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Heuristic algorithm for a WIP projection problem at
finite capacity in semiconductor manufacturing

Emna Mhiri, Fabien Mangione, Mireille Jacomino, Philippe Vialletelle, and Guillaume Lepelletier

Abstract—In this paper, we propose a heuristic approach for
fixing work-in-progress (WIP) projection issues in the semi-
conductor industry especially for High Mix Low Volume (HMLV)
facilities. The considered problem consists of estimating the start
and end dates for each remaining process step of the production
lots in the WIP and anticipating the fab loading taking into
account the constraints of the maximum throughput of machines
considered as capacity constraints and customer delivery com-
mitments. The objective being to guarantee on-time delivery, we
focus on minimizing the total weighted tardiness (TWT). We have
formulated the problem into a mixed-integer programming (MIP)
and we have empirically shown its computational intractability.
Due to the computational intractability using actual production
data, a heuristic algorithm is proposed. It is an iterative finite
capacity planning system that considers as inputs lots due dates
and equipment capabilities and capacities. The performance of
the heuristic is assessed using industrial instances. It turns out
that it achieves targeted objectives with satisfactory results in
terms of quality of the solution and computation time.

Index Terms—WIP projection; finite capacity planning; semi-
conductor industry; mixed integer programming; iterative algo-
rithm.

I. INTRODUCTION

WORK-in-progress (WIP) projection is a mid-term ca-
pacity planning activity. The objective is to compute a

mid-term target schedule in order to drive factory execution,
to anticipate production issues and to calculate net demand
and net resource capacities. In our study, the outcome is a
weekly-released schedule that depicts the start and end dates
of each remaining processing step as well as the expected
workload accumulated on each equipment per time bucket over
the planning horizon.

In this study, the WIP projection problem is considered
in one of the most dynamic industries in the world, the
semiconductor industry. The semiconductor manufacturing
process is extremely complex and constantly innovating. The
considered wafer production plant is a High Mix Low Vol-
ume (HMLV) production line: there are several hundreds of
products, different technologies and heterogeneous toolsets i.e.
collections of nonidentical multi-purpose parallel machines (or
tools). Moreover, typical semiconductor fabrication processes
require several hundreds of different steps. As, for obvious
reasons, HMLV fabs cannot multiply machines, their pro-
duction flows are re-entrant: the same machine can process
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products at different stages of their fabrication. This also
means that according to the decisions taken on the production
line, products may experience various cycle times depending
on the priority given either to a given product, to satisfy
customer demand, or to a certain technological level for the
purpose of line balancing. Hence, the capacity planning issue
is difficult to solve and it is particularly more complex than
in other industries [1].

Semiconductor manufacturing is composed of four major
phases: wafer fabrication (fab), wafer probe, assembly, and fi-
nal test. Wafer fabrication, often referred to as ”front end”, rep-
resents the most complicated, expensive and time-consuming
phase of all four stages [2]. In this phase, hundreds of circuits
are layered through successive operations on a silicon wafer.
The manufacturing process in wafer fabs involves a highly
complex sequence of processing operations which can be
classified into various types, as for example: oxidation and
thermal treatment, film deposition, planarization, photolithog-
raphy, etching and ion implantation. These operations are
repeated for each layer of circuitry on the wafer. Figure 1
presents a simplified view of the wafer fabrication process.

Fig. 1: Wafer fabrication Process. [1]

Each operation shown in Figure 1 can include multiple
elementary steps (cleaning, process, measurement). The total
number of steps per flow typically ranges between 400 and
800 for current production technologies and up to 1200 steps
for latest generations. Some of the processing steps in a flow
are performed on individual wafers, others on groups of wafers
(lots), and still others on groups of lots (batches).

Steps performed on individual wafers or lots of wafers are
referred to as serial steps, while those performed on groups
of lots are called batch steps. A lot is generally composed of
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25 wafers, while a typical batch contains up to six lots. In
the considered case study, the lot requires 8 to 10 weeks to
be processed. Steps are executed on more than one hundred
workstations called ”toolset” [1]. Due to flow re-entrance, lots
visit the same toolset more than once during the manufacturing
process.

For each step, the wafer has to be processed on various
types of tools using a well-defined recipe. The recipe contains
the detailed instructions to be used at the machine level in
order to proceed the intended physical transformations or
measurements. The identification of the candidate tools to be
used is made through qualification of recipes on the tools.
However, in HMLV fabs, because of multiple differences
in hardware and software configurations, hence variety of
recipes to be used, it is not possible to qualify all recipes
on every machine. Qualification is one of the characteristics
of the HMLV semiconductor manufacturing. It determines the
processing authorization of a product on a machine. It acts
like an eligibility constraint that allows production volume
allocation of a product to a machine. It is known also as the
process capability constraint [3].

Besides, each toolset has an identified throughput consid-
ered as its capacity which refers to its upper loading threshold
under a given product mix condition. To establish a feasible
production schedule over a planning horizon of several weeks,
thus requires to consider capability and capacity constraints.
Moreover, as for other industries, semiconductor manufactur-
ing facilities must respect customers delivery commitments
to survive in competitive business environments. For HMLV
fabs, actual cycle time is widely spread and skewed due to
large variability of numerous sources: equipment heterogene-
ity, product priorities, low redundancy, steps qualifications, etc.
It is then crucial to consider also variable cycle times while
defining a production plan. In practice, fab’s historical data
and various applications of the queuing theory are often used.

In this paper, a mixed integer program (MIP) and a heuristic
algorithm are proposed to project current inventory and new
wafer starts throughout the remaining processing sequence,
taking into account all the cited constraints. The objective is
to establish a feasible midterm schedule, in a fast execution
time (less than 5 minutes, the required computation time of
capacity planners of the industrial partner), while minimizing
lots delivery delays and optimizing workload balance among
all toolsets. This study is applied to the Crolles 300 mm wafer
fab of STMicroelectronics. Thus, data from actual production
process are collected and used to evaluate the performance of
the developed approaches.

This paper is organized as follows. This section introduces
the main characteristics of the considered industrial envi-
ronment. In section 2, some background on existing related
capacity planning problems is provided. In section 3, the
problem is stated and the MIP formulation is presented. The
proposed iterative heuristic algorithm is explained in section 4.
Next, in section 5, experiments conducted and analyses carried
out are discussed. Finally, section 6 draws conclusions and
provides suggestions for future work.

II. PREVIOUS RELATED WORK

As the semiconductor industry is considered as one of
the most complex manufacturing processes, many researchers
have paid attention to the capacity planning problems encoun-
tered in this environment.

The various problems investigated have considered different
phases of the manufacturing process of integrated circuits,
different constraints, different methods and techniques used
for capacity planning and different performance measures.
Mönch et al. [1], Uzsoy et al. [2], [4] and Gupta et al. [5]
have mentioned in their reviews different capacity planning
techniques used in the semiconductor environment which can
be classified in infinite and finite capacity planning techniques.
They can also be divided, according to the length of the plan-
ning horizon, into long-term (strategic), mid-term (tactical)
and short-term (operational) planning tools.

Among the methods used for capacity planning, classical
techniques were successfully used in many industries espe-
cially for tactical and operational production planning, such as
Material Requirement Planning (MRP) developed by Orlicky
[6], Manufacturing Resource Planning (MRPII) [7], Just In
Time (JIT) [8] and Theory Of Constraints (TOC) [9]. The
application of these traditional techniques for capacity plan-
ning in semiconductor industry presents some shortcomings.
Indeed, it is proven that MRP method can be inefficient and
may produce unrealistic production schedules when used in
field applications. It ignores capacity constraints and assumes
fixed cycle times ([10], [11], [12], [13]). However, in semi-
conductor facilities, cycle times depend on many factors, such
as machine utilization rate, lot size, inventory and dispatching
rules, and are thus variable. Either shortcoming above leads
to infeasible production schedules, fluctuating workloads over
time and significant users effort to adjust the plans. The JIT
technique proves its strengths [14]; however, it presents some
limitations in the high-mix low-volume production systems.
It seems to be more suitable for a repetitive production
environment with stable demand and low product mix [15].
The TOC seems an efficient capacity planning technique in
semiconductor industry [16] but it considers only bottleneck
resources and it can not deal with changes in the bottlenecks.

In addition to these classical industrial methods, authors
use discrete event simulation models, queueing theory, linear
programming and heuristics for capacity planning applied to
semiconductor industry. Discrete event simulation is often
used for capacity planning decisions in wafer fabs [17] in
order to evaluate the performance of production planning
strategies ([18], [19], [20], [21], [22]). Indeed, discrete-event
simulation is considered as the only practical method that
explicitly calculates the cycle time as a function of resource
availability and production rate. The simulation model can
be used also to determine bottlenecks under a given product
mix and to make strategic decisions concerning equipment
purchase [23]. However, simulation models used for capacity
planning in the semiconductor industry present some severe
limitations. Their set-up is very time-consuming due to the
volume and often complexity of the data required for the
models involved. Moreover, these models do not provide a



IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING 3

means for optimization of the plan ([24], [25]).
Concerning queueing network models, Shanthikumar et al.

[26] presented a survey of the different applications of queue-
ing theory for semiconductor manufacturing systems. They
recognized that in spite of fast computing time compared with
simulation models, the accuracy of classical queueing models
is not satisfactory due to the complexity of the semiconductor
manufacturing process.

The linear programming (LP) approach is widely applied
to specific issues encountered in capacity planning for the
semiconductor industry. Mixed-integer programming (MIP)
models are developed for strategic planning in order to maxi-
mize the profit ([27], [28], [29]) or to minimize the machine
tool operating costs, new tool acquisition costs, and inventory
holding costs taking into account capacity constraints [30].
A good source of previous work related to more strategic
capacity planning is provided by Geng and Jiang [31].

LP (sometimes in combination with discrete-event sim-
ulation) is also used to solve medium-term finite capacity
planning problems. The work of Hung and Leachman [32]
is an example of such an approach. Leachman [33] used
LP for production planning and presents a corporate capacity
planning model, which includes multiple facilities integrated
with the production process. Habla et al. [34] suggested a
MIP formulation to determine completion time targets for
the lots on bottleneck steps. Bermon et al. [35] introduced
a linear programming model to analyze the capacity of large
and complex manufacturing production lines.

Due to the intractability of LP models, they are generally
combined with heuristics such as genetic algorithms [36]
or decomposition techniques as Benders [37] or Lagrangian
relaxation ([30], [34]) to reduce execution time. Besides,
approximate methods have also been widely used to develop
either infinite or finite capacity planning systems for the
semiconductor industry.

Infinite capacity planning systems are developed to estimate
the future loading of equipment in order to identify bottleneck
resources and to balance the loading of each production
resource over the planning horizon ([38], [39], [40]).

Bearing in mind the importance of capacity constraints,
many authors developed finite capacity planning systems using
algorithmic approaches. Fargher et al. [41] used a beam-search
algorithm in combination with backtracking steps for lot
release and for the determination of schedules in an aggregated
sense.

Horiguchi et al. [42] proposed an algorithm that estimates
the start and finish date of each job scheduled on each critical
resource: their algorithm considers the available time for all
the feasible combinations of time bucket and critical resource,
and it reduces the available time whenever a new production
order is added to the schedule. This approach, due to the
high aggregation level in modeling resources and relationships,
might lead to orders overlapping on the same resource in the
same time bucket (i.e. infeasible plans).

Habenicht and Mönch [43] used also a beam-search algo-
rithm to determine planned start and completion dates for the
macro operations (sets of consecutive process steps) of a lot.

Chua et al. [44] developed an intelligent multi-constraint
finite capacity-based lot release system. This system has been
designed, developed and implemented to solve the lot release
problems in a discrete manufacturing environment with a huge
product mix and multiple capacity constraints.

In this study, we are interested in operations research related
(or mathematical) optimization approaches and we consider a
medium-term finite capacity planning problem, applied to a
semiconductor production line. So far, the literature review has
pointed out that the debate about this problem is still open, and
the proposed approaches by several authors still have some
limits. Table II presents a taxonomy of studies considering
the same problem and using operations research solving tools.
Steps cycle time can be either defined as a fixed input by
the proposed approach or a variable output of the procedure.
Capability constraints are relevant, since they can be embedded
or not in the proposed procedure. Lots due dates, relevant as
well, can be considered as input parameters or not. Finally, the
model can be tested via data generated by authors (random
instances) or through data from real-life production systems
(real case).

Whilst capacity and cycle time are tightly linked one another
through the Little’s law [45], cycle time is considered by
most approaches as a fixed input parameter. Moreover, some
methods ignore capability constraints thus leading to infeasible
production plans. Finally, the applicability in field to real-life
companies has not been reported for all the anterior studies.

Furthermore, Table II presents, for each study, its algorith-
mic and operational objectives. As one can notice, the main
issues treated in the existing studies are generally limited to
dispatching rules and release control policies which are outside
the scope of this paper.

In the literature, there are few studies considering the WIP
projection problem in the semiconductor industry ([46], [47],
[48]). In these works, authors consider different objectives and
do not take into account all the cited constraints.

Kim and Leachman [46] proposed a LP formulation and
a decomposition heuristic method to determine net demand
and net resource capacities taking into account capacity con-
straints. They tested their approaches using random data.
Lee et al. [47] employed deterministic linear programming
techniques for the WIP projection problem in the wafer
fab, that explicitly considers the variable cycle time. Govind
and Fronckowiak [48] consider WIP projection problem to
measure production performance at IBM’s 300 mm wafer fab
by computing productivity and WIP targets at infinite capacity.
As one can see, even if some papers tackle similar planning
problems, none of the already proposed models explicitly
address our specific problem.

The research work outlined here tried to overcome some
of the limits above: the proposed finite capacity planning
algorithm does not consider fixed steps cycle time, it takes
into account lots due dates and it has been tested in a real-life
industrial context. Furthermore, it meets the key requirement
of semiconductor industrials, consisting on fast computing of
feasible production plans (in five minutes at most on a personal
computer) to facilitate ”what-if” analysis.
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III. MATHEMATICAL FORMULATION OF THE PROBLEM

A. Problem description

The WIP projection problem may be defined as follows.
A set of lots l ∈ {1, . . . , L}, composed of Ql wafers each,
is considered. For each lot l, it remains an identified number
of steps Sl to be processed on a time horizon discretized in
T periods t ∈ {1, . . . , T} of equal length Pt. Each lot of a
weight wl indicating its priority, has a release date rl and a
due date dl.

The performance measurement to be minimized in this
problem is total weighted tardiness TWT. TWT is a measure
that incurs a penalty for each lot that finishes processing
after its promised delivery date. This penalty increases with
the magnitude of the tardiness, and therefore schedules that
minimize the weighted (by lot priority) sum of penalties
provide good on-time delivery performance, whereas higher
values of total weighted tardiness indicate that many important
lots are not being delivered on time. Indeed, a processing
schedule will provide a completion time, Cl , for each lot. The
tardiness, Tl, of lot l is then defined as Tl = max(0, Cl− dl).
The weighted tardiness of the lot l (WTl) is defined as WTl
= (wl × Tl). Total weighted tardiness computes the weighted
sum of tardiness values: TWT =

∑
lWTl.

Each remaining step sl ∈ {1, . . . , Sl} of the lot l is processed
on one or several qualified toolsets i ∈ {1, . . . , I}. The
quantity of wafers of a lot l assigned to the toolset i, processing
the step sl during the period t, is denoted asl,l,i,t. It has a
waiting time wtsl,l and it consumes a unit processing time
psl,l,i on each of its qualified processing toolsets. It also has a
start date ssl,l and an end date esl,l (Figure 2). Each toolset i
has a finite capacity Ci,t, which gives the maximal loading
Li,t over a period t.

Table I summarizes the notation.

Fig. 2: Problem description.

B. Mixed-Integer Program

In this subsection, an appropriate MIP formulation is pre-
sented for the multi-product, multi-period and multi-resource
capacity planning problem. The proposed MIP is similar to
LP capacity planning models that can be found in standard
textbooks, with some variations and extensions. Using the

TABLE I: Summary of problem notation

Indices Description
L Number of lots
l = 1..L Lot index
Sl Number of remaining steps of lot l
sl = 1..Sl Lot’s step index
I Number of toolsets
i = 1..I Toolset index
T Number of time buckets
t = 1..T Period index
Parameters Description
Pt Length of period t
Ql Quantity of wafers of lot l
rl Release date of lot l
wl Weight of lot l
dl Due date of lot l
psl,l,i Unit processing time of step sl of lot l on qualified

toolset i, 0 on non-qualified toolset i
Ci,t Capacity of toolset i in period t
asl,l,i Quantity of wafers of lot l in step sl processed by

the toolset i
Decision variables Description
ssl,l Start date of step sl of lot l
esl,l End date of step sl of lot l
Cl Completion date of lot l
Tl Tardiness of lot l
Li,t Loading of toolset i in period t
ysl,l,t = ssl,l if the step sl of lot l is released in period

t, 0 otherwise
xsl,l,t =1 if step sl of lot l is processed in period t, 0

otherwise

notation presented above, the MIP is as follows:

min
∑
l

wlTl (1)

s.c. s1,l ≥ rl l = 1, . . . , L (2)

ssl,l +
∑
i

psl,l,i × asl,l,i,t × xsl,l,t = esl,l

sl = 1, . . . , Sl, l = 1, . . . , L (3)
ssl,l ≥ esl−1,l sl = 2, . . . , Sl, l = 1, . . . , L (4)∑

t

ysl,l,t = ssl,l sl = 1, . . . , Sl, l = 1, . . . , L (5)∑
t

xsl,l,t = 1 sl = 1, . . . , Sl, l = 1, . . . , L (6)

Cl = eSl,l l = 1, . . . , L (7)
Tl ≥ Cl − dl l = 1, . . . , L (8)
Tl ≥ 0 l = 1, . . . , L (9)
t× Pt × xsl,l,t ≤ ysl,l,t sl = 1, . . . , Sl,

l = 1, . . . , L, t = 1, . . . , T (10)
(t+ 1)× Pt × xsl,l,t > ysl,l,t sl = 1, . . . , Sl,

l = 1, . . . , L, t = 1, . . . , T − 1 (11)

Li,t =
∑
l

∑
sl

psl,l,i × xsl,l,t × asl,l,i,t

i = 1, . . . , I, t = 1, . . . , T (12)
Li,t ≤ Ci,t i = 1, . . . , I, t = 1, . . . , T (13)
xsl,l,t = {0, 1} sl = 1, . . . , Sl, l = 1, . . . , L,

t = 1, . . . , T (14)
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The objective function (1) minimizes the total weighted
tardiness (TWT). The MIP constraints can be classified in
two kinds: temporal constraints ((2). . .(11)) and cumulative
constraints (constraints (12)-(13)). Constraints (2) define the
start date of the first remaining step for each lot. The end date
of each remaining step of each lot is computed using con-
straints (3). Constraints (4) present precedence constraints of
processing steps. Constraints (5) guarantee that each remaining
step of each lot is released once. Constraints (6) verify that
each remaining step of each lot is processed once during the
planning horizon. Constraints (7) define the lots completion
date. Constraints (8) and (9) compute the tardiness for each
lot. Constraints (10) and (11) indicate that each remaining
step of each lot is processed in one period. Constraints (12)
calculate the workload accumulated by each toolset over each
period taking into account the qualification of the toolset
to the processed step and the quantity of wafers assigned
to the considered toolset. Constraints (13) are the capacity
constraints. Constraints (14) are the binary constraints for the
decision variable.

The mathematical model presented above has been solved
by ILOG CPLEX solver. Experiments were run on an
Intelr CoreTM i5 PC running a 2.7 GHz processor and
4 GB of RAM. Tests have been performed on 30 randomly
generated instances of the problem in order to highlight the
main characteristics of the industrial data and to maintain
a certain degree of generality in order to preserve all the
difficulty of the problem. Indeed, based on the observation
made in the literature, we identified seven important problem
parameters which could affect the performance of the proposed
approach: number of lots (L), maximum number of remaining
steps for each lot (maxSl), number of toolsets (I), length
of the planning horizon (T ), lots steps unit processing times
(psl,l,i), lots due dates (dl) and machines capacities (Ci,t).

We consider the cases of 3, 5, 10, 20, 100 and 300 parallel
toolsets with a fixed capacity corresponding to the maximum
equipment utilization rate which is equal to 100%. The lots
weights wl are chosen from a uniform distribution over (0,1).
The lots release dates rl and lots quantity of wafers Ql are
supposed equal to 0 and 25 for all lots, respectively. The range
of lots due dates dl and steps unit processing times psl,l,i is
extracted from real data. dl are ranging from 1 to 210 days
relative to the release date and psl,l,i range between 0.0005 and
0.5 hours. The planning horizon is set to 24 periods (weeks).
Table III presents the different tests parameters generating 30
instances.

Optimal results were obtained in reasonable execution time
while testing the MIP on instances of reduced size. Further
increasing the size of the tested instances (up to about 4000
steps plan), the resolution of MIP was halted as it required a
very large amount of time and computer memory (Figure 3).
Indeed, the whole real problem presents 70 742 400 constraints
and 69 371 200 variables. It corresponds to a WIP composed of
2000 lots, each lot having a maximum of 680 remaining steps
to process on 300 toolsets over a planning horizon composed
of 24 periods (weeks). Thus, the size of real instances is
obviously too large to be solved using the proposed MIP
(Figure 3).

TABLE III: Summary of tests parameters

Problem parameter Values used
Number of lots (L) 2, 3, 10, 20, 30, 40, 50, 60, 70,

80, 90, 100, 200, 240, 1000, 1700,
2000

Maximum number of remaining
steps of lot l (maxSl)

1, 2, 5, 6, 8, 10, 20, 30, 40, 50, 60,
100, 150, 200, 250, 680

Number of toolsets (I) 3, 5, 10, 20, 100, 300
Number of time buckets (T ) 24
Weight per lot (wl) Uniform (0,1)
Lots release dates (rl) 0
Lots due dates (dl) rl+[1..210]
Lots quantity of wafers (Ql) 25
Steps unit processing times
(psl,l,i)

[0.0005..0.5]

Fig. 3: Limits of MIP resolution.

From the empirical evidence on the computational difficul-
ties in getting optimal schedule considering lots due dates and
capacity constraints, it is obvious that the problem of WIP pro-
jection applied to the real case study will be computationally
intractable. Furthermore, Garey and Johnson [49] highlighted
in their study that production planning, capacity planning and
scheduling problems in complex job shops like semiconductor
manufacturing are known as strongly NP-hard problems. This
has motivated us to develop a heuristic algorithm for the
research problem considered in this study to provide near
optimal solutions and/or efficient solution in a reasonable time.
The proposed heuristic algorithm is presented in the next
section.

IV. HEURISTIC ALGORITHM

An alternative methodology for the above problem should
be accurate and, at the same time, fast and small enough to
be stored and implemented in a mainframe or work station
computer system. Bearing this in mind, a heuristic approach
for WIP projection problem in HMLV semiconductor manu-
facturing line has been developed. It is an iterative algorithm
composed of three main modules: (i) WIP projection at infinite
capacity, (ii) workload accumulation and capacity analysis
and (iii) workload and capacity balancing. The algorithm is
executed by iterations on periods of the planning horizon. The
principle of iterative running of the algorithm is inspired from
the literature [50] and the detailed scheduling in the com-
mercial ERP/APS. For each defined period, WIP projection
module estimates the evolution of the WIP, lot by lot, based
on lots due dates. Then, workload accumulation module calcu-
lates the expected equipment loading. In case of toolsets over-
saturation i.e. the loading of toolsets exceeds their maximal
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capacity, workload and capacity balancing module is employed
to reduce toolsets loading by shifting their affected steps to
subsequent periods. The following sections will detail the three
major modules. Figure 4 depicts the flow of the developed
system.

Fig. 4: Finite Capacity Planning Algorithm Flow.

A. WIP projection module

The objective of this module is to push lots, one by one,
forward along their routes, from their current positions up to
their due dates. It also aims to compute over a period the
activity required by step to ensure the delivery plan.

For each selected time bucket t of the planning horizon, this
module requires the following data input:

1) WIP status and wafer starts at the beginning of the
considered projection period (position rl, quantity Ql),

2) Routing information, including a partition of each route
into consecutive steps,

3) Steps unit processing times psl,l,i,
4) Lots due dates dl and weights wl,
5) Flow factor Xfactorsl,l that reflects possible waiting

times between consecutive process steps to achieve the

target cycle time, extracted from historical data. It is
defined as the step mean cycle time divided by the step
raw processing time RPT [51].

WIP projection module includes three steps. Step 1 computes,
for each lot, from its position in the route, four parameters
which are remaining process time RemPTl, remaining refer-
ence cycle time RemRefCTl, remaining expected cycle time
RemExpCTl and cycle time coefficient CTCoeffl.
RemPTl is equal to the sum of lot remaining steps unit
process time multiplied by lot quantity of wafers Ql.

RemPTl =

Sl∑
sl=1

I∑
i=1

psl,l,i ×Ql (15)

RemRefCTl corresponds to the sum of the reference cycle
times of lot remaining steps RefCTsl,l.

RemRefCTl =

Sl∑
sl=1

RefCTsl,l (16)

In the industrial context considered, each step has a reference
cycle time, extracted from historical data, named RefCTsl,l.
RefCTsl,l corresponds to the product of the unit step process
time with the quantity of lot wafers Ql and the flow factor
Xfactorsl,l. It is the maximum amount of time that a lot
would spend at that step, including waiting and processing
times.

RefCTsl,l =

I∑
i=1

psl,l,i ×Ql ×Xfactorsl,l (17)

RemExpCTl is equal to the maximum between the difference
between the due date and the current time t and RemPTl.

RemExpCTl = max(dl − t, RemPTl) (18)

The lot cycle time coefficient CTCoeffl identifies the nec-
essary and sufficient speed for lots to achieve their due date
according to the reference cycle time. It is equal to the ratio
between lot remaining expected cycle time RemExpCTl and
lot remaining reference cycle time RemRefCTl:

CTCoeffl =
RemExpCTl
RemRefCTl

(19)

In step 2, the RemExpCTl is split on the elementary steps
of each lot l to compute an expected cycle time per step
ExpCTsl,l which is equal to the product of ObjCTsl,l and
CTCoeffl.

ExpCTsl,l = RefCTsl,l × CTCoeffl (20)

Equation (20) gives a rough estimation of queuing time at each
step. Hence, waiting time by step wtsl,l can be computed:

wtsl,l = ExpCTsl,l −
I∑

i=1

psl,l,i ×Ql (21)

In step 3, having the waiting time by step, start dates and end
dates for all lots remaining steps, decision variables xl,sl,t,
lots completion date and tardiness are computed.
Figure 5 illustrates an example of 2 lots with different due
dates, having 3 remaining steps each. The first one has an
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Fig. 5: Principle of cycle time computation for each processing
step of a lot.

earlier due date i.e. a higher priority and less RemExpCTl
than the second.

Using the classical projection based on historical data, the
two lots have the same distribution of remaining steps waiting
times over the planning horizon, independently of their due
dates, because they have the same remaining process time
RemPTl. However, the proposed projection module allocates
steps expected cycle times taking into account lots priorities
i.e. due dates. Indeed, there are multiple priority levels of
production lots. Production priorities can be divided into two
levels according to the urgency of delivery: hot and standard.
So, to respect these priorities, the projection module shrinks
steps waiting times in order to satisfy the hot lot’s due date.
However, for a standard lot, it extends steps waiting times
respecting the lot due date.

To further explain the concept of WIP projection, a simple
random instance is tested. The considered WIP consists of 10
lots of 25 wafers each, following different routes, and having
different due dates. Table IV presents, for each lot, the number
of remaining steps, RemPTl, RemRefCTl, RemExpCTl
and CTCoeffl.

Figure 6 illustrates projection results of the 10 lots during
the first period of the planning horizon. For some lots, a
sequence of steps is repeated twice (lots 1,4,5,7,8,9) i.e. lots
visit the same toolset twice which illustrates the re-entrant
flows. Figure 6 shows start and end dates, waiting time and
processing time for each remaining process step during the
considered period. Some steps (step 4.5 and step 10.4) start
in the first period and finish in the subsequent periods of the
planning horizon. This figure demonstrates that the projection
engine allows the extension of steps waiting times for lots
having a far due date which is the case of lots 1 and 6 and
it shrinks steps cycle times in case of close due date for lots
2, 4 and 8. Lots 2, 4 and 8 are not delivered on time. Their
due dates are not reachable so their fab-out dates are equal to
the sum of the current date (t = 0) and the remaining process
time RemPTl.

B. Workload accumulation and capacity analysis module

After WIP projection, the loading of toolsets, over each
considered period Li,t, is computed based on the assumption
of infinite capacities.

To optimize the computation time, toolsets are distributed
in balancing groups. A balancing group is a set of toolsets

TABLE IV: Data for simple instance

Lot l Weight
wl

Number
of re-

maining
steps Sl

RemPTl
in

days

Rem-
RefCTl
in days

Rem-
ExpCTl
in days

CT-
Coeffl

Lot 1 0.33 6 1.1 1.6 5 3.125
Lot 2 1 4 0.8 1.1 0.5 0.45
Lot 3 0.5 2 0.25 0.41 1.5 3.65
Lot 4 0.5 8 1.7 2.3 1.5 0.65
Lot 5 0.5 6 1 1.4 1.5 1.07
Lot 6 0.33 4 0.75 1.02 5 4.9
Lot 7 0.5 8 0.86 1.05 1.5 1.43
Lot 8 1 4 0.8 1.05 0.5 0.48
Lot 9 0.5 4 0.8 1.05 1.5 1.43
Lot 10 0.5 6 1.4 1.9 1.5 0.79

Fig. 6: Simple instance: Production schedule at infinite capac-
ity.

that have same qualifications and share same recipes. This
approach enables to decompose the problem into small sub-
problems. It is a linear program used to optimize workload
balancing of toolsets, belonging to the same balancing group,
over a selected time bucket. The formulation of the linear
program, for each balancing group and over each period, is
as follows:
Notations

Indices:

B Number of balancing groups
b = 1..B Balancing group index
Rb Number of recipes related to the balancing

group b
r = 1..Rb Recipe index
Ib Number of toolsets of the balancing group
Ir Number of toolsets qualified for recipe r,

Ir ⊆ Ib
i = 1..Ib Toolset index
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Parameters:

xsl,l,t Decision variables values, results of WIP pro-
jection module in period t

vsl,l,r =1 if recipe r corresponds to step sl of lot l,
0 otherwise

asl,l,i Quantity of wafers of lot l in step sl processed
by the toolset i

pr,i Processing time of recipe r on toolset i
Ql Quantity of wafers of lot l

Decision variables:

Li,t Loading of toolset i over period t
Wr,i Quantity of wafers produced by toolset i

qualified for recipe r
Lmax Workload of the most loaded toolset in the

balancing group
Lmin Workload of the least loaded toolset in the

balancing group
Lmaxr Loading, for a given recipe r, of the most

loaded toolset among those on which r is
qualified

Lminr Loading, for a given recipe r, of the least
loaded toolset among those on which r is
qualified

Using the above parameters, and decision variables, the linear
program formulation can be represented as follows:

Minimize α · Lmax− β · Lmin+ γ ·
∑

r Lmaxr
−δ ·

∑
r Lminr + δ · (

∑Ib
i Li,t − Lmin)

with α = I2b , β = Ib, γ = 1, δ = 1/Ib

s.t.

Li,t =
∑
r

pr,i ×Wr,i i = 1, . . . , Ib (22)

Ir∑
i=1

Wr,i =
∑
l

∑
sl

xsl,l,t × vsl,l,r × asl,l,i

r = 1, . . . , Rb (23)

Li,t ≥ Lminr r = 1, . . . , Rb, i = 1, . . . , Ir (24)
Li,t ≤ Lmaxr r = 1, . . . , Rb, i = 1, . . . , Ir (25)
Li,t ≥ Lmin i = 1, . . . , Ib (26)
Li,t ≤ Lmax i = 1, . . . , Ib (27)

The linear program seeks to :
• Minimize the workload of the most loaded toolset in the

balancing group Lmax.
• Maximize the workload of the least loaded toolset in the

balancing group Lmin.
• Minimize the total workload of toolsets

∑Ib
i Li and

maximize the total workload of the least loaded toolset
per recipe

∑
r Lminr, with the same degree of priority.

• Minimize the total workload of the most loaded toolsets
per recipe

∑
r Lmaxr.

For the example cited above, the remaining steps of
10 lots are considered to be processed by 6 toolsets
{M1,M2,M3,M4,M5,M6}. These toolsets are classified
into 4 balancing-groups {M1,M6}, {M2,M4}, {M3} and
{M5}. Figure 7 illustrates the saturation percentage of toolsets
i.e. the ratio of the loading to the available capacity during
the first period of the planning horizon (Li,1

Ci,1
, i = 1..6) while

processing the remaining steps ordered in increasing order of
the start date.
In this example, the capacity of all the considered toolsets
(Ci,1, i = 1..6) is equal to 24 hours/day. Figure 7 shows
that there are two over-saturated toolsets (M2 and M6) which
workloads exceed saturation threshold.

Fig. 7: Workload accumulation at infinite capacity for the first
period of the planning horizon.

C. Workload/Capacity Balancing Module

As a result of the workload accumulation module, loading
of some toolsets may exceed their maximal capacities i.e.
constraints (13) are not satisfied. In this case, the toolset is
unable to process all its affected steps during the considered
period so its loading should be balanced over subsequent
periods. The principle of this module is to postpone additional
lots in order to bring back workload of over-saturated toolsets
below their maximal saturation and to smooth the activity over
the planning horizon. The algorithm for workload/capacity
balancing module is as follows:

1) Sort toolsets in decreasing order of saturation.
2) Select lots executed on over-saturated toolsets.
3) Sort selected lots in increasing order of a computed rank-

ing coefficient (rankingCoeffl). The rankingCoeffl
illustrates the priority of the lot in terms of its position
in the process sequence of the considered toolset and the
urgency of delivery. The position of a lot in the process
sequence of a toolset is determined by the processing
date of its last remaining step treated by the considered
toolset denoted sSl,l,t.
The urgency of delivery is defined by the lot cy-
cle time coefficient (CTCoeffl). To compute the
rankingCoeffl, the lot position in the process se-
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quence is normalized by the period length Pt. Hence,
the rankingCoeffl is equal to :

rankingCoeffl =
1

CTCoeffl
+
sSl,l,t

Pt
(28)

4) For the first selected lot in the sorted list, shift the last
step executed in the considered over-saturated toolset
and its successors to the next period.

5) Remove the processing time of shifted steps s′l from
the loading of its qualified processing toolsets while
considering the quantity of wafers as′l,l′,i processed
by each toolset. The new value of the loading of the
considered toolsets L′i,t is, then, equal to :

L′i,t = Li,t −
∑
l′

∑
s′l

(as′l,l′,i × ps′l,l′,i × xl′,s′l,t) (29)

6) Repeat steps 2, 3, 4 and 5 for all toolsets until the
saturation criterion is satisfied for all toolsets over the
period t.

Hence, this module modifies steps projection at period t as
well as the WIP for the beginning of period t+ 1.
For instance, to balance the capacity and the workload of the
over-saturated toolsets M2 and M6 in the considered example,
the balancing module selects M2 as the most over-saturated
toolset (L2,1

C2,1
= 109.3%). Then, it selects lots 2, 4, 5, 7, 8 and

10 processed by this resource (Figure 7). These lots are sorted
in increasing order of rankingCoeffl as it is mentioned in
Table V.

TABLE V: Order of lots processed on M2 according to
rankingCoeffl

Lot l CTCoeffl Step sl sSl,l,t RankingCoeffl

Lot 5 1.07 Step 5.3 0.68 1.25
Lot 7 1.43 Step 7.2 0.265 1.43
Lot 10 0.79 Step 10.2 0.23 2.04
Lot 4 0.65 Step 4.2 0.2 2.34
Lot 8 0.48 Step 8.1 0 3.08
Lot 2 0.45 Step 2.1 0 3.22

In order to decrease the loading of the toolset M2, steps 5.3
and 7.2 and its successors are shifted to the next period of the
planning horizon. Hence, the loading of M2 becomes less than
its maximum capacity: L6,1

C6,1
= 96.4%. M4 is also qualified for

step 5.3, so its loading decreases by 5.06%. Step 5.4 projected
in the first period is also postponed as it is the successor of
the shifted step 5.3. Thus, the loading of M1 processing step
5.4 becomes equal to 58.83%. Shifting the successors of step
7.2 (steps 7.3, 7.4 and 7.5) leads to decreasing the loading of
toolsets M1, M4 and M5. The same algorithm is applied to
the toolset M6 by shifting step 9.1 and its successor step 9.2.
So, its loading decreases to 72%.

The toolsets workload obtained after steps shifting is il-
lustrated in Figure 8. Table VI presents the WIP and the
computed parameters (RemPTl, RemObjCTl, RemExpCTl
and CTCoeffl) in the beginning of the next period.

The proposed approach is tested over a five-day planning
horizon. Indeed, as mix variations were present in industrial
dataset used for this study, it was decided to focus on a very
short planning horizon to evaluate the proposed approach.

Fig. 8: Workload accumulation at finite capacity.

TABLE VI: WIP parameters in the beginning of the second
period

Lot l Weight
wl

Number
of re-

maining
steps Sl

RemPTl
in

days

Rem-
RefCTl
in days

Rem-
ExpCTl
in days

CT-
Coeffl

Lot 1 0.33 6 1.1 1.6 4 2.5
Lot 3 0.5 2 0.25 0.41 0.5 1.22
Lot 4 0.5 3 0.58 0.76 0.7 0.92
Lot 5 0.5 4 0.6 0.83 0.5 0.6
Lot 6 0.33 4 0.75 1.02 4 3.92
Lot 7 0.5 7 0.76 0.91 0.5 0.55
Lot 9 0.5 4 0.8 1.05 0.5 0.47

Lot 10 0.5 2 0.3 0.41 0.5 1.22

Clearly, the shorter the length of the period, the more accurate
the results of the approach. The final obtained schedule for this
instance is illustrated in Figure 9. For this instance, the TWT
is equal to 1.46 days and we have five delayed lots.

Fig. 9: The obtained schedule using heuristic approach.

V. RESULTS AND DISCUSSION

The proposed algorithm is coded in Java and it is tested on
a 4 GigaOctet RAM and 2.7 GigaHertz processor computer.
We conducted two types of experiments to evaluate the perfor-
mance of the proposed approach. The first type corresponds
to a comparison between the exact method and the heuristic
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using a set of randomly generated instances. In the second type
of experiment, we compare the projected schedule obtained by
the proposed approach using real data with what is really going
on in the wafer fab following this schedule.

A. Evaluation of the proposed heuristic algorithm in compar-
ison with optimal solution

For this evaluation, random instances were generated and
solved using the MIP and the proposed heuristic algorithm.
The parameter, number of lots (L), assumes only five levels
(L=10, 15, 20, 50 and L=100). The parameters generated
for the proposed instances are presented in Table VII. So,
three random problem instances for each fixed parameter
combination are obtained, giving a total of 270 test problems.
Each of the 270 problem instances generated has been solved
using the ILOG CPLEX solver and the proposed heuristic
algorithm.

TABLE VII: Test data parameters

Problem Parameter Values used Total
values

Number of lots (L) 10, 15, 20, 50, 100 5
Maximum number of remain-
ing steps of lot l (maxSl)

10, 20, 30, 40, 50, 100 6

Number of toolsets (I) 5, 10, 20 3
Number of time buckets (T ) 24 1
Weight per lot wl uniform (0,1) 1
Lots release dates rl 0 1
Lots due dates dl uniform(1,30) 1
Lots quantity of wafers Ql 25 1
Steps unit process times psl,l,i 0.0001× uniform(5,50) 1

Total parameter combina-
tions

90

Number of problem in-
stances

3

Total problems 270

The results on TWT obtained for each instance using MIP
model and using the proposed iterative algorithm are recorded.
Based on these results, the heuristic solution matched exactly
with the optimal solution 53 times.
Furthermore, for each instance with a size L × maxSl × I ,
we compute:
• The absolute deviation= |TWT value from a heuristic

algorithm - optimal TWT value|
• The relative deviation= absolute deviation value

optimal TWT value
Figure 10 shows the relative deviation over 270 instances
plotted against the absolute deviation.

In this figure, we can define four zones or classes according
to the size of the instance:
• The first zone (corresponding to absolute deviation values
∈ [0..30] days and relative deviation values ≤ 1): Around
92% of the tested instances are situated in this zone.
Hence, for most of the instances, the heuristic solution
is close to the optimal one.

• The second zone (corresponding to absolute deviation
values ∈]30..140] days and relative deviation values ≤ 1):
The 8 instances (' 3% of the total of tested instances)
belonging to this category are instances of large size
(≥ 10000). For example, we find the instance with a

Fig. 10: Comparaison between the optimal and the approxi-
mate solution.

size equal to 10000 (L=100, maxSl=10, I=10) which
has an absolute deviation equal to 79 days and a relative
deviation equal to 0.36. This instance has an optimal
solution TWT equal to 218 days. The important value
of the absolute deviation is thus not significant because
of high values of TWT.

• The third zone (corresponding to absolute deviation val-
ues ∈ [0..30] days and relative deviation values >1): 14
instances (' 5% of the total of tested instances) are
located in this zone. We can cite the example of the
instance with a size equal to 15000 (L=50, maxSl=30,
I=10), a low value of absolute deviation equal to 2.23
days and a high value of relative deviation equal to 4.74.
For this instance, both of the optimal and the approximate
solutions present a low value of TWT. Hence, in this
zone, the importance of the relative deviation has no
significance.

• The fourth zone (corresponding to absolute deviation
values > 30 days and relative deviation values >1): No
instance is located in this zone characterized by high
values of absolute and relative deviations.

B. Experimental tests on real fab data

The aim of this section is to evaluate the ability of the
proposed approach to tackle real world problems. The test of
the real instance (L=2000, maxSl=680, I=300, T=24), un-
solved in reasonable execution time using the MIP approach in
Section 3, is treated. The execution time of this instance with
the proposed algorithm is around 30 seconds. In the calculated
production schedule, 80 % of projected lots are delivered on
time. Furthermore, the saturation of toolsets is kept below
the pre-defined saturation threshold while minimizing lots
lateness. Figure 11 illustrates the obtained weekly saturation
at infinite and finite capacity of a photo-lithography toolset
considered as a bottleneck. In semiconductor fabs, several
indicators are used to measure performance [52]. Jointly with
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Fig. 11: Weekly saturation of a photo-lithography toolset at
infinite and finite capacity.

managers of the fab, we identified three relevant indicators for
our study, as described below:
• Number of moves: This corresponds to the number of

completed steps on each period of the planning horizon,
which can be compared to the real number in the pro-
duction line.

• Number of moves by usage: It is the number of processed
steps by set of toolsets belonging to the same area named
”usage” in each period of the planning horizon.

• Total Weighted Tardiness TWT: This indicator is used to
evaluate the waiting times of lots for processing.

In this section, we compare the cited indicators of performance
of the heuristic solution with the indicators determined in
the real production line. To ensure this experiment, six tests
have been performed on actual instances issued over four
months of production: September, October, November and
December 2015. We have made projections in six different
periods (week1, week2, week3, week4, week5 and week6) and
we have determined the three indicators for each projection.
For confidential reasons, we are not allowed to provide the
real values of the fab. This is why, we compute the relative
deviation between the predicted value and the real one for each
period of the planning horizon:

Relative deviation = |Estimated value−real value|
real value

1) Analysis based on the performance measure: number
of moves: Figure 12 shows relative deviations of number of
moves over 15 time buckets (weeks) of the planning horizon. It
illustrates that in the first 6 periods for the different instances,
the relative deviation between the real number of processing
steps and the calculated value is low. The average of the
average relative deviations over six periods for the different
tests is equal to 12.7%, reflecting a small difference between
the estimated number of moves and the achieved one. Further
being away from the beginning of the projection, the relative
deviation between the obtained solution and the real number
of moves increases which is explained by the variability of
the process. Hence, there is a convergence between what is
estimated and what is achieved in terms of periodic activity
for a short-term planning horizon.

2) Analysis based on the performance measure: number
of moves by usage: To evaluate how the heuristic solution
anticipates the fab loading, we compute the absolute deviation
of the number of moves by set of toolsets sharing the same
qualifications named ”usage” over the six instances for each
period of the planning horizon. Figure 13 shows the difference

Fig. 12: Number of moves comparison actual versus forecast.

between the total number of completed steps processed by
two types of bottleneck usages (photolithography and etching).
For this indicator also, we observe a convergence between the
planning and the real process for the first 6 periods with an
average of the average relative deviations over these periods
equal to 6.5% for the usage of photolithography and 12.3% for
the usage of etching. Therefore, the heuristic provides good
estimations of the tools loading close to the real workload
while respecting capacity constraints.

(a) Photolithography usage

(b) Etching usage

Fig. 13: Total number of moves processed by photo-
lithography and etching usages comparison actual versus fore-
cast.

3) Analysis based on the performance measure: TWT:
To compare between the real total weighted tardiness and
the obtained value of this indicator using the iterative
algorithm for the six tests, absolute and relative deviations
are computed and reported in Table VIII. From Table VIII,
we note that the estimated value of TWT is close to the
real tardiness while respecting lots due dates. Indeed, the
average of relative deviations over six instances is equal to 4%.

VI. CONCLUSIONS AND PERSPECTIVES

This paper has examined the problem of WIP projection
at finite capacity to minimize the TWT, and has proven
empirically the computational complexity in obtaining optimal
solution and suggested a simple, fast and efficient heuristic.
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TABLE VIII: TWT comparison actual versus forecast

Instance Absolute deviation
(days)

Relative deviation
(%)

Instance 1 228.255 6
Instance 2 98.305 2.62
Instance 3 108.86 3.39
Instance 4 47.77 1.83
Instance 5 50.13 2.08
Instance 6 146.23 7.92

The motivation for this research is to compute a feasible
production plan to drive the execution of wafer fabs. This
problem is of considerable practical value because the heuris-
tic, proposed in this paper, can be used in planning of a large
number of production lots while respecting lots due dates and
capacity and capability constraints.

The computational tests, made on real production instances,
showed that acceptable solutions are obtained in reasonable
execution time. Indeed, the TWT could be minimized and the
average tool utilization rate could be balanced significantly
by using the developed system. Besides, the computation for
real instances is achieved in around 30 seconds which is
efficient for planning problems with a horizon of weeks up
to months in real situations. Hence, this decision support tool
outperforms simulation and analytic models for establishing a
feasible production schedule rapidly. Finally, it is observed (as
well as statistically verified) from the results of the comparison
of the different criteria (total number of moves, number of
moves by usage and TWT) an obvious convergence between
what is predicted using the developed approach and what is
achieved in the real process over a short-term planning hori-
zon. These results show that the implementation of the finite
capacity planning system in real fabs seems very interesting to
minimize lots lateness and to establish a feasible production
schedule. There are a number of interesting extensions of
the problems that can be pursued. The first important issue
would be to perform a more thorough multi-criteria analysis
while shifting lots to balance toolsets loadings. Besides, it is
necessary to implement the developed finite capacity planning
system in the production plant to guarantee the performance of
the solution. Considering other specificities of semiconductor
industry such as batching or sequence dependent setup times
may be interesting to enhance the accuracy of the developed
system.

ACKNOWLEDGMENT

This work is supported by the ENIAC European Project
INTEGRATE. The authors also gratefully acknowledge STMi-
croelectronics for their support on the knowledge of the
semiconductor industry.

REFERENCES

[1] L. Mönch, J. Fowler, and S. Mason, Production planning and control for
semiconductor wafer fabrication facilities. Springer New York, 2013.

[2] R. Uzsoy, C.-Y. Lee, and L. Martin-Vega, “A review of production
planning and scheduling models in the semiconductor industry part I:
system characteristics, performance evaluation and production planning,”
IIE Transactions, vol. 24, no. 4, pp. 47–60, 1992.

[3] M. Rowshannahad and S. Dauzère-Pérès, “Qualification management
with batch size constraint,” in Proceedings of the 2013 Winter Simulation
Conference, (Washington, United States), pp. 3707–3718, 2013.

[4] R. Uzsoy, C.-Y. Lee, and L. Martin-Vega, “A review of production
planning and scheduling models in the semiconductor industry part II:
shop-floor control,” IIE Transactions, vol. 26, no. 5, pp. 44–55, 1994.

[5] J. N. D. Gupta, R. Ruiz, J. W. Fowler, and S. J. Mason, “Operational
planning and control of semiconductor wafer fabrication,” Production
Planning and Control, vol. 17, no. 7, pp. 639–647, 2006.

[6] J. Orlicky, Material requirements planning. McGraw-Hill Professional,
1975.

[7] P. J. Rondeau and L. A. Litteral, “Evolution of manufacturing planning
and control systems: from reorder point to enterprise resource planning,”
Production and Inventory Management Journal, vol. 42, no. 2, p. 17,
2001.

[8] D. Y. Golhar and C. L. Stamm, “The just-in-time philosophy: a literature
review,” International Journal of Production Research, vol. 29, no. 4,
pp. 657–676, 1991.

[9] E. M. Goldratt, Theory of constraints: What is this thing called Theory
of Constraints and how should it be implemented. North River Press,
1990.

[10] T. Rossi and M. Pero, “A simulation-based finite capacity mrp proce-
dure not depending on lead time estimation,” International Journal of
Operational Research, vol. 11, no. 3, pp. 237–261, 2011.

[11] H. Jodlbauer and S. Reitner, “Material and capacity requirements
planning with dynamic lead times,” International Journal of Production
Research, vol. 50, no. 16, pp. 4477–4492, 2012.

[12] L. Sun, S. S. Heragu, L. Chen, and M. L. Spearman, “Comparing
dynamic risk-based scheduling methods with mrp via simulation,”
International Journal of Production Research, vol. 50, no. 4, pp. 921–
937, 2012.

[13] T. Aouam and R. Uzsoy, “Zero-order production planning models with
stochastic demand and workload-dependent lead times,” International
Journal of Production Research, vol. 53, no. 6, pp. 1661–1679, 2015.

[14] M. E. Levitt and J. A. Abraham, “Just-In-Time methods for semiconduc-
tor manufacturing,” in Proceedings of the 1990 Advanced Semiconductor
Manufacturing Conference, (Danvers, MA), pp. 3–9, 1990.

[15] J. G. Carlson and A. C. Yao, “Mixed model assembly simulation,” Inter-
national Journal of Production Economics, vol. 26, no. 1-3, pp. 161–167,
1992.

[16] C. Rippenhagen and S. Krishnaswamy, “Implementing the theory of
constraints philosophy in highly reentrant systems,” in Proceedings
of the 1998 Winter Simulation Conference, (Piscataway, New Jersey),
pp. 993–996, 1998.

[17] M.-G. Resende, “A program for simulation of semiconductor wafer
fabrication,” tech. rep., University of California, Berkeley, Operations
Research Center, 1985.

[18] B. Tullis, V. Mehrotra, and D. Zuanich, “Successful modeling of
a semiconductor R & D facility,” in Proceedings of the 1990
IEEE/SEMI International Semiconductor Manufacturing Science Sym-
posium, (Burlingame, California, United States), pp. 26–32, 1990.

[19] M. Thompson, “Using simulation-based finite capacity planning and
scheduling software to improve cycle time in front end operations,” in
Proceedings of 1995 IEEE/SEMI Advanced Semiconductor Manufactur-
ing Conference Workshop, pp. 131–135, 1995.

[20] J. Fowler, H. Brown, S.and Gold, and A. Schoemig, “Measurable im-
provements in cycle-time-constrained capacity,” in Proceedings of IEEE
International Symposium On Semiconductor Manufacturing Conference,
(San Francisco, United States), pp. 21–24, 1997.

[21] A. J. Weintraub, A. Zozom Jr, T. J. Hodgson, and D. Cormier, “A
simulation-based finite capacity scheduling system,” in Proceedings of
the 29th conference on Winter simulation, pp. 838–844, IEEE Computer
Society, 1997.

[22] N. Grewal, A. Bruska, T. Wulf, and J. Robinson, “Integrating targeted
cycle-time reduction into the capital planning process,” in Proceedings
of the 1998 Winter Simulation Conference– WSC 1998, (Washington,
United States), pp. 1005–1010, 1998.

[23] K. Potti and S. J. Mason, “Using simulation to improve semiconductor
manufacturing,” Semiconductor International, vol. 20, no. 8, pp. 289–
292, 1997.

[24] A. A. B. Pritsker and K. Snyder, “Production scheduling using FAC-
TOR,” in The Planning and Scheduling of Production Systems, pp. 337–
358, Springer US, 1997.

[25] J. P. Ignizio and H. Garrido, “Fab simulation and variability,” Future
Fab International, vol. 41, pp. 41–45, 2012.



IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING 14

[26] J. G. Shanthikumar, S. Ding, and M. T. Zhang, “Queueing theory for
semiconductor manufacturing systems: A survey and open problems,”
IEEE Transactions on Automation Science and Engineering, vol. 4,
no. 4, pp. 513–522, 2007.

[27] S. Bermon and S. Hood, “Capacity optimization planning system
(CAPS),” Interfaces, vol. 29, no. 5, pp. 31–50, 1999.

[28] J. Swaminathan, “Tool capacity planning for semiconductor fabrication
facilities under demand uncertainty,” European Journal of Operational
Research, vol. 120, no. 3, pp. 545–558, 2000.
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