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Abstract

In this paper, we introduce a training and compensation algorithm of the class-conditioned basis vectors in the non-negative matrix
factorization (NMF) model for single-channel speech enhancement. The main goal is to estimate the basis vectors of different
signal sources in a way that prevents them from representing other sources, in order to reduce the residual noise components that
have features similar to the speech signal. During the proposed training stage, the basis matrices for the clean speech and noises
are estimated jointly by constraining them to belong to different classes. To this end, we employ the probabilistic generative model
(PGM) of classification, specified by class-conditional densities, as an a priori distribution for the basis vectors. The update rules of
the NMF and the PGM parameters of classification are jointly obtained by using the variational Bayesian expectation-maximization
(VBEM) algorithm, which guarantees convergence to a stationary point. Another goal of the proposed algorithm is to handle a
mismatch between the characteristics of the training and test data. This is accomplished during the proposed enhancement stage,
where we implement a basis compensation scheme. Specifically, we use extra free basis vectors to capture the features which are
not included in the training data. Objective experimental results for different combination of speaker and noise types show that the
proposed algorithm can provide better speech enhancement performance than the benchmark algorithms under various conditions.

Keywords: Single-channel speech enhancement, non-negative matrix factorization, probabilistic generative model, classification,
variational Bayesian expectation-maximization

1. Introduction

The general objective of speech enhancement algorithms is
to remove the background noise from a noisy speech signal
to improve its quality or intelligibility. They have been an at-
tractive research area for decades and find various applications
including mobile telephony, hearing aid and speech recogni-
tion. Numerous single-channel speech enhancement algorithms
have been proposed in the past, such as: spectral subtraction
[1], minimum mean-square error (MMSE) estimation [2, 3] and
subspace decomposition [4]. However, these algorithms tend
to provide limited performance in adverse noisy environments,
e.g., low input signal-to-noise ratio (SNR) or non-stationary
noise conditions, since they use a minimal amount of a pri-
ori information about the speech and noise. Recently, the non-
negative matrix factorization (NMF) approach has been suc-
cessfully applied to various problems, such as music transcrip-
tion [5], source separation [6], speech enhancement [7] and im-
age representation [8]. In general, NMF is a dimensionality
reduction technique, which decomposes a given matrix into ba-
sis and activation matrices with non-negative elements [9, 10].
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In audio and speech applications, the magnitude or power spec-
trum of the (noisy) audio signal is interpreted as a linear com-
bination of the NMF basis vectors, which play a key role in
the enhancement process. Deep neural network (DNN) algo-
rithms have gained enormous interest lately. The DNN train-
ing aims at estimating the nonlinear mapping function, speci-
fied by the weights and biases of the hidden layers, that relates
the input features to the output target features. Applications of
DNN to speech enhancement and source separation have been
introduced in [11, 12, 13]. The NMF and DNN algorithms dif-
fer significantly in terms of underlying modeling structure and
training requirements; in this paper, we focus on a linear NMF
model.

In a supervised NMF-based framework, the basis vectors are
typically obtained a priori for each source by independently
using isolated training data during the training stage. However,
there are two main problems in such a framework. The first
one is that the basis vectors of the different signal sources, e.g.,
speech and noise, may share similar characteristics. For ex-
ample, the basis vectors of the speech spectrum can represent
the noise spectrum and hence, the enhanced speech may con-
tain residual noise components which have features similar to
the speech signal. One possible remedy is to train the basis
vectors of each source in a way that prevents them from repre-
senting other sources. In [14], the cross-coherence of the basis
vectors is added as a penalty term to the NMF cost function,
whereas the cross-reconstruction error terms are considered in
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[15]. The authors in [16, 17, 18] propose to use additional train-
ing data which are generated by mixing, e.g., adding or con-
catenating, the isolated training data of each source. However,
the approaches in [16, 17] are based on heuristic multiplicative
update (MU) rules which do not guarantee the convergence of
the NMF in general [10, 19]. Moreover, the basis vectors in
[17, 18] are obtained indirectly by means of the activation ma-
trix estimated from the mixed training data and hence, lack an
explicit interpretation in terms of discrimination.

The second problem in a supervised framework is the exis-
tence of a mismatch between the characteristics of the training
and test data. A common approach to overcome this problem
is to add explicit regularization terms to the NMF cost func-
tion that incorporate some prior knowledge, such as the tempo-
ral continuity [20] or statistical characteristics of the magnitude
spectra [21]. In these algorithms, however, the basis vectors
are fixed during the enhancement stage, which limits the per-
formance when there is a large mismatch between the train-
ing and test data. One alternative approach is to use a basis
adaptation scheme during the enhancement stage. In [22], the
basis vectors are adapted based on prior distributions modeled
by Gamma mixtures. The authors in [23] employ extra valida-
tion data for speaker adaptation in a speech-music separation
task. In [24], the basis vectors are adapted by using a combi-
nation of the original and pre-processed noisy speech samples,
the latter being obtained via a classical MMSE-based speech
enhancement algorithm. In these algorithms, however, the ba-
sis vectors are adapted from the mixtures of multiple sources,
e.g., noise and speech, such that the resulting basis vectors may
still exhibit features of different sources. Consequently, the en-
hanced speech may contain some residual noise components
and hence, adapting the complete set of basis vectors may limit
the enhancement performance.

In this paper, to overcome these limitations, we introduce a
training and compensation algorithm of the class-conditioned
basis vectors in the NMF model for single-channel speech en-
hancement, which is an extension of our previous works on
training class-conditioned basis vectors in [25], and basis com-
pensation in [26]. In the proposed framework herein, we con-
sider the probabilistic generative model (PGM) of classifica-
tion specified by class-conditional densities [27], along with
the NMF model [28]. Specifically, the PGM of classification
is used as an explicit a priori distribution for the basis vectors.
During the proposed training stage, the basis matrices for all the
clean speech and noise sources are estimated jointly by con-
straining them to belong to one of several speech and noise
classes. Previously in [25], we used a traditional Gaussian-
distributed class-conditional density [27], and the model param-
eters were obtained through a maximum a posteriori (MAP)
estimator using the expectation-maximization (EM) algorithm.
In this paper, we make two key modifications. First, we em-
ploy a Gamma-distributed class-conditional density to bring
more coherence into the NMF model. Second, the update rules
of the NMF model and the PGM parameters for classification
are jointly obtained via the variational Bayesian expectation-
maximization (VBEM) algorithm, which can be considered as
an extension of the EM algorithm [27, 28, 29].

The proposed enhancement stage consists of two steps. First,
we perform noise classification based on the posterior class
probability (PCP), in order to determine which type of noise
is included in the noisy speech. Second, we implement a basis
compensation algorithm by adopting the approach in [26]. That
is, we use extra free basis vectors for both the clean speech and
noise to capture the features which cannot be explained by the
limited set of basis vectors due to the hard decision on the noise
type as well as features which are not included in the train-
ing data. The PGM parameters for classification are employed
while inferring the free basis vectors as well as during the noise
classification. Previously in [26], the free basis vectors were
estimated by using the MU rules, whereas we use the VBEM
algorithm in this paper. Experimental results of perceptual eval-
uation of speech quality (PESQ) [30], source-to-distortion ratio
(SDR) [31] and segmental SNR (SSNR) show that the proposed
algorithm provides better enhancement performance than the
benchmark algorithms under various conditions.

The paper is organized as follows. In Section 2, we review
the basic principles of supervised NMF-based single-channel
speech enhancement. In Section 3, we introduce the PGMs
of the NMF and classification models. The proposed training
stage is derived in Section 4, and the proposed enhancement
stage is explained in Section 5. Experimental results are pre-
sented in Section 6 and Section 7 concludes the paper.

2. NMF-based speech enhancement framework

For a given matrix V = [vkl] ∈ RK×L+ , NMF finds a local
optimal decomposition of V ≈ WH, where W = [wkm] ∈
RK×M+ is a basis matrix, H = [hml] ∈ RM×L+ is an activation
matrix, R+ denotes the set of non-negative real numbers and
M is the number of basis vectors, typically chosen such that
M < min(K,L) [19]. The factorization is obtained by min-
imizing a suitable cost function, such as the Kullback-Leibler
(KL) divergence. In this case, the solutions can be obtained
iteratively using the following MU rules [9]

W←W⊗ (V/(WH))HT

1KLHT
, H← H⊗WT (V/(WH))

WT 1KL
(1)

where the operation ⊗ denotes element-wise multiplication, /
and the quotient line are element-wise division, 1KL is a K ×L
matrix with all entries equal to one, the superscript T is the
matrix transpose, and← refers to an iterative overwrite.

In NMF-based single-channel speech enhancement, one
commonly assumes that the magnitude spectrum of the noisy
speech, obtained via short-time Fourier transform (STFT), can
be approximated by the sum of the clean speech and noise mag-
nitude spectra [6, 7, 32], i.e., |Ykl| ≈ |Skl| + |Nkl| where
Ykl, Skl and Nkl respectively denote the STFT coefficients of
the noisy speech, clean speech and noise at the frequency bin
k ∈ {1, . . . ,K} and time frame l ∈ {1, . . . , L}. Hence, in
this work, V = [vkl] may contain the magnitude spectral val-
ues of the noisy speech, clean speech or noise, as indicated by
subscripts or superscripts Y , S and N , respectively.
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In a supervised framework, WS and WN are first obtained
during the training stage, by applying (1) to the training data VS
and VN . In the enhancement stage, for an online application,
the activation vector hYl = [(hSl )T (hNl )T ]T ∈ R(MS+MN )×1

+

is estimated for the l-th time frame by applying the activa-
tion update in (1) to |yl| = [|Ykl|] ∈ RK×1

+ , while fixing
WY = [WS WN ]. In this work, we instead consider a mini-
batch online application by concatenating several successive
time frames of the noisy speech. That is, we construct a tar-
get matrix as VYlb = |Ylb | ∈ RK×Lb

+ , where lb = 1, 2, ...
is the mini-batch index, Ylb is the noisy speech matrix con-
sisting of the time frames l = (lb − 1)Lb + 1, ..., lbLb, Lb is
the mini-batch size, and | · | denotes the element-wise magni-
tude computation. The merit of using a mini-batch approach
is that we can not only alleviate the over-complete condi-
tion (i.e., MS + MN > Lb) but also reduce the computa-
tion time. For a given lb-th mini-batch, the activation matrix
HY
lb

= [(HS
lb

)T (HN
lb

)T ]T ∈ R(MS+MN )×Lb

+ is obtained by ap-
plying the activation update in (1) to VYlb . Subsequently, the
clean speech spectrum can be estimated using the Wiener filter
as [10]

Ŝkl =
p̂Skl

p̂Skl + p̂Nkl
Ykl (2)

where p̂Skl and p̂Nkl respectively denote the estimated power
spectral densities (PSD) of the clean speech and noise. The
latter are obtained via temporal smoothing of the NMF-based
periodograms as [24, 25]

p̂Skl = τS p̂
S
k,l−1 + (1− τS)([WSHS

lb
]kl)

2 (3)

p̂Nkl = τN p̂
N
k,l−1 + (1− τN )([WNHN

lb
]kl)

2 (4)

where τS and τN are the smoothing factors for the speech and
noise, and [·]kl denotes the (k, l)-th entry of its matrix argu-
ment. Finally, the enhanced speech signal in the time-domain
is reconstructed by applying the inverse STFT to (2) followed
by the overlap-add method.

3. Probabilistic generative models

In this section, we introduce two underlying PGMs for
the proposed framework: the PGM of NMF, where the log-
likelihood function (LLF) corresponds to the KL-divergence,
is described in Section 3.1, while the PGM of classification,
which will be applied to the basis vectors, is presented in Sec-
tion 3.2.

3.1. NMF model

In [28], the NMF model with KL-divergence is described
within a statistical framework as summarized below. Each en-
try of a non-negative matrix, V = [vkl], is assumed to be a sum
of M latent variables as

vkl =

M∑
m=1

cmkl. (5)

The m-th latent variable, cmkl, is assumed to be drawn from a
Poisson distribution parameterized by wkm and hml

p(cmkl|wkm, hml) = P(cmkl|wkmhml) (6)

where P(x|u) = ux exp(−u)/(x!) is the Poisson distribution
with mean u. Note that the approximation of vkl as a sum of
integer variables in (5) can be justified by assuming a large dy-
namic range for the former quantity, which in practice can be
realized by a proper scaling of the magnitude spectra [7, 25, 33].

The maximum likelihood (ML) estimates of the parameters
wkm and hml, given the observation vkl, are obtained via the
EM algorithm. During the expectation step (E-step), the poste-
rior distribution of the latent variable cmkl given the observation
vkl is calculated. In the maximization step (M-step), the param-
eters are estimated by maximizing the expected complete-data
LLF. The iterative NMF solutions obtained through the EM al-
gorithm have forms similar to the MU rules in (1).

3.2. Classification model
In the classification problem, the input vector w = [wk] ∈

RK under test is assigned to one of I classes. The essential
part of the classification is to find a partition of the observation
space RK into decision regions that will minimize the classi-
fication error, by using training data and their corresponding
class labels. There are two main approaches to solve this prob-
lem: PGM and discriminative modeling [27, 34]. The former
approach maximizes the likelihood based on the joint distribu-
tion of the input data and class labels, whereas the latter maxi-
mizes the PCP. In this work, we consider the PGM since it can
provide the necessary a priori distributions to be used in the
proposed training framework.

The PGM can be described by a class-conditional density
based on a Gaussian distribution [25, 27] or a Gaussian mixture
model [35]. In this work, we instead employ a Gamma distri-
bution, which is shown to be a conjugate prior to the Poisson
model [28], to bring more coherence into the NMF model. By
ignoring possible correlations between different entries in w,
the class-conditional density based on the Gamma distribution
can be expressed as

p(w|di = 1) =

K∏
k=1

G(wk;αik, βk) (7)

where G(x;u, z) = xu−1z−u exp(−x/z)/Γ(u) is the Gamma
distribution with mean uz, Γ(·) is the Gamma function, and
u and z are referred to as the shape and scale parameters, re-
spectively. Although we can use class-specific scales βik, we
consider a common value of βk for all classes [27], in order to
avoid over-fitting.

For a given training set of W = [w1, ...,wM ] and D =
[d1, ...,dM ], where dm = [dim] with dim ∈ {0, 1} (such that∑
i dim = 1) is an I × 1 target class label vector, and assum-

ing the columns wm are independently drawn, the likelihood
function is given by

p(W,D;θC) =

M∏
m=1

I−1∏
i=0

[
p(wm|di = 1)pi

]dim (8)
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where θC = {{pi, {αik}Kk=1}
I−1
i=0 , {βk}Kk=1} is a PGM param-

eter set for classification and pi , p(di = 1) is the prior class
probability. The set θC can be simply estimated via the ML
criterion. Using Bayes’ theorem, the PCP of class i, given the
observation w, can be expressed as

p(di = 1|w) =
p(w|di = 1)pi∑
j p(w|dj = 1)pj

. (9)

4. Proposed training stage

In many applications of the EM algorithm, evaluating the
posterior distribution or indeed computing expectations with
respect to this distribution is analytically intractable. Conse-
quently, it is highly demanding to derive a lower bound for
the marginal likelihood of the observed data or to estimate the
hyper-parameters. The VBEM algorithm overcomes this diffi-
culty by computing an analytical and efficient approximation to
the posterior distribution [27, 29], and also provides an effective
estimation of the hyper-parameters. In general, the VBEM al-
gorithm can be considered as an extension of the EM algorithm
from the ML or MAP estimation of the single most probable
value of each parameter to fully Bayesian estimation in which
any unknown parameter is absorbed into the set of latent vari-
ables. We employ the VBEM method to develop the proposed
training algorithm, as further explained below.

4.1. Prior structures
We first explicitly address the prior structures for the PGM

in (6), which will be used in the proposed framework. We de-
note by Mi the number of basis vectors in class i (such that
M =

∑
iMi), and by Li the number of time frames in class

i. For the basis vectors, the likelihood function p(W,D;θC) in
(8), based on the class-conditional density given by (7), can be
simply rearranged as

p(W;θC) =

I−1∏
i=0

Mi∏
m=1

K∏
k=1

piG(wikm;αik, βk) (10)

where we omit the dependence on D hereafter for convenience.
For the activations, we follow the prior model based on the
Gamma distribution as introduced in [7, 28]:

p(himl; a
i
ml, b

i
ml) = G

(
himl; a

i
ml,

biml
aiml

)
(11)

which provides an intuitive interpretation in terms of the mean
value simply given by biml. Moreover, we consider constant
values of aiml and biml for each class, i.e., aiml = ai and biml =
bi, to avoid over-fitting [7, 28]. Assuming that the entries of H
are independently distributed, the prior of H can be written as

p(H; a,b) =

I−1∏
i=0

Mi∏
m=1

Li∏
l=1

p(himl; a
i, bi) (12)

where a = {ai}I−1
i=0 and b = {bi}I−1

i=0 . Note that employing the
prior structure in (11) for the basis vectors indicates the class-
specific scales in the PGM for classification and hence, limits
the enhancement performance due to over-fitting.

4.2. VBEM algorithm
Let us denote by θL = {C,W,H} the set of latent vari-

ables, where C = {cm,ikl }, W = {wikm}, H = {himl}, and by
θR = {θC , a,b} the set of hyper-parameters. In the proposed
framework, we use the class index i = 0 for the speech and
i = 1, ..., I − 1 for the different noise types. For given training
data sets of the clean speech and noise, V = {Vi}, the marginal
LLF can be written as

ln p(V;θR) ≥
∑

C

∫∫
q(C,W,H) ln

p(V,C,W,H;θR)

q(C,W,H)
dWdH

= Eq(θL)[ln p(V,θL;θR)]︸ ︷︷ ︸
, LV (q(θL);θR)

−Eq(θL)[ln q(θL)]︸ ︷︷ ︸
, −LE(q(θL))

, LB(q(θL);θR) (13)

where q(·) is an arbitrary distribution (often referred to as a
variational distribution), Eg(x)[f(x)] indicates an expectation
of f(x) with respect to g(x). The term LB(q(θL);θR) defines
the lower bound on ln p(V;θR), where the equality holds for
q(θL) = p(θL|V;θR) [27, 28]. A detailed expression of the
lower bound is given in Appendix A. Analogous to the EM al-
gorithm, the VBEM algorithm consists of two stages. During
the E-step, the goal is to estimate q(θL) which approximates
the exact posterior distribution p(θL|V;θR). In the M-step,
the hyper-parameters are obtained by maximizing the lower
bound in (13) computed with a fixed q(θL). That is, the term
LE(q(θL)), which denotes the entropy of q(θL), can be consid-
ered as a constant value and hence, maximizing the lower bound
becomes equivalent to maximizing the energy LV (q(θL);θR).

1) Variational E-step: Based on the mean-field approxima-
tion [27, 29], we assume that q(C,W,H) can be factorized as
(e.g., [28, 32, 36])

q(C,W,H) = q(C)q(W)q(H) (14)

=
(∏
i,k,l

q(cikl)
)( ∏

i,k,m

q(wikm)
)( ∏

i,m,l

q(himl)
)

where cikl = [c1,ikl , ..., c
Mi,i
kl ]. The resulting local optimal solu-

tions can be found as [27, 28]:

q(C)(r+1) ∝ exp
(
Eq(W)(r)q(H)(r) [ln p(V,θL;θR)]

)
(15)

q(W)(r+1) ∝ exp
(
Eq(C)(r+1)q(H)(r) [ln p(V,θL;θR)]

)
(16)

q(H)(r+1) ∝ exp
(
Eq(C)(r+1)q(W)(r+1) [ln p(V,θL;θR)]

)
(17)

where the superscript (r) denotes the r-th iteration. For con-
venience, we hereafter omit the superscript (r) and also drop
the latent variables inside the subscript q(·) of the expectation
operator, e.g., Eq(wi

km)[w
i
km] = Eq[wikm].

First, the distribution q(cikl) in (15) is shown to follow a
multinomial distribution [28]:

M(cikl; v
i
kl, p̄

i
kl) = δ

(
vikl −

Mi∑
m=1

cm,ikl

)
vikl!

Mi∏
m=1

(p̄m,ikl )c
m,i
kl

cm,ikl !
(18)
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where δ(x) is the Kronecker delta function defined by δ(x) = 1
when x = 0 and δ(x) = 0 otherwise. The entries of p̄ikl =

[p̄m,ikl ] are given by

p̄m,ikl =
exp

(
Eq[lnwikm] + Eq[lnhiml]

)∑Mi

m=1 exp
(
Eq[lnwikm] + Eq[lnhiml]

) . (19)

Next, the distribution q(wikm) in (16) is obtained as

q(wikm) ∝ exp

[(
αik +

Li∑
l=1

Eq[cm,ikl ]− 1
)

lnwikm

−
( 1

βk
+

Li∑
l=1

Eq[himl]
)
wikm

]
∝ G(wikm; ᾱikm, β̄

i
km) (20)

where the parameters are given by

ᾱikm=αik+

Li∑
l=1

Eq[cm,ikl ], β̄ikm=
( 1

βk
+

Li∑
l=1

Eq[himl]
)−1

. (21)

Finally, the distribution q(himl) in (17) is also found to follow
a Gamma distribution G(himl; ā

i
ml, b̄

i
ml) [28], where the param-

eters are given by

āiml= ai+

K∑
k=1

Eq[cm,ikl ], b̄iml=
(ai
bi

+

K∑
k=1

Eq[wikm]
)−1

. (22)

The sufficient statistics (expectations) are given below:

Eq[cm,ikl ] = viklp̄
m,i
kl (23)

Eq[lnwikm] = Ψ(ᾱikm)+ln β̄ikm, Eq[wikm] = ᾱikmβ̄
i
km (24)

Eq[lnhiml] = Ψ(āiml)+ln b̄iml, Eq[himl] = āimlb̄
i
ml (25)

where Ψ(x) = d ln Γ(x)/dx is the digamma function [28].
2) Variational M-step: The hyper-parameter set θR is esti-

mated by maximizing LV (q(θL)(r+1);θR). Setting the partial
derivative of LV (q(θL)(r+1);θR) with respect to θR to zero,
the PGM parameters for classification, θC , are obtained as

αik ← αik −
Ψ(αik)− αiq

Ψ′(αik)
(26)

βk =

∑I−1
i=0

∑Mi

m=1 Eq[wikm]∑I−1
i=0 Miαik

(27)

where αiq =
∑Mi

m=1(Eq[lnwikm] − lnβk)/Mi, and Ψ′(x) is
the derivative of the digamma function Ψ(x) with respect to x,
i.e., Ψ′(x) = dΨ(x)/dx. The prior class probability is simply
estimated by pi = Mi/M . The shape and scale parameters, a
and b, are obtained as in [28]:

ai ← ai −
ln ai −Ψ(ai) + 1− aiq

1/ai −Ψ′(ai)
(28)

bi =
1

MiLi

Mi∑
m=1

Li∑
l=1

Eq[himl] (29)

where aiq =
∑
m

∑
l(Eq[himl]/bi−Eq[lnhiml]+ln bi)/(KMi).

To avoid scale indeterminacies in wkm and hml which ap-
pear as a product in the distribution (6), we include a normal-
ization step. Motivated by [37], we normalize Eq[wikm] and
exp(Eq[lnwikm]) such that they sum up to 1 with respect to
k after computing (20). For initialization, we generate pos-
itive random numbers and subsequently apply the MU rules
in (1) to V for several iterations [7, 32], where we found that
10 iterations are sufficient. The resulting Wi and Hi are used
as the initial values for the sufficient statistics, i.e., Eq[wikm],
Eq[lnwikm], Eq[himl] and Eq[lnhiml]. To initialize θC , we apply
(26) and (27) to the initial values of Eq[wikm] and Eq[lnwikm].
The shape and scale parameters for the activations are initial-
ized by ai = 0.001 and bi = 10. We use 200 iterations for the
VBEM algorithm, whereas 5 iterations are used for estimating
the hyper-parameters in (26) and (28).

The proposed training stage can be interpreted as follows.
During the E-step, the basis vectors are adjusted based on their
priors which define the classification boundaries. Hence, the
basis vectors are estimated by constraining them to belong to
different classes. During the M-step, the hyper-parameters (i.e.,
the PGM parameters for classification θC) are re-estimated,
which define new classification boundaries.

5. Proposed enhancement stage

A number of attempts of combining the classical speech
enhancement algorithms and the NMF-based framework have
been made in the literature. In [24, 26, 38], a classical method
is used as a pre-processor to first remove some stationary back-
ground noise, and the NMF-based algorithm is subsequently
applied to further improve the enhancement performance. The
authors in [39] implement the classical and NMF-based algo-
rithms independently, and evaluate the geometric mean over
them to estimate the clean speech spectrum. We combine both
approaches and propose to use the weighted geometric mean
(WGM) of the pre-processed noisy speech and its improvement
via Wiener filtering. Regarding the pre-processor, we use the
well-knwon MMSE short-time spectral amplitude (STSA) es-
timator [2], where the noise PSD is estimated based on [40].
The proposed enhancement stage consists of two steps, i.e.,
noise classification followed by basis compensation, which are
explained in the following subsections. We denote by S̄lb ∈
CK×Lb the pre-processed noisy speech and by N̄lb = Ylb − S̄lb
the pre-estimated noise.

5.1. Noise classification

In many NMF-based speech enhancement algorithms, the
background noise type is assumed to be known a priori. In
the proposed framework, we perform noise classification for
the lb-th mini-batch, to select a single noise type among differ-
ent classes which has features similar to the noise included in
the noisy speech. To this end, one possible approach is to apply
the activation update given by (1) to |Ylb | for each noise type
by fixing its corresponding basis matrix and observe the recon-
struction error (i.e., KL-divergence), such as in [41]. However,
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this method requires additional iterations in which the computa-
tional cost increases with respect to the number of noise types.

In the proposed method, we use the PGM-based classifier
given by (9). That is, we evaluate the PCP based on (9) and θC
for i = {1, ...I − 1}, and select the noise type with the high-
est PCP value. As a simple approach, we can first estimate a
noise classification basis vector wC = [wCk ] ∈ RK+ by apply-
ing the MU rules in (1) to |N̄lb |, and use it as the input to the
classifier. However, we can further reduce the computational
cost by simply using the |N̄lb | due to the property of NMF (i.e.,
the target matrix is represented as a linear combination of the
basis vectors), since we can avoid additional iterations for com-
puting wC . To further improve the classification performance,
we consider both Ylb and N̄lb . That is, we compute the geo-
metric mean of the magnitude spectra of the noisy speech and
pre-estimated noise (i.e., |Ylb ⊗ N̄lb |1/2 ∈ RK×Lb ), to amplify
the noise components. Subsequently, we average over the rows
and normalize the resulting column vector using the l1-norm,
where the corresponding vector will be denoted by w̃C ∈ RK+ .

Regarding the classifier, we found that employing the
Gamma distribution in (7) directly for computing the PCP re-
sulted in poor classification performance. One main reason is
that the Gamma distribution can lead to numerical instability,
since Γ(α) rapidly approaches infinity as α increases. Hence,
we instead use the approximated Gaussian distribution1 as the
class-conditional density, which is indeed simpler to compute
than the Gamma distribution:

p(w̃C |di = 1) ≈ N (w̃C ; µ̃i, Σ̃i) (30)

where µ̃i = [µ̃ik] and Σ̃i = diag{σ̃2
ik} are the mean vector and

diagonal covariance matrix of the Gaussian distribution with
entries µ̃ik = αikβk and σ̃2

ik = αikβ
2
k . The underlying motiva-

tion for using the form in (30) is similar to the application of the
Laplace approximation [27], which aims at finding a Gaussian
approximation to the original distribution. According to this
approach, the mean and variance of the approximated Gaussian
distribution are obtained based on the mode and second order
derivative at the mode of the original distribution, respectively.
However, since the mode of the Gamma distribution is defined
only for α > 1, we instead use its mean and variance. Further-
more, we use the average value of Σ̃i over all i for the covari-
ance in (30), which leads to computing the (exponential of the
squared) Mahalanobis distance. The latter is known to further
reduce the computational cost compared to using the Gaussian
model with class-specific variances [42].

5.2. Basis compensation

Once the noise type is determined, we implement a basis
compensation scheme by adopting the approach proposed in
[26]. That is, we use extra free basis vectors for both the clean

1Note that this approximation is employed only for the noise classification.
The inference on q(wi

km) does not suffer from the extreme value of the Gamma
function, i.e., the extreme value of the digamma function (−∞) appearing in
Eq [ln(·)] in (24) and (25) is handled by the exponential in (19).

speech and noise to capture the features which cannot be ex-
plained by the limited set of basis vectors due to the hard de-
cision on a single noise type, as well as features which are not
included in the training data. We denote by WSF

lb
= [wSF

km] ∈
RK×MSF

+ and WNF
lb

= [wNF
km] ∈ RK×MNF

+ (such that MSF <MS

and MNF<MN ) the free basis matrices of the clean speech and
noise, respectively.

For the lb-th mini-batch, motivated by [24] and [26], we aim
at factorizing Vlb = [|Ylb | |S̄lb |] ∈ RK×2Lb

+ into the product
of Wlb = [WS WSF

lb
WN WNF

lb
] = [wkm] ∈ RK×MY

+ and
Hlb = [HY

lb
HS̄
lb

] = [hml] ∈ RMY ×2Lb
+ , where MY = MS +

MSF + MN + MNF. We use the VBEM algorithm introduced
in Section IV, to estimate the variational distributions q(WSF

lb
),

q(WNF
lb

) and q(Hlb). At each iteration, the distribution q(C) is
first inferred as (18), where the parameters are given by (19).
Second, we estimate the parameters of q(WSF

lb
) and q(WNF

lb
),

while fixing the parameters of q(WS) and q(WN ). Specifically,
the parameters of q(wSF

km) and q(wNF
km), which correspond to the

ones in q(wkm) for the intervals MS < m ≤ MS + MSF and
MS + MSF + MN < m ≤ MY , respectively, are computed
based on (21). The parameters of q(Hlb) are then simply ob-
tained by using (22). Subsequently, the mean value of the noisy
speech activation prior blb is obtained by applying (29) to Hlb

as

blb =
1

2MY Lb

MY∑
m=1

2Lb∑
l=1

Eq[hml]. (31)

In contrast to the scale parameter, we fix the shape parameters
(i.e., aSlb and aNlb ) as in [7], which controls the degree of spar-
sity [28], mainly to reduce the computational cost since their
updates require additional iterations as given by (28).

After estimating q(WSF
lb

), q(WNF
lb

) and q(Hlb), we compute
the smoothed PSDs of the clean speech and noise based on (3)
and (4), where the periodograms are obtained from the mean
values2 of q(Wlb) and q(Hlb). Specifically, the mini-batch
clean speech PSD, P̂Slb = [p̂Skl] ∈ RK×Lb

+ , is computed by

replacing WS with [Eq[WS ] Eq[WSF
lb

]] ∈ RK×(MS+MSF)
+ and

HS
lb

with the first MS + MSF rows of Eq[H̃lb ] = (Eq[HY
lb

] +

Eq[HS̄
lb

])/2 ∈ RMY ×Lb
+ . A similar procedure is carried out for

the mini-batch noise PSD P̂Nlb = [p̂Nkl] ∈ RK×Lb
+ . Then, we

estimate the clean speech spectrum where the magnitude is ob-
tained via the WGM of |S̄lb | and Wiener-filtered |S̄lb |, and the
phase is taken from the noisy speech. Since ∠Ylb = ∠S̄lb [2],
the enhanced speech spectrum can be written as

Ŝlb =

∣∣S̄lb ∣∣νlb ⊗
∣∣∣∣∣ P̂Slb
P̂Slb + P̂Nlb

⊗ S̄lb

∣∣∣∣∣
1−νlb

⊗ ej∠Ylb

=

(
P̂Slb

P̂Slb + P̂Nlb

)1−νlb

⊗ S̄lb (32)

2Alternatively, based on [7], we can compute the smoothed PSD based on
the sufficient statistics of cm,i

kl in (23) where p̄m,i
kl is given by (19). However,

we verified through experiments that using Eq [wi
km] provided better enhance-

ment performance as well as reduced computational cost.
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Figure 1: A simplified block diagram of the proposed VNCP-BC method.

where 0 ≤ νlb ≤ 1 is the weighting factor. The motivation
of using the WGM is to control the effect of pre-processing.
For a high input SNR, for instance, the classical method tends
to show a reasonable enhancement performance, which implies
that Wiener filtering the pre-processed signal may further dis-
tort the enhanced speech quality. Hence, it is necessary to put
more weight on S̄lb by selecting a large νlb . In contrast, the
classical method results in a poor enhanced speech quality for
a low input SNR and hence, further improvement is necessary.
This can be specified by applying more weight on the Wiener-
filtered S̄lb by selecting a small νlb . Based on these aspects, we
use the logistic function for selecting νlb :

νlb =
ρ1

1 + exp(−ρ2Rlb)
(33)

where Rlb = 10 log10(
∑
k

∑
l∈lb P̂

S
kl/
∑
k

∑
l∈lb P̂

N
kl) is the

estimated input SNR in dB for the lb-th mini-batch. The pa-
rameters ρ1 and ρ2 respectively define the range of νlb ∈ (0, ρ1)
and the slope of the sigmoid function, where we use ρ1 = 1 and
ρ2 = 0.5 through the experiments.

For the lb-th mini-batch, the parameters of q(WNF
lb

) are ini-
tialized by applying the NMF algorithm to |N̄lb | for 2 iterations.
Specifically, since MNF > Lb (i.e., over-complete), we use the
sparse NMF algorithm which is simply implemented by adding
the sparsity parameter (we use 0.5) to the denominator of the
activation update in (1). In contrast, the parameters of q(WSF

lb
)

are initialized from the ones estimated in the previous mini-
batch frame index. The parameters of q(Hlb) are initialized by
generating positive random numbers. We use 5 iterations for
the VBEM algorithm.

The proposed algorithm, i.e., variational inference on the
NMF model based on class probabilities and basis compensa-
tion, will be referred to as VNCP-BC. A simplified block dia-
gram of the proposed method is illustrated in Figure 1, while
the algorithm is summarized in Table 1. Recall that the terms
ᾱi = [ᾱikm] ∈ RK×Mi and β̄i = [β̄ikm] ∈ RK×Mi represent
the parameters of the variational distribution in (20), and the
sets θC and {ai} respectively denote the PGM parameters for
classification and the shape parameter in the activation prior.

Table 1: Algorithm summary of the proposed enhancement stage
for lb = 1, 2, ...

Estimate S̄lb and N̄lb = Ylb − S̄lb

if lb = 1

Initialize p̂Sk,0 =
∑

l |S̄kl|2/Lb and p̂Nk,0 =
∑

l |N̄kl|2/Lb

Initialize q(WSF
lb−1) parameters by applying sparse NMF to |S̄lb |

end
Compute w̃C by averaging and normalizing |Ylb ⊗ N̄lb |

1/2

Select noise type i ∈ {1, ..., I − 1} via (9) and (30)
Initialize q(WSF

lb
) parameters by the one estimated at lb − 1

Initialize q(WNF
lb

) parameters by applying sparse NMF to |N̄lb |
Initialize q(Hlb ) parameters by generating positive random numbers
for iter = 1:itermax

Estimate q(WSF
lb

) and q(WNF
lb

) and normalize
Estimate q(Hlb )

Update blb via (31)
end
Compute P̂S

lb
= [p̂Skl] and P̂N

lb
= [p̂Nkl]

Compute νlb via (33) and estimate Ŝlb via (32)
end

6. Experiments

The enhancement performance of the proposed method was
assessed through objective experiments. Below, after describ-
ing the general methodology and benchmark algorithms, we
present and discuss the experimental results.

6.1. Methodology
We conducted the experiments using the 4th CHiME chal-

lenge corpus [43]. The speech and noise files were divided into
two disjoint groups: i) training data, used for estimating the
basis matrix for each class i during the training stage, and ii)
test data, used during the enhancement stage to evaluate the en-
hancement performance. The clean speech training data of the
CHiME database are from the Wall Street Journal (WSJ0) cor-
pus, which consists of 101 speakers. We considered a speaker-
independent (SI) application, where one universal basis matrix
covering all speakers is estimated during the training stage. To
this end, we randomly selected 40 utterances from each speaker
and concatenated them to construct the clean speech training
data (i = 0), resulting in a total of 8 hours long signal. Re-
garding the noise training data, we selected the Bus (i = 1),
Pedestrian (i = 2) and Street (i = 3) noises, where each noise
type consists of 2 hours long signal.

We used the reference clean speech from the test set of the
CHiME corpus, which consists of 330 utterances. Regarding
the test data for the noise signals, we categorized them into
two groups, referred to as: matched and mismatched cases.
The matched case assumes that the training data is available,
whereas the purpose of the mismatched case is to evaluate the
enhancement performance for an unseen noise type, i.e., when
no training data is available. For both the matched and mis-
matched cases, we performed noise classification to select a
single noise type which has characteristics similar to the actual
noise included in the noisy speech.

We considered two types of the noisy speech signals for the
test: additive noise and simulated noisy speech. The noisy
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Table 2: Summary of the test noise types
Additive Simulated

Matched Bus, Pedestrian, Street (from CHiME)

Mismatched
Cafe (from CHiME),

Cafe (from CHiME)
Factory 1, Babble (from NOISEX)

speech signals for the former type were generated by scaling
and adding the noise to the clean speech to obtain input SNRs
of -5, 0, 5, and 10 dB. The simulated test set, provided by
the CHiME organization for the challenge, contains the noisy
speech signals which were generated by artificially mixing the
clean speech and noises. Specifically, the clean speech signals
were filtered by the impulse responses (IR) between the speaker
and microphone, estimated from the real recorded signals and
hence, the simulated data exhibit a more realistic nature of the
noisy speech (see [43] for more details about the database).

For both the additive and simulated data types, we considered
the Bus (i = 1), Pedestrian (i = 2) and Street (i = 3) noises
for the matched noise case and used the Cafe noise from the
CHiME database for the mismatched noise case. Regaring the
additive noise, we additionally selected the Factory 1 and Bab-
ble noises from the NOISEX database [44] for the mismatched
noise case. The sampling rate of all signals was set to 16 kHz.
The noise types used for the test are summarized in Table 2.

Regarding the implementation, a Hanning window of 512
samples with 50% overlap was employed for the STFT anal-
ysis. We used Mi = 60 (for all i) and MSF = MNF = 20
basis vectors. The values of (τS , τN ) = (0.4, 0.9) were cho-
sen as the temporal smoothing factors in (3) and (4). We used
Lb = 16 for the mini-batch size. For the pre-processor, the
value of 0.9 was used as the smoothing factor in the decision-
directed (DD) method for the a priori SNR estimation in [2],
whereas 0.85 was used as the smoothing factor for the noise
PSD estimation in [40]. Regarding the shape parameters ai,
we obtained values around 0.02 using the training data (simi-
lar results were found when using different initial values, e.g.,
ai = 0.1). Although we can use such values during the en-
hancement stage, we found that instead using larger values re-
sulted in slightly better enhancement performance, where we
ultimately chose 0.1 for the speech and 0.2 for the noises in
the experiments. The reason for this phenomenon can be ex-
plained as follows. The basis vectors in the proposed frame-
work are estimated within a restricted decision boundary for
each class, which may prevent them from properly representing
the target magnitude spectrum. This becomes severe when the
number of sources increases (i.e., resulting in smaller decision
regions) and hence, may further limit the enhancement perfor-
mance. Fortunately, the extra free basis vectors can handle such
limitation by supporting the class-conditioned basis vectors to
better represent the target observation Vlb . In particular, for a
given class i, it is necessary to relax the dependency of the free
basis vectors on their prior distribution so that they are able to
be estimated beyond the decision boundaries. This can be spec-
ified by lowering the degree of sparsity of the activations, which
corresponds to using a larger value of ai [28].

We considered the PESQ [30], SDR [31] and SSNR as the

objective measures of performance. The PESQ attempts to pre-
dict overall perceptual quality in mean opinion scores (MOS)
and the SDR measures the overall quality of the enhanced
speech in dB by considering both the aspects of speech distor-
tion and noise reduction. For all the measures, a higher value
indicates a better result.

6.2. Benchmark algorithms
To evaluate the enhancement performance of the proposed

VNCP-BC method, we implemented several benchmark algo-
rithms, which are summarized below. Basic settings, such as
the STFT analysis and synthesis, the mini-batch size Lb and
the reconstruction method introduced in Section II, were kept
identical when applicable.

1) MMSE-STSA estimator: We implemented the MMSE-
STSA estimator [2], where the noise PSD was estimated based
on [40]. A smoothing factor of 0.85 in the DD method and 0.9
in the noise PSD estimation were used.

2) NMF: The standard NMF algorithm based on KL-
divergence introduced in Section II was evaluated.

3) NMF model with distinct basis vectors: Among several
NMF algorithms aiming at estimating the distinct basis vectors,
we implemented two algorithms as representative benchmarks.
The first one is estimating the basis vectors based on the cross-
coherence penalty (NCC) introduced in [14]. The second one
is our previous work in [25], where the class-conditioned basis
vectors are obtained via the MAP estimator.

4) NMF with basis compensation (NBC): The NMF algo-
rithm with basis compensation proposed in [26] was evaluated,
as a representative benchmark among several NMF algorithms
proposed for handling the mismatch problem. We examined
with three different types of basis vectors, i.e., obtained via the
conventional NMF, NCC and NCP methods. We used identi-
cal settings for the pre- and post-processor as in the proposed
VNCP-BC method.

5) Bayesian NMF model (BNMF): To compare with a
VBEM-based NMF algorithm, We implemented the BNMF
method in [28]. The difference with the proposed VNCP (-BC)
method is that the BNMF method estimates the basis matrix for
each source independently as in the typical supervised NMF-
based framework, whereas the proposed method estimates the
basis matrices for all sources jointly.

In addition to the above mentioned benchmarks, we imple-
mented the proposed method without employing the free basis
vectors and pre-processing, which will be referred to as VNCP.

We used Mi = 80 basis vectors for all NMF-based bench-
mark algorithms (including the VNCP method) except for the
NBC method, where we used Mi = 60 and MSF = MNF = 20.
Hence, the same total number of basis vectors was employed
for fair comparison. To perform the noise classification for the
benchmark algorithms, we estimated the set θC based on the
Gaussian-distributed class-conditional density [25, 27]. For the
NMF, NBC and BNMF methods, we first estimated the basis
vectors for each class i, then we applied the ML criterion to
the basis vectors [25]. The set θC for the NCP method was
jointly obtained with the NMF parameters. The noise classifi-
cation was performed by following a strategy similar to the one
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Figure 2: The posterior class probabilities p(di = 1|wm).

introduced in Section V-A. Note that the pre-processing was
performed only for the noise classification in the NMF, DCP
and VNCP methods, since these methods do not employ the
pre-processed noisy speech during the reconstruction.

6.3. Results

Figure 2 shows the PCPs of the estimated basis vectors
Eq[wim] (which will be simply denoted by wim). The x-axis
indicates the m-th column vector of the matrix [W0, ...,W3] =
[wm], where each submatrix Wi consists of 80 basis vectors,
i.e., Mi = 80 for all i. For each class i, the PCP values
p(di = 1|wm) should be close to one for the interval iMi+1 ≤
m ≤ (i+1)Mi, whereas the PCPs for the other intervals should
be close to zero. Regarding the class i = 0, for example, the
PCPs p(d0 = 1|wm) for the interval 1 ≤ m ≤ 80 should be
close to one, whereas the PCPs for the interval 81 ≤ m ≤ 320
should be close to zero. We can see that the basis vectors are
estimated to be distinct in terms of the PCP, which implies that
the basis vectors of each source will be less likely to represent
each other. Similar patterns were found when using Mi = 60.

Figure 3 shows an example of the noise classification results
using the method introduced in Section V-A. In this particu-
lar example, a male speech signal was degraded with a noise
at 0 dB input SNR. Specifically, the noise was generated by
concatenating the Bus (i = 1), Street (i = 3) and Pedestrian
(i = 2) noises where each noise signal was 3 seconds in du-
ration. As we can see, the noise type is well estimated. The
magnitude spectra of the clean speech, noisy speech and the en-
hanced speech using the proposed VNCP-BC method, for this
particular example, are illustrated in Figure 4. As it can be ob-
served, the background noise has been significantly reduced.

The average results over all utterances for the additive noises
are shown in Tables 3 to 8, where the values in bold indicate
the best performance along the row. Most of all, we can see
that the proposed VNCP-BC method provided better enhance-
ment performance than the benchmark algorithms in general

Figure 3: An example of noise classification. Top shows the true noise type and
bottom shows the estimated noise type using the proposed method.

Figure 4: Examples of magnitude spectrograms of the clean, noisy and esti-
mated clean speech using the VNCP-BC method. A male speech is degraded
by a noise consisting of different types as shown in Figure 3, at 0 dB input SNR.

for both the matched and mismatched noise cases. Specifi-
cally, the proposed VNCP-BC method resulted in better per-
formance compared to using the algorithms introduced in our
previous works, i.e., the NCP and NBC methods. Moreover,
the VNCP-BC method provided better results than the VNCP
method, which further validates that implementing the basis
compensation scheme improves the enhancement performance.

Regarding the matched noises, the results of the VBEM-
based VNCP method were found to be better than the MAP-
based NCP method. Comparing between the VBEM-based
methods, the class-conditioned model-based VNCP method
exhibited better performance than the independent source
training-based BNMF method in general, whereas the BNMF
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Table 3: Average results for additive Bus noise (matched)
Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP
SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.83 2.08 2.07 2.08 2.08 2.17 2.17 2.16 2.11 2.11 2.27
SDR -4.89 0.17 2.83 2.63 2.80 6.60 6.50 6.80 3.43 3.67 7.48
SSNR -13.57 -7.10 -4.50 -4.58 -4.49 -1.24 -1.22 -1.00 -3.54 -3.31 -0.35

0 dB
PESQ 2.20 2.43 2.41 2.42 2.42 2.49 2.49 2.48 2.42 2.42 2.57
SDR 0.05 5.25 7.70 7.51 7.67 10.39 10.33 10.51 8.13 8.34 11.11
SSNR -8.56 -2.75 -0.78 -0.85 -0.85 1.57 1.58 1.73 0.14 0.33 2.29

5 dB
PESQ 2.55 2.76 2.74 2.74 2.74 2.78 2.78 2.77 2.74 2.75 2.87
SDR 5.03 9.99 11.96 11.79 11.98 13.62 13.56 13.55 12.61 12.75 14.27
SSNR -3.56 1.43 2.38 2.31 2.21 4.12 4.13 4.20 3.70 3.82 4.76

10 dB
PESQ 2.90 3.07 3.04 3.04 3.05 3.04 3.04 3.03 3.07 3.07 3.15
SDR 10.03 14.33 15.05 15.04 15.19 16.22 16.12 15.96 16.56 16.64 17.06
SSNR 1.45 5.54 4.87 4.84 4.65 6.36 6.39 6.34 6.85 6.90 7.07

Table 4: Average results for additive Pedestrian noise (matched)
Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP
SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.22 1.34 1.33 1.35 1.33 1.30 1.33 1.32 1.36 1.36 1.39
SDR -4.88 -3.61 -4.19 -3.96 -3.93 -3.55 -3.44 -3.58 -3.70 -3.73 -3.17
SSNR -13.88 -9.02 -9.22 -9.21 -9.25 -6.51 -6.53 -6.50 -9.07 -9.13 -6.11

0 dB
PESQ 1.51 1.70 1.70 1.71 1.70 1.73 1.75 1.74 1.77 1.77 1.85
SDR 0.06 1.95 1.11 1.31 1.33 2.09 2.16 2.05 2.01 1.96 2.75
SSNR -8.87 -4.70 -4.78 -4.80 -4.82 -2.67 -2.65 -2.66 -3.99 -4.06 -1.79

5 dB
PESQ 1.85 2.09 2.09 2.10 2.09 2.13 2.15 2.14 2.18 2.18 2.26
SDR 5.04 7.07 6.02 6.18 6.26 6.86 6.94 6.85 7.45 7.38 7.85
SSNR -3.87 -0.43 -0.80 -0.86 -0.86 0.92 0.95 0.90 1.08 0.98 1.92

10 dB
PESQ 2.20 2.44 2.46 2.48 2.46 2.45 2.47 2.45 2.55 2.55 2.61
SDR 10.03 11.88 10.00 10.16 10.28 10.69 10.76 10.59 12.36 12.23 12.30
SSNR 1.14 3.87 2.47 2.38 2.39 4.02 4.05 3.91 5.16 5.03 5.21

Table 5: Average results for additive Street noise (matched)
Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP
SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.39 1.68 1.63 1.64 1.64 1.84 1.86 1.86 1.77 1.80 2.04
SDR -4.89 -0.35 0.76 1.06 0.89 4.07 3.80 4.72 3.99 4.49 7.04
SSNR -13.72 -6.80 -6.11 -6.05 -6.16 -2.73 -2.89 -2.40 -3.16 -2.71 -0.34

0 dB
PESQ 1.67 2.02 1.98 1.99 1.98 2.20 2.21 2.21 2.11 2.15 2.39
SDR 0.05 4.87 5.77 6.06 5.91 8.37 8.18 8.83 8.34 8.70 10.28
SSNR -8.72 -2.61 -1.97 -1.89 -2.02 0.42 0.36 0.65 0.53 0.80 2.06

5 dB
PESQ 2.00 2.37 2.35 2.36 2.36 2.52 2.53 2.53 2.46 2.48 2.66
SDR 5.03 9.63 10.17 10.43 10.37 11.83 11.81 12.13 12.36 12.58 13.25
SSNR -3.72 1.43 1.58 1.69 1.54 3.30 3.38 3.47 3.86 3.93 4.31

10 dB
PESQ 2.36 2.70 2.71 2.72 2.72 2.77 2.79 2.78 2.77 2.78 2.91
SDR 10.03 14.03 13.49 13.76 13.80 14.46 14.59 14.59 16.03 16.13 16.16
SSNR 1.29 5.41 4.39 4.57 4.38 5.67 5.94 5.80 6.67 6.62 6.69

method provided slightly better results for the Pedestrian noise.
Among the NBC methods with different types of basis vectors,
we can see that using the basis vectors obtained via the NCP
method provided better results. We also conducted experiments
for all benchmarks and proposed algorithms assuming that the
noise type is known a priori, for the matched noise case. Al-
though we did not report their objective results in this paper,
we have seen that there were no significant differences with the
results obtained by including the noise classification. That is,
the results increased by about 0.01 in PESQ and SDR for all
methods when assuming that the noise type is known a priori.

The effectiveness of using the basis compensation scheme
can be better verified from the results of the mismatched noises.
In general, we can see that some NMF-based benchmark algo-
rithms showed even worse performance than using the STSA
estimator, whereas the NBC-based methods provided reason-
able results. Specifically, although the NBC methods gave ac-
ceptable SDR and SSNR values for the Cafe and Babble noises
under low input SNRs, the proposed VNCP-BC method exhib-

ited better than all benchmark algorithms in most cases.
The average results over all utterances for the simulated data

set are shown in Table 9. Although the results showed slightly
different pattern from the additive noise case (e.g., the STSA
estimator gave even better results than some of the benchmarks
for the Pedestrian noise), mainly due to the effect of the IR-
filtered clean speech, we can see that the proposed VNCP-BC
method provided the best results for all types of noises. Hence,
it is verified that the proposed VNCP-BC method performs well
under a more realistic environment.

7. Conclusion and future works

We introduced a training and compensation algorithm of the
class-conditioned basis vectors in the NMF model for single-
channel speech enhancement. We considered the PGM for both
the NMF and classification models. The former is specified by
a Poisson observation model, whereas the latter is specified by
Gamma class conditional densities, which are used as a priori
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Table 6: Average results for additive Cafe noise (mismatched)
Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP
SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.30 1.38 1.38 1.39 1.38 1.29 1.32 1.32 1.38 1.37 1.39
SDR -4.89 -3.40 -2.98 -2.99 -2.78 -2.22 -2.23 -1.86 -3.23 -3.14 -1.93
SSNR -14.48 -10.93 -10.08 -10.19 -9.75 -7.99 -8.37 -8.09 -10.68 -10.53 -8.13

0 dB
PESQ 1.56 1.68 1.69 1.70 1.71 1.67 1.69 1.68 1.71 1.72 1.76
SDR 0.06 2.07 2.13 2.17 2.37 3.32 3.33 3.61 2.45 2.53 4.01
SSNR -9.47 -6.26 -5.56 -5.65 -5.27 -3.74 -4.06 -3.90 -5.54 -5.44 -3.34

5 dB
PESQ 1.87 2.00 2.03 2.04 2.06 2.04 2.05 2.04 2.11 2.12 2.15
SDR 5.04 7.18 6.88 6.93 7.13 7.99 8.07 8.25 8.14 8.17 9.13
SSNR -4.47 -1.72 -1.46 -1.54 -1.25 0.06 -0.11 -0.09 -0.13 -0.10 0.99

10 dB
PESQ 2.20 2.35 2.37 2.39 2.41 2.39 2.40 2.38 2.52 2.54 2.54
SDR 10.03 11.96 10.72 10.81 10.94 11.63 11.85 11.80 13.20 13.19 13.31
SSNR 0.54 2.74 1.96 1.91 2.08 3.35 3.34 3.21 4.69 4.66 4.71

Table 7: Average results for additive Factory 1 noise (mismatched)
Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP
SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.23 1.44 1.33 1.34 1.33 1.47 1.49 1.48 1.40 1.42 1.56
SDR -4.90 -1.44 -3.33 -2.59 -3.17 0.56 0.51 0.83 -1.07 -0.88 2.01
SSNR -14.33 -8.33 -9.82 -9.22 -9.76 -5.36 -5.49 -5.13 -8.40 -8.48 -4.25

0 dB
PESQ 1.50 1.77 1.67 1.68 1.67 1.84 1.86 1.85 1.74 1.75 1.96
SDR 0.05 3.96 1.92 2.64 2.12 5.53 5.51 5.73 4.33 4.43 7.08
SSNR -9.32 -4.05 -5.31 -4.75 -5.25 -1.81 -1.87 -1.64 -3.77 -3.87 -0.63

5 dB
PESQ 1.83 2.12 2.05 2.06 2.04 2.20 2.22 2.21 2.13 2.14 2.34
SDR 5.03 8.83 6.68 7.34 6.90 9.52 9.57 9.59 9.58 9.65 11.11
SSNR -4.32 0.14 -1.32 -0.83 -1.28 1.50 1.53 1.58 0.92 0.77 2.62

10 dB
PESQ 2.18 2.48 2.43 2.44 2.42 2.51 2.53 2.51 2.52 2.52 2.67
SDR 10.03 13.40 10.42 10.94 10.72 12.38 12.56 12.35 14.11 14.24 14.51
SSNR 0.68 4.40 1.88 2.27 1.90 4.28 4.41 4.27 4.97 4.77 5.46

Table 8: Average results for additive Babble noise (mismatched)
Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP
SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.33 1.45 1.44 1.44 1.44 1.40 1.43 1.43 1.46 1.46 1.53
SDR -4.89 -2.72 -3.75 -3.67 -3.68 -1.94 -1.91 -1.71 -3.95 -3.97 -1.66
SSNR -14.26 -9.90 -10.85 -10.90 -10.82 -7.53 -7.85 -7.70 -11.88 -11.91 -8.15

0 dB
PESQ 1.63 1.79 1.78 1.78 1.78 1.77 1.78 1.79 1.82 1.82 1.90
SDR 0.05 2.77 1.48 1.55 1.54 3.54 3.50 3.67 1.60 1.57 4.38
SSNR -9.25 -5.39 -6.17 -6.17 -6.12 -3.49 -3.69 -3.61 -6.55 -6.61 -3.24

5 dB
PESQ 1.96 2.12 2.14 2.15 2.14 2.12 2.13 2.14 2.21 2.21 2.29
SDR 5.03 7.78 6.47 6.58 6.51 7.97 8.01 8.11 7.42 7.35 9.51
SSNR -4.24 -1.02 -1.84 -1.78 -1.81 0.18 0.12 0.10 -0.86 -0.97 1.34

10 dB
PESQ 2.31 2.46 2.50 2.50 2.50 2.45 2.46 2.46 2.61 2.60 2.64
SDR 10.03 12.41 10.68 10.92 10.69 11.27 11.45 11.43 12.91 12.80 13.37
SSNR 0.77 3.31 1.82 1.94 1.80 3.32 3.38 3.24 4.47 4.29 4.98

Table 9: Average results for simulated noisy speech
Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP
SNR -NMF -NCC -NCP -BC

B
U

S
(m

at
.)

PESQ 1.70 1.97 1.94 1.95 1.94 2.05 2.06 2.05 1.99 2.00 2.16
SDR -1.34 2.79 3.62 4.18 4.00 6.45 6.39 6.66 5.59 5.63 7.92
SSNR -10.75 -7.35 -6.61 -6.36 -6.44 -4.75 -4.88 -4.67 -5.52 -5.49 -3.65

PE
D

.
(m

at
.)

PESQ 1.50 1.72 1.67 1.67 1.67 1.76 1.78 1.76 1.73 1.73 1.86
SDR 0.13 3.26 1.47 1.58 0.89 4.33 4.37 4.41 2.39 2.43 5.35
SSNR -10.58 -7.54 -7.32 -7.30 -7.36 -5.48 -5.60 -5.53 -6.95 -6.90 -4.64

ST
R

.
(m

at
.)

PESQ 1.51 1.76 1.73 1.74 1.74 1.85 1.86 1.85 1.82 1.83 2.00
SDR -1.76 2.08 1.77 2.10 1.98 4.69 4.69 4.96 3.77 3.80 6.39
SSNR -10.81 -7.40 -6.96 -6.89 -6.92 -5.10 -5.30 -5.02 -5.74 -5.79 -3.74

C
A

F.
(m

is
.)

PESQ 1.52 1.71 1.68 1.69 1.67 1.72 1.74 1.73 1.74 1.73 1.82
SDR -0.18 2.54 1.02 0.80 0.74 3.41 3.52 3.56 2.36 2.12 4.68
SSNR -10.64 -7.80 -7.48 -7.57 -7.53 -5.84 -5.99 -5.91 -7.11 -7.19 -4.95

distribution for the basis vectors. During the training stage, the
basis matrices for the clean speech and noises were estimated
jointly by constraining them to belong to different classes. The
parameters of the NMF model and PGM of classification were
obtained by using the VBEM algorithm, which guarantees con-
vergence to a stationary point. During the enhancement stage,

we performed a noise classification followed by a basis com-
pensation. The latter was implemented by using extra free ba-
sis vectors to capture features which are not included in the
training data. The PGM parameters for classification were em-
ployed while estimating the free basis vectors as well as during
the noise classification. Experiments showed that the proposed
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VNCP-BC method provided better enhancement performance
than the benchmark algorithms for all types of noises and input
SNRs.

Finally, we comment on some interesting research avenues
for further improving the enhancement performance of our pro-
posed method. Firstly, we can consider modeling the basis vec-
tors using a more accurate multimodal distribution, e.g., the
Gamma mixture model [22]. This extended prior modeling may
also offer the potential of a noise-independent application by
handling highly correlated noise sources (i.e., one universal ba-
sis matrix covering all noise types). Secondly, we can take into
account the convolutive nature of the acoustic medium (e.g.,
room impulse response) between the sound source and the mi-
crophone, in order to deal with more realistic reverberant en-
vironments. A possible approach to this end is to model the
latent variables in the NMF model via auto-regressive moving
average (ARMA) processes [36].

Appendix A. Variational lower bound

Based on (5), (6), (10) and (12), the logarithm of the full joint
distribution is given by

ln p(V,C,W,H;θR) (A.1)
= ln p(V|C)+ln p(C|W,H)+ln p(W;θC)+ln p(H; a,b)

=

I−1∑
i=0

K∑
k=1

Li∑
l=1

ln δ
(
vikl −

Mi∑
m=1

cm,ikl

)
+

I−1∑
i=0

K∑
k=1

Mi∑
m=1

Li∑
l=1

(
cm,ikl ln(wikmh

i
ml)−wikmhiml−ln(cm,ikl !)

)
+

I−1∑
i=0

Mi∑
m=1

K∑
k=1

(
(αik−1) lnwikm−

wikm
βk
−ln Γ(αik)−αik lnβk

)
+

I−1∑
i=0

Mi∑
m=1

Li∑
l=1

(
(ai−1) lnhiml−

ai

bi
himl−ln Γ(ai)−ai ln

( bi
ai

))
.

The energy LV (q(θL);θR) in (13) is simply found by evalu-
ating the expectations of (A.1) with respect to q(C,W,H) in
(15)-(17), where the sufficient statistics are given by (23)-(25).

Based on (18), (20) and (22), and using the sufficient statis-
tics in (23)-(25), the entropy LE(q(θL)) = −Eq[ln q(θL)] can
be written as

LE(q(θL)) (A.2)

=

I−1∑
i=0

K∑
k=1

Li∑
l=1

(
− ln(vikl!)−

Mi∑
m=1

viklp̄
m,i
kl ln p̄m,ikl

−Eq
[

ln δ
(
vikl −

Mi∑
m=1

cm,ikl

)]
+

Mi∑
m=1

Eq[ln(cm,ikl !)]
)

−
I−1∑
i=0

K∑
k=1

Mi∑
m=1

(
(ᾱikm−1)Ψ(ᾱikm)−ln β̄ikm−ᾱikm−lnΓ(ᾱikm)

)
−
I−1∑
i=0

Mi∑
m=1

Li∑
l=1

(
(āiml−1)Ψ(āiml)−ln b̄iml−āiml−lnΓ(āiml)

)
.

The lower bound on the marginal LLF, ln p(V;θR), is ob-
tained by summing the energy and entropy terms as given by
(13). Note that the terms in Eq[·] in the third line in (A.2), which
are analytically intractable, are canceled by their corresponding
terms in the energy LV (q(θL);θR) [28].
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