, with the ratio
changing from58:42 at 24h to 10:90 at 215 h (Figures 3 andS40−

S42). This observation indicates that the initially formed mixture
between NO3

−⊂T-1 and NO3
−⊂C3-1 is kinetically metastable.

The ratio further shifted to a constant value of 5:95 after 2weeks at
298 K (Figure S43), corresponding to a Gibbs free energy change
(ΔG) of 7.3 kJ mol−1 in favor of theC3 isomer. The free energy of
activation (ΔG‡) fromNO3

−⊂T-1 to NO3
−⊂C3-1was calculated

to be 105 kJmol−1 at 298K (Supporting Information section 2.4.4
and Figure S68).
In the cases of BF4

− (Figures S51 and S52) and I− (Figures S54
and S55), T-1 was observed to be thermodynamically favored
over C3-1, giving equilibrium ratios of 90:10 and 56:44. These
values correspond to ΔG differences of 5.4 and 0.64 kJ mol−1,
respectively. The ΔG‡ values at 298 K for the conversion from

Figure 1.Crystal structure of TfO−⊂1, which shows aT-symmetric cage.
Disorder, unbound counterions, non-P-bound hydrogen atoms, and
solvents are omitted for clarity.

Figure 2. Schematic representation of the two cage isomers X−⊂T-1 and
X−⊂C3-1 obtained by aqueous self-assembly in the presence of 1 equiv of
template anion. The cage faces colored orange represent endo-
azaphosphatrane ligands, with +P−H pointing inward, while the cyan
face represents exo +P−H.

Figure 3. Time evolution of the ratio between NO3
−⊂T-1·[SO4]5.5 (●)

and NO3
−⊂C3-1·[SO4]5.5 (▲) at 298 K bymonitoring the integration of

the corresponding imine peaks in the 1HNMR spectra (D2O, 500 MHz,
298 K). DOSY NMR indicated that the two species diffuse at the same
rate.
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X−⊂T-1 to X−⊂C3-1 were 110 and 107 kJ mol−1, for X− = BF4
−

and I−, respectively (Figures S69 and S70), similar to the value
obtained for NO3

−. Considering that these kinetic data are close
to the previously reported energy barriers for interconversion
between analogous diastereomers of M4L6 cages (ca. 102 kJ
mol−1),15 and noting that no disassembled products were
observed during the conversion, we hypothesize that the face
inversion occurs via disruption of FeII−N linkages, as with M4L6
cage diastereomer interconversion,15 as opposed to a reconfigu-
ration at the azaphosphatrane units, whose P−N bonds are
inferred to be stronger.9,16 Iminopyridine moieties thus detach
fromFeII, allowing the azaphosphatrane to pirouette 180° (Figure
S71), whereby the cage framework maintains a degree of
structural integrity throughout the rearrangement.17

Based on the crystal structure of TfO−⊂1 in Figure 1, we
prepared an MM3 model of NO3

−⊂C3-1 using the SCIGRESS
software package (Figure 4).18 The trigonal planar NO3

− is

centrally bound by the three endo +P−H groups. The methylene
groups of the exo-azaphosphatrane occupy the rest of the cavity.
The volume of the preorganized planar cavity approximates 59 Å3

(69%occupancy forNO3
−, Figure S72), significantly smaller than

that of TfO−⊂T-1 (166 Å3). This model also suggests that the
shape-fit between C3-1 and NO3

− may account for the greater
favoring by this anion of this isomer, as compared to BF4

− (Figure
S53) or I− (Figure S56).

1H, 13C, and 31PNMR spectra of 1 templated byClO4
−, ReO4

−,
PF6

−, TfO−, Tf2N
−, or CB11H12

− in water show only one set of
ligand signals (Figures S57−S60), consistent with the exclusive
formation of T-1. The 1H−19F HOESY spectra of the TfO− and
PF6

− adducts of T-1 exhibited strong NOE correlations between
the F atoms of the encapsulated guest and the +P−H of the
azaphosphatranes, underlining the hydrogen bonding interac-
tions (Figures S61, S66, and S67).
Although the cage was unstable in the absence of a template

anion, competitive guest exchange offers a way of measuring the
relative binding affinities of the different anions. We first chose
TfO−⊂1·[SO4]5.5 as the reference and monitored the decrease of
the encapsulated TfO− and increase of the free TfO− by 19FNMR
upon addition of a competitive anion. Results showed that the
binding affinities of PF6

−, ReO4
−, and ClO4

− were 17, 1.9, and
0.028, respectively, relative to that of TfO− (Figures S73−S75).
No obvious TfO− displacement was observed upon addition of
NO3

−, BF4
−, I−, Tf2N

−, or CB11H12
−.19 We thus chose Tf2N

−⊂1·

[SO4]5.5 as the reference to determine the hierarchy of binding
affinities of these latter anions. We observed by 1H NMR that 1.7
equiv of CB11H12

− completely displaced the encapsulated Tf2N
−

(Figure S76), while a larger excess (>6 equiv) of BF4
− or I− was

needed for Tf2N
− displacement, with BF4

− bindingmore strongly
than I− (Figures S77 and S78). NO3

− (12 equiv) was unable to
displace the bound Tf2N

−. Combining these results, we observe
the following anion binding hierarchy in water: PF6

− > ReO4
− >

TfO− > ClO4
− > CB11H12

− > Tf2N
− > BF4

− > I− > NO3
−.

Although tetrahedron1 templated byBF4
−was observed in two

distinct isomeric forms (T-1 ⇌ C3-1), we noted during the
titration of BF4

− into Tf2N
−⊂T-1 that only BF4

−⊂T-1 was
observed within 5 h. BF4

−⊂C3-1 appeared only thereafter,
indicating a short-term shape memory effect (Figure 5). Further

experiments showed that, after addition of BF4
− (2 equiv) to 5:95

ratio of NO3
−⊂T-1:NO3

−⊂C3-1 in solution, a 5:95 ratio of
BF4

−⊂T-1/BF4−⊂C3-1 was observed immediately following the
anion displacement (Figure S79). BF4

−⊂C3-1 then gradually
converted to BF4

−⊂T-1. These results indicate the occurrence of
two successive processes: rapid guest displacement, with
maintenance of the initial ratio of cage diastereomers, followed
by slower BF4

− templated isomeric reconfiguration.
Taking advantage of the larger population of BF4

−⊂C3-1 (95%)
following anion exchange fromNO3

−⊂1, we were able to observe
heteronuclearNOEcorrelations between the boundBF4

− and the
methylene protons of the exo-azaphosphatrane of BF4

−⊂C3-1 in
1H−19F HOESY spectrum (Figure S80). These correlations
provide important structural evidence for the exo configuration of
one face of C3-1, but they could not be observed directly in the
BF4

−-templated assembly, wherein the population of BF4
−⊂C3-1

constituted less than 25%.
In summary, this study has demonstrated the feasibility of

introducing azaphosphatranes into polyhedral complexes using
subcomponent self-assembly and also shown the utility of
azaphosphatranes as anion binding moieties. The designed
flexibility of the structures reported herein enables the aqueous
binding of anions with volumes ranging from 35 to 219 Å3 via
hydrogen bonding and electrostatic interactions. Structural
adaptation of the cage framework was observed in response to
the sizes and shapes of template anions, enabling the selective
formation of either aT- or aC3-symmetric cage framework, which

Figure 4.MM3-optimizedmolecularmodel ofNO3
−⊂C3-1 based on the

crystal structure of TfO−⊂1 shown in Figure 1. Non-P-bound hydrogen
atoms are omitted for clarity. The exo-azaphosphatrane ligand is colored
cyan.

Figure 5. Schematic representation of two successive processes: fast
guest displacement of Tf2N

− or NO3
− by BF4

−, giving rise to a shape
memory phenomenon, followed by slow isomeric reconfiguration.
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are capable of interconversion. A shape memory phenomenon
was observed during guest displacement, due to its faster kinetics
compared to those of framework reconfiguration. Future work
will seek to use this tailored cage or one of its derivatives as a
catalyst, benefiting from the internally oriented azaphosphatrane
H-bond donors, for instance, for CO2 conversion.
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