

A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating

Irene Schimmelpfennig, Joerg M. Schaefer, Naki Akçar, Tobias Koffman, Susan Ivy-Ochs, Roseanne Schwartz, Robert C. Finkel, Susan Zimmerman, Christian Schlüchter

▶ To cite this version:

Irene Schimmelpfennig, Joerg M. Schaefer, Naki Akçar, Tobias Koffman, Susan Ivy-Ochs, et al.. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth and Planetary Science Letters, 2014, 393, pp.220 - 230. 10.1016/j.epsl.2014.02.046 . hal-01682738

HAL Id: hal-01682738 https://hal.science/hal-01682738

Submitted on 8 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

*Manuscript Click here to view linked References

- 1 A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central
- 2 Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating
- 3
- 4 Irene Schimmelpfennig^{a,b*}, Joerg M. Schaefer^a, Naki Akçar^c, Tobias Koffman^{a,d}, Susan Ivy-Ochs^e,
- 5 Roseanne Schwartz^a, Robert C. Finkel^{f,g}, Susan Zimmerman^f, Christian Schlüchter^c
- 6 ^aLamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
- 7 ^bAix-Marseille Université, CNRS-IRD-Collège de France, UM 34 CEREGE, Aix-en-Provence, France
- 8 ^cInstitute of Geological Sciences, University of Bern, Switzerland
- 9 ^dDepartment of Earth Sciences and Climate Change Institute, University of Maine, Orono, ME 04469, USA
- 10 ^eInsitut für Teilchenphysik, Eidgenössische Technische Hochschule, Zürich, Switzerland
- ¹¹ ^fCenter for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- 12 ^gEarth and Planetary Science Department, University of California–Berkeley, Berkeley, California 94720, USA
- 13
- 14 *corresponding author:
- 15 E-mail: schimmel@cerege.fr
- 16 Phone: +33 442971556
- 17 Present address: CEREGE, Europôle de l'Arbois, 13454 Aix en Provence Cedex 4, France
- 18
- 19 Abbreviations:
- 20 CE: Common Era; ELA: equilibrium line altitude; KDE: Kernel Density Estimation; LIA: Little Ice
- 21 Age; PAM: Partitioning Around Medoids; PDP: Probability Density Plot; YD: Younger Dryas

22

22 ABSTRACT

The amplitude and timing of past glacier culminations are sensitive recorders of key climate events on 23 24 a regional scale. Precisely dating young moraines using cosmogenic nuclides to investigate Holocene glacier chronologies has proven challenging, but progress in the high-sensitivity ¹⁰Be technique has 25 26 recently been shown to enable the precise dating of moraines as young as a few hundred years. In this study we use ¹⁰Be moraine dating to reconstruct culminations of the Steingletscher, a small mountain 27 28 glacier in the central Swiss Alps, throughout the Holocene. The outermost-recorded positions of 29 Steingletscher most likely occurred in the Early Holocene and appear nearly synchronous with glacier 30 culminations reported from other regions in the Alps. A Late-Holocene position corroborates the 31 evidence for a significant glacier advance of similar extent to that of the Little Ice Age (LIA) \sim 3 kyr ago. Finally, fourteen boulders from different moraines yield ¹⁰Be ages between 580 and 140 years 32 with analytical precisions mostly <10%, dating Steingletscher advances during the LIA. Because these 33 LIA ¹⁰Be ages are in stratigraphic order, we tentatively distinguish four LIA glacier culminations: 34 35 about 1470 CE, 1650 CE, 1750 CE and 1820 CE, which are in good agreement with existing independent records during the LIA in the Swiss Alps. These findings illustrate the high potential of 36 the ¹⁰Be moraine dating method to directly link paleo-glacier-chronologies to historical records and 37 38 thus present-day glacier evolution.

- 39
- 40 <u>Keywords:</u> Glacier fluctuations; Holocene; Little Ice Age; ¹⁰Be moraine dating; Swiss Alps; climate
 41 change
- 42
- 43 1. Introduction

44 Glaciers are sensitive recorders of regional climate variations (e.g. Oerlemans, 2005). Therefore, the 45 investigation of glacier behavior in the past represents a powerful means to reconstruct terrestrial 46 paleoclimate variability. In particular, understanding the response of glaciers to climate variability 47 during the Holocene, the current interglacial which started ~11,700 years ago (Rasmussen et al., 2007), 48 offers the opportunity to assess the effects of ongoing climate change, because climate conditions were 49 similar to those existing at the present. The Holocene is characterized by moderate-amplitude climate 50 change resulting in glacier extents in the Northern Hemisphere that were larger as well as smaller than 51 today (e.g. Joerin et al. 2006; Ivy-Ochs et al., 2009 and references herein). Historical records of glacier advances during the Little Ice Age (LIA, 14th to 19th century; Grove, 2001; Holzhauser et al., 2005) 52 53 and the subsequent rapid glacier retreats provide clear evidence for significant centennial climate 54 variability in the recent past. In the Alps, detailed chronologies of the two largest Swiss glaciers, Great 55 Aletsch and Gorner, inferred from radiocarbon-dating, dendrochronology, archeology and historical 56 data, imply three major glacier advances during the LIA: around 1300-1380 CE, 1600-1670 CE and 57 1800-1860 CE (Holzhauser et al., 2005). Evidence from the smaller Lower Grindelwald glacier 58 indicates similar peaks with additional variability (Holzhauser et al., 2005). Existing chronological 59 documentation of Holocene glacier fluctuations in the Alps pre-dating the LIA is mostly based on 60 radiocarbon-dated subfossil wood, peat, soil, and archeological finds from glacier forefields (e.g. 61 Roethlisberger and Schneebeli, 1979; Baroni and Orombelli, 1996; Hormes et al., 2001; review in Ivy-62 Ochs et al., 2009). In addition, some pioneering data has been produced during recent years from 63 surface exposure dating of glacio-geomorphic features, in particular moraines (Ivy-Ochs et al., 1996, 64 2006; Kelly et al., 2004; Goehring et al., 2011a; Schindelwig et al., 2012; Schimmelpfennig et al., 65 2012; Cossart et al., 2012).

66 Moraines constitute valuable geomorphic markers of past climate, because they mark glacier 67 culminations, i.e. periods when a glacier began to retreat from an advanced position. Dating the 68 deposition of moraines using cosmogenic nuclides therefore allows the timing of past climate changes 69 to be determined. However, Holocene moraine chronologies are scarce in the Alps, because the LIA 70 advances destroyed the older moraines in many places (e.g. Röthlisberger and Schneebeli, 1979). 71 While the few previous Holocene surface exposure dating studies in the Alps mostly focused on 72 glacier positions during the Late Glacial/Early Holocene transition (Ivy-Ochs et al., 2009), recent works show that the high-sensitivity cosmogenic ¹⁰Be method also affords the dating of moraines as 73 young as the LIA (e.g. Schaefer et al., 2009; Licciardi et al., 2009; Schimmelpfennig et al., 2012; 74 75 Akçar et al., 2012).

At Steingletscher ("Stein glacier"), in the Central Swiss Alps, particularly well-resolved moraines and moraine remnants are preserved on and beyond the visible LIA extent of the glacier (Fig. 1). The glacier forefield of Steingletscher was previously the object of a thorough glaciological and paleoclimatic study by King (1974), which includes a moraine map as well as palynological investigations and bracketing radiocarbon dates from peat bog profiles and fossil soils related to the moraine deposits (Fig. 1).

In this study, we measured a detailed chronology of the Steingletscher moraine sequence based on cosmogenic ¹⁰Be with the overall goal of reconstructing the glacier culminations recorded by these moraines throughout the Holocene. By comparing our results with previous studies, we focus on two particular questions: (1) Were Early-Holocene glacier culminations synchronous, time-transgressive or unrelated throughout the Alps? (2) Can we resolve individual glacier peaks during the Late Holocene and the LIA using high-sensitivity ¹⁰Be surface exposure dating? By tackling this second question, we aim to test a dating method complementary to radiocarbon dating to investigate the timing and fine
structure of regional climate variations in the Alps on this recent time-scale.

90

91 **2.** Study site and geomorphic setting

92 Steingletscher (~47°N, 8°W) is a small mountain glacier (length ~4 km, surface area ~6 km²;

93 Glaciological reports, 1881-2009), located in the easternmost part of the Canton Berne, west of the

94 Susten pass in the Central Alps. The surrounding geology comprises highly metamorphosed pre-

95 Mesozoic metagranitoids, gneisses and amphibolites. In Meiringen, the closest weather station (589 m

above sea level), the monthly mean temperatures between 1981 and 2010 CE ranged from -1.4°

97 (January) to 17.7°C (July); annual mean precipitation was 1375 mm; and snow cover occurred on

98 average 71 days per year.

99 Proglacial lake Steinsee (Figs. 1, 2A and C) developed in front of the main Steingletscher tongue in

100 1924 CE (Blass et al., 2003). This lake and four minor glaciers at the head of the catchment drain into

101 the Gadmen Valley, a westward trending tributary of the Aare Valley.

102 The following description of the most striking and datable moraines and glacial boulders and their

illustration in the left panel of Fig. 1 are based on field observations and interpretation of Google Earth
images. They are not based on King's (1974) earlier moraine map (Fig. 1C).

105 On the left-lateral side near the catchment's outlet, two groups of roughly parallel moraine ridges and

106 relicts are preserved on 'Hublen', a roche moutonnée plateau at 2060 m elevation. The two moraine

107 groups are about 60 m laterally apart (Fig. 1) and ~60 m and 70 m higher, respectively, than the LIA

108 limit visible on the eastern flank of the plateau. In the following we will refer to these moraines as the

109 'outer moraine' and the 'inner moraine relicts' on the Hublen plateau. Few boulders exist on the crests

110 or slopes of these ridges (Fig. 2C). To the north, 200 m lower at the eastern end of the 'In Miseren'

111 plateau, another moraine ridge is preserved, oriented obliquely to the close-by valley bottom at an 112 angle of about 40° (Fig. 1). This moraine is located ~150 m outside of the visible LIA limit. Several 113 big boulders are embedded in its crest. While the geometry of this lower moraine suggests the presence 114 of a glacier terminus lying only a few hundred meters downstream of the catchment's outlet, no 115 geomorphic hints for such a terminal moraines corresponding to the upper moraines on the Hublen 116 plateau could be found. According to King (1974), the two moraine groups on the Hublen plateau and 117 the one on the In Miseren plateau actually represent the glacier at three very different stages. King 118 (1974) assumes that the two moraine groups on the Hublen plateau were deposited during the 119 regionally defined Late Glacial stadials 'Daun' and 'Egesen', respectively (in Ivy-Ochs et al., 2006 and 120 references therein). These culminations are chronologically related to a cold interval preceding the 121 Bølling warm interval ~15 kyr ago and to the Younger Dryas 12.9-11.7 kyr ago, respectively, with 122 equilibrium line altitudes of a few hundred meters below that of the LIA (Ivy-Ochs et al., 2006 and 123 references therein). King (1974) therefore suggests that the terminal positions corresponding to the 124 outer and inner moraines on the Hublen plateau might have been ~6 km (near the Gadmen village) and 125 \sim 3 km (in the area of the Wyssemaad creek) down the valley, respectively. King assigns the moraine 126 on the In Miseren plateau to the Holocene (Fig. 1C).

About 180 m further downstream of the moraine on the In Miseren plateau, three huge boulders protrude from a sediment mound close to the valley bottom. While King (1974) presumably mapped this deposit as part of a moraine (Fig. 1C), a rockfall-related origin cannot entirely be excluded. In addition, it is unclear if the deposit has at anytime in the past been affected by washout from the glacial stream. Therefore, we conservatively represent it as boulders on a glaciofluvial deposit in Fig. 1. The LIA extent of Steingletscher is well marked by a vegetation change (trimline) in the glacier forefield nearly encircling the lake at a distance of up to 400 m (Figs. 2A and C). The trimline serves

134 as a morphostratigraphic reference marker for glacier advances relative to the LIA positions. Moraines 135 on this limit are preserved at various locations, i.e. on the right-lateral side east of the lake (massive 136 composite moraine, Fig. 2C) as well as next to the catchment's outlet (moraine segments), and on the 137 left-lateral side on the glacier-proximal hill Chüebergli (sharp ridge, Figs. 1, 2B) and in the 138 prolongation of the northern flank of the Bockberg mountain (sequence of interlaced and blocky ridges, 139 Fig. 1, Fig. 2E). At all locations on the LIA limit, except the composite moraine, several individual 140 sub-ridges can be distinguished. Inboard of the LIA-limit, historical moraines correspond to the years 141 1920 CE (King, 1974) and 1988 CE (Figs. 1, 2D, 3). 142 The profile and outcrop locations investigated and dated by King (1974) are depicted in Fig. 1. His

143 calibrated radiocarbon ages are shown in Fig. 1, 4G and in Table 2.

144

145 **3. Methodology**

146 We targeted 30 large granitic boulders, embedded in the crests or slopes of moraines, for the wellestablished ¹⁰Be moraine dating method (e.g. Schaefer et al., 2009; sample locations in Fig 1; sample 147 148 details in Table 1). On moraines with only few boulders, we sampled all boulders that matched these 149 criteria, whereas from blockier moraines, we chose several of the most suitable boulders, making an 150 effort to sample various sub-ridges where possible, notably on the LIA limit. The boulders are gneiss, 151 some with quartz veins, which we preferentially targeted for sampling. Using hammer and chisel, we 152 collected samples with thicknesses of 1-5 cm from the center of flat-topped surfaces of these boulders. 153 All samples were processed at the Lamont-Doherty Earth Observatory Cosmogenic Nuclide 154 Laboratory (method in Schaefer et al., 2009), where the quartz was chemically isolated by leaching the 155 crushed and sieved bulk rock, first in boiling orthophosphoric acid and then in dilute 156 hydrofluoric/nitric acid. Purified quartz yields ranged between 7 g and 72 g (Table 1). Usually,

157 younger samples require greater quartz weights than older samples. Taking advantage of improvement 158 in detection limits for ¹⁰Be, we tested in this study the possibility of using as little as 7 g quartz for 159 some of the youngest boulders in the data set, which was the maximum quartz weight we could isolate from these samples. As discussed in detail in the next section, the numbers of atoms ¹⁰Be in these small 160 161 samples are one to two orders of magnitude higher than the blanks, implying that at certain study sites 162 using less than 10 g quartz can be sufficient to date boulders that have been exposed for only a few 163 hundred years, if laboratory and measurement detection limits are sufficiently low. The ability to use small samples greatly simplifies the chemical isolation of ¹⁰Be. The extraction of ¹⁰Be from the 164 purified quartz is described in detailed at http://www.ldeo.columbia.edu/tcn/. ¹⁰Be/⁹Be ratios were 165 166 measured at the Center for Accelerator Mass Spectrometry of the Lawrence Livermore National Laboratory. To derive the surface exposure ages from the determined ¹⁰Be concentrations, we used the 167 168 calculation methods incorporated in the CRONUS-Earth online exposure age calculator (Balco et al., 2008). We applied the "Arctic" ¹⁰Be production rate recently established by Young et al. (2013), which 169 170 includes previously and newly produced Holocene calibration data sets from Northern Hemisphere 171 sites at latitudes $>40^\circ$, in combination with the time-dependent version of the scaling model by Lal (1991). This production rate has a reference value of 3.96 ± 0.15 atoms ¹⁰Be g⁻¹ yr⁻¹ at sea level and 172 173 high latitude. Other recently published production rates are up to $\sim 5\%$ lower (e.g. Putnam et al., 2010; 174 Fenton et al., 2011) and ~3% higher (Goehring et al., 2011b), and would in our study yield ages that 175 are correspondingly higher and lower, respectively.

176 The uncertainties in the ages given in the text below include the error in the Arctic production rate177 unless otherwise mentioned. All ages are referenced to the year 2010 CE.

178 In our age calculations we did not include corrections for boulder surface erosion because of the high

179 resistance of the sampled lithologies to weathering and the lack of any signs of significant erosion on

180 the sampled surfaces. Assuming an erosion rate of 1 mm kyr⁻¹, an upper bound postglacial weathering 181 rate for crystalline rocks (André, 2002), would increase the ages by < 1%, which would not affect our 182 conclusions.

We did not correct our ¹⁰Be ages for any potential snow cover, because quantitative records of snow thickness and duration do not exist for the time-periods considered here. We deem considerable snoweffects unlikely, because boulders protruding from the moraine crests are often exposed to strong winds at these altitudes, minimizing the likelihood that snow remained on the sampled surfaces for significant time. Assuming the improbable scenario of a continuous snow cover of 30 cm for 4 months would result in an increase of the exposure ages by < 2%, which would not impact our conclusions.

189

190 **4. Results**

191 The resulting boulder exposure ages are shown in Fig. 1 and in Table 1. As detailed in the following,

all ages are in agreement with their stratigraphic position, i.e. younger ages correspond to more glacier-proximal positions.

194 Two boulders slightly inboard of the outer moraine crest on the Hublen plateau yield ages of $10,860 \pm$ 195 460 yr and $10,580 \pm 450$ yr (arithmetic mean: $10,720 \pm 440$ yr). The ages of three boulders sampled 196 from the close-by inner moraine relicts on the same plateau are $10,490 \pm 480$ yr, $10,320 \pm 490$ yr and 197 $10,030 \pm 450$ yr. Three boulder ages on the crest of the 200 m lower left-lateral moraine are $10,090 \pm$ 198 410 yr, 9400 ± 370 yr, and 8350 ± 330 yr, being less consistent than those of all other moraines at 199 Steingletscher. We regard the age of 8350 ± 330 yr as an outlier, based on the observation that glaciers 200 in the Swiss Alps appear to have been smaller than today for about a thousand years before ~ 8.2 kyr 201 ago, when they briefly re-advanced to a position similar to the present-day extent (Joerin et al., 2006; 202 Nicolussi and Schlüchter, 2012). The arithmetic mean of the two older boulder ages is $9,740 \pm 610$ yr.

203 One boulder slightly inboard of this moraine ridge yields an age of $2,850 \pm 130$ yr, and another boulder 204 on the right-lateral side, located slightly outboard of the 'LIA limit' gives an age of $2,870 \pm 120$ yr. 205 The three boulders on the glaciofluvial deposit near the bottom of the glacier valley yield similar and 206 very consistent ages of $2,830 \pm 120$ yr, $2,720 \pm 120$ yr and $2,710 \pm 130$ yr with an arithmetic mean age 207 of $2,750 \pm 130$. Amongst 15 boulder ages on the LIA limit, fourteen range between 580 ± 50 yr and 208 140 ± 30 yr, and one age from a huge boulder is $1,816 \pm 77$ yr. We consider this significantly older 209 boulder age as an outlier. Remarkably, at the locations on the LIA limit where individual sub-ridges 210 are distinguishable, the ages between \sim 580 yr and \sim 140 yr are in stratigraphic order, i.e. the further 211 inboard the moraine the younger the boulder age. For example, on the hill Chüebergli boulders STEI-212 18 and STEI-15, which are located on the sharp outer crest, yield ages of \sim 310 yr and \sim 280 yr, 213 respectively, whereas boulder STEI-17 from a close-by inner sub-ridge is dated to ~190 yr (Figs. 1, 214 2B). Similarly, at the moraine ridge sequence north of the Bockberg mountain, the oldest boulders 215 STEI-12-23 and STEI-12-13 (~580 yr and ~530 yr, respectively) are from the outmost position of the 216 discernable moraine ridges, whereas the youngest boulder STEI-12-20 is from the innermost position 217 of all boulders dated at this location (Fig. 1). 218 Inboard of the LIA limit, one boulder 15 m below the 1920 CE moraine (STEI-16) yields 162 ± 10 yr,

100 model of the EIA mint, one bounder 15 m below the 1920 CE motanic (STEI-10) yields 102 ± 10 yr,

and one boulder from the 1988 CE moraine crest (STEI-7) yields 127 ± 8 yr. The significance of these post-LIA boulders will be discussed below.

221 Concerning the amounts of quartz used to determine the 16 youngest boulder ages in our data set

222 (<600 years), we note here that the 1σ analytical uncertainties of the samples processed with quartz

weights of 24 - 70 g range between 2% and 6%, and those processed with unusual low quartz weights

of 7 - 20 g are between 6% and 13%, except sample STEI-12-20 with 24% (Table 1). The numbers of

atoms ¹⁰Be of the low quartz weight samples range between 32×10^3 and 121×10^3 atoms, while

associated blanks are between 3×10^3 and 7×10^3 atoms, corresponding to blank corrections of 2% to 13% (Table 1). Blank-corrected ¹⁰Be concentrations of these samples are between 3×10^3 and 12×10^3 atoms ¹⁰Be g⁻¹ quartz (Table 1). These results show that, if laboratory and measurement backgrounds allow for low detection limits, reliable ¹⁰Be measurements well above the blank level can be achieved even when using only 10-20 g or less quartz from moraine boulders that were deposited during the last few hundred years. This might be of interest for studies, in which limited precision is acceptable and elevations are similar to or above those in our study.

233

234 **5. Discussion**

Our Steingletscher moraine chronology (Fig. 1) implies temporal constraints for glacier culminations
during the Early Holocene, the Late Holocene and the LIA, which we compare here with other
Holocene glacier studies in the European Alps and oxygen isotope records in Greenland ice cores and
in Swiss lake sediments (Fig. 4 and 5).

239

240 <u>5.1 Early Holocene versus Late Glacial:</u>

The ¹⁰Be exposure ages presented suggest that Early Holocene glacier extents at Steingletscher are 241 242 recorded at two locations: (1) On the Hublen plateau, where the two parallel lateral moraine groups 243 indicate an Early Holocene glacier extent significantly beyond the LIA glacier position. The outer 244 moraine corresponds to a glacier culmination that is dated to at least ~10.7 kyr ago. The actual 245 culmination could have occurred somewhat earlier, as the two dated boulders are located slightly 246 inboard of the moraine crest. The ages from inner moraine relicts on the Hublen plateau, decreasing 247 from ~10.5 kyr to ~10.0 kyr, suggest a slow oscillatory retreat over a few hundred years. (2) On the 248 200 m lower In Miseren plateau, the boulder ages from the preserved moraine ridge yield an only

249 slightly younger arithmetic mean age of ~9.7 kyr. This moraine, however, represents a much 250 diminished glacier extent, close to that of the LIA. Therefore it appears to correspond to a significantly 251 smaller glacier size than that represented by the moraines on the Hublen plateau, suggesting that the 252 glacier underwent considerable melting within a few hundred years before ~9.7 kyr ago. We note that the choice of the ¹⁰Be production rate for the age calculations (Section 3) introduces 253 254 uncertainties in the calculated ages. Using the almost 5% lower production rate calibrated in New 255 Zealand (Putnam et al., 2010) would yield an age for the oldest boulder in the data set whose 256 uncertainties slightly overlap with the end of the last Late Glacial cold phase, the Younger Dryas (YD), 257 \sim 11.7 kyr ago. Therefore, a deposition of the outer moraine during the late YD cannot entirely be 258 excluded. However, according to the traditional picture in the Alps, equilibrium line altitudes during 259 the YD (regionally referred to as the Egesen stadial, Section 2) were ~200-450 m below that of the LIA 260 (Ivy-Ochs et al., 2006 and references therein). Since we consider such a large ELA depression unlikely 261 for the outer moraine on the Hublen plateau, it appears more plausible that the outmost moraines of 262 Steingletscher were deposited during the Early Holocene.

Our data suggest that King's (1974) assignment of the two moraine groups on the Hublen plateau to the Late Glacial stadials Daun and Egesen, respectively (Section 2), overestimates the ages of these moraines by a few thousand years. However, his minimum ages of 10710 – 10260 cal. yr before 2010 CE (peat bog profile ST5) and 10290 – 8470 cal. yr before 2010 CE (peat bog profile ST1) for the moraines on the Hublen plateau and of 7850 – 7480 cal. yr before 2010 CE (peat bog profile ST9) for the moraine on the In Miseren plateau do fall into the Early and mid-Holocene and are in agreement with our results (Fig. 1; Fig. 4G, Table 2).

270 Early Holocene ¹⁰Be moraine ages have previously been suggested at several locations in the Alps, i.e.

for the prominent left-lateral moraine of the Great Aletsch glacier (Kelly et al., 2004), the Kartell site

272 moraine (Ivy-Ochs et al., 2006), four moraines at the Belalp site (Schindelwig et al., 2012) and the 273 outmost moraine of the Tsidjiore Nouve Glacier (Schimmelpfennig et al., 2012). In the original studies, ages were calculated with different ¹⁰Be production rates from the one we used here. We therefore 274 275 recalculated these published ages using the Arctic production rate (Tables S1 in Supplement) and 276 plotted for each moraine the summed probability curves of all boulder ages (excluding those 277 considered outliers in the original studies) in Fig. 4 for comparison with the Steingletscher results. The Arctic ¹⁰Be production rate is lower than the production rates previously used in the studies of Kelly et 278 279 al. (2004), Ivy-Ochs et al. (2006) and Schindelwig et al. (2012), therefore making these recalculated 280 ages older than in the original publications by 10-20%. The moraine ages at Tsidjiore Nouve glacier become younger by 2.8%, because Schimmelpfennig et al. (2012) used the slightly lower ¹⁰Be 281 282 production rate calibrated by Balco et al. (2009) in Northeast North America. 283 In Fig. 4 the panels C-F and H show the recalculated moraine ages of all sites sorted as a function of 284 their location from west to east in order to investigate the possibility of a potential time-transgressive 285 trend of the glacier culminations along the Alps. The figures illustrate that the Early Holocene moraine 286 ages of Steingletscher from the Hublen plateau (red and blue curves in Fig. 4F) agree within their 1σ 287 uncertainties with those of the Tsidjiore Nouve Glacier and with the innermost Belalp moraine, while 288 the broader age distribution of the moraine on the In Miseren plateau (green curves in Fig. 4F) only 289 overlaps with the innermost Belalp moraine. No temporal trend can be detected based on these data. As 290 has been suggested in the previous moraine chronology studies (Kelly et al., 2004; Ivy-Ochs et al., 291 2006, 2009; Schindelwig et al., 2012; Schimmelpfennig et al., 2012), these Early Holocene glacier 292 culminations might be related to abrupt cold spells inferred from oxygen-isotope records in Greenland 293 ice cores, such as the Preboreal Oscillation ~11.4 kyr ago, the 10.9 kyr, and 9.3 kyr event (e.g. 294 Rasmussen et al., 2007; Severinghaus et al., 2009; Fig. 4A). Independent paleoclimate studies support

295 the impact of short Greenland cold snaps in the Alps. In particular, the δ^{18} O changes in Swiss lake 296 sediments, which show a remarkable similarity with the Greenland δ^{18} O record, include Early 297 Holocene signals that strongly resemble the signatures of the PBO and possibly a part of the 10.9 kyr 298 event in Greenland (Schwander et al., 2000; Fig. 4B). However, a clear assignment of the three mean 299 ages from the Early Holocene moraines of Steingletscher to specific abrupt cold events needs further 300 investigation to more tightly constrain the chronology of these glacio-geomorphic features.

301

302 <u>5.2 Mid-Holocene:</u>

At Steingletscher, no moraines are preserved from the mid-Holocene. This observation is in agreement with the Holocene moraine record observed at the Tsidjiore Nouve Glacier (Schimmelpfennig et al., 2012) and the findings at many other glaciers in the Alps (review in Ivy-Ochs et al., 2009). Due to the warm mid-Holocene climate, glaciers had retreated at least as far into their valleys as they are today, as evidenced by radiocarbon-dated subfossil wood and peat (Joerin et al., 2006, 2008). The subsequent glacier re-advances during the Late Holocene overran any moraines that might have formed during the Middle Holocene.

310

311 <u>5.3 Late Holocene:</u>

The strikingly similar Late-Holocene ages of the two single boulders on each side of the catchment's outlet (~2.9 kyr) and of the three huge boulders on the glaciofluvial deposit near the valley bottom (mean age ~2.8 kyr) (Fig. 1) suggest that their deposition was synchronous and related to the same glacier advance slightly outside of the LIA-limit. This supports the possibility that the three huge boulders in the valley center might be closely associated with a Late Holocene glacier terminal position. King (1974) also provides evidence for a glacier extent similar to that of the LIA around ~3 318 kyr ago at four different locations on the right-lateral side of the catchment's outlet at Steingletscher 319 constrained by two minimum ages of 2520 - 2010 cal. yr before 2010 CE (profile Steinalp) and 3400 -320 2800 cal. yr before 2010 CE (profile Hotel 1) and two maximum ages of 3510 - 3020 cal. yr before 321 2010 CE (profile Hotel 2) and 4020 – 3650 cal. vr before 2010 CE (outcrop Grabung D) (Figs. 1, 4G; Table 2). The evidence from our ¹⁰Be boulder ages and King's (1974) radiocarbon-dates at 322 323 Steingletscher reinforces the Late Holocene finding from Tsidjiore Nouve Glacier in Schimmelpfennig 324 et al. (2012) (cf. Fig. 4C) indicating that both glaciers reached positions similar to the LIA-limit as early as ~3 kyr ago. This scenario is supported by several other studies at various sites in the Alps, that 325 326 recorded significant glacier advances around that time, based on radiocarbon dating, regionally defined 327 as the Göschener I Oscillation (~3.0 - 2.3 kyr ago; Zoller et al., 1966; review in Ivy-Ochs et al., 2009). 328

329 <u>5.4 Little Ice Age</u>

330 The fourteen boulder ages on the LIA limit ranging between ~580 yr and 140 yr match the timing of 331 the LIA (Fig. 4F and 5A) and are remarkably consistent internally with the stratigraphy of the 332 individual moraines ridges, where such is discernible, i.e. on the Chüebergli (Figs. 1, 2B) and at the 333 highly resolved moraine sequence close to northern flank of the Bockberg (inset in Fig. 1). We infer 334 that our LIA age population reflects several glacier maxima within a ~450 yr period, and we will attempt here to use the resulting ¹⁰Be age distribution to resolve individual glacier culminations during 335 336 this interval. A limiting factor to the accuracy of young surface exposure boulder ages is the possible presence of ¹⁰Be derived from periods of exposure prior to final moraine deposition (hereafter 337 338 'inheritance') (cf. Balco, 2011). Our two post-LIA boulders STEI-16 and -7 allow a natural experiment to test the magnitude of potential inheritance by comparison of their 10 Be ages (~160 yr and ~130 yr, 339 340 respectively) with the years of the historically recorded glacier positions (shortly after 1920 CE and

341 1988 CE, respectively) (Fig. 1). These two boulders indicate inheritance on the order of 50-100 vr. corresponding to as little as <2000 atoms (g quartz)⁻¹. On the other hand, applying a general 342 343 inheritance correction by systematically subtracting 50-100 yr from the Steingletscher LIA ages would 344 render some of them unrealistically young, in particular sample STEI-12-20 (140 ± 34 yr). This 345 implies that whether or not a boulder surface has significant inheritance is random and that the two test 346 boulders STEI-16 and -7 are probably incidentally affected by an amount of inheritance higher than in 347 other boulders sampled. Based on these observations and the internal consistency of the LIA boulder 348 stratigraphy we refrain from applying a general correction, assuming negligible inheritance for our LIA 349 boulders.

350 We applied three different statistical tests to identify distinct peaks in the LIA age population (Table 351 3): the visual Kernel Density Estimation using the DensityPlotter published by Vermeesh (2012) (Fig. 352 5A), the cluster analysis Partitioning Around Medoids (PAM) following Kaufman and Rousseeuw 353 (1987), and a Chi-square test according to Ward and Wilson (1978). The three different tests yield similar results (Table 3), suggesting that our distribution of ¹⁰Be ages represents four LIA glacier 354 355 culminations around 1470 CE (~540 yr ago), 1650 CE (~360 yr ago), 1750 CE (~260 yr ago) and 1820 356 CE (~190 yr ago), indicated by the black arrows in Fig. 5A. Comparing these results with the detailed LIA chronologies by Holzhauser at al. (2005), we note that the two ¹⁰Be age peaks from Steingletscher 357 358 at ~1650 CE and ~1820 CE match well with the advanced positions of the Swiss glaciers Great Aletsch, 359 Gorner and Lower Grindelwald, as illustrated in Fig. 5. The two peaks at ~1470 CE and ~1750 CE 360 have not been reported for Great Aletsch Glacier and Gorner Glacier. However, the higher-resolution 361 record from Lower Grindelwald Glacier illustrates glacier culminations in the middle of the 18th century in agreement with our peak at \sim 1750 CE. The data gap around the 15th century in the Lower 362

Grindelwald Glacier record prevents us from assessing if it experienced glacier advances similar to the
 Steingletscher ¹⁰Be age peak around 1470 CE.

We conclude that our LIA ¹⁰Be boulder age record, being in chronological order with the individual 365 366 moraine ridge stratigraphy, shows good agreement with the independent documentations of LIA 367 glacier fluctuations in the Alps and that it points to four sub-culminations during the LIA period. The 368 lower number of advances recorded for the Great Aletsch and Gorner Glaciers might be explained by 369 longer reaction times of these glaciers. The reaction of a glacier to climate change depends on various 370 characteristics including size, surface area distribution with altitude, and steepness of the bed (Cuffey 371 and Paterson, 2010). The most striking difference between the four glaciers compared here is the size 372 of their surface areas. Small alpine glaciers are more sensitive to short-term climate changes than big 373 glaciers with reaction times ranging from a few years to several decades (e.g. Holzhauser et al., 2005). 374 While Aletsch and Gorner glacier are the two largest glaciers in Switzerland with surface areas of 90 km² and 60 km², respectively, Steingletscher and the Lower Grindelwald glacier are much smaller with 375 surface areas of 6 km² and 20 km² (Glaciological reports, 1881-2009), respectively, and thus likely to 376 377 experience more frequent fluctuations on the decadal to centennial time scales considered here.

378

379 **6.** Conclusions

We present a comprehensive Holocene glacier chronology of Steingletscher, Central Swiss Alps, based on high-sensitivity ¹⁰Be moraine boulder dating. The ¹⁰Be moraine chronology is consistent with the moraine ridge stratigraphy and agrees well with independent constraints for the Holocene culminations of the Steingletscher and with other glacier records in the Alps. The chronology implies that the largest glacier extents studied at Steingletscher occurred about 11-10 kyr ago, during the Late Glacial/Early Holocene transition. We do not record any glacier culminations during the mid-Holocene in agreement with independent findings of a prolonged period of glacial retreat during the mid-Holocene. Several boulder ages around 2.8 kyr corroborate the growing evidence for a significant glacier advance to LIA extent as early as ~3 kyr ago in the Alps. Fourteen boulder ages, partly derived from unusually small quartz samples, match with the LIA period. We use these ages for a first attempt to resolve the fine structure of LIA glacier culminations based on ¹⁰Be dating of moraine boulders. The good agreement of our results with independent records in the Swiss Alps suggests a high potential of the method to complement existing historical data and dating approaches.

393

394 ACKNOWLEDGEMENTS

We thank J. Hanley and K. Needleman for help with sample preparation; A. Putnam, M. Pasturel, L.

396 Benedetti, and R. Braucher for assistance during data interpretation; and the staff of the Center for

397 Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory for the excellent

398 measurements. We acknowledge support by the CRONUS-Earth project (Cosmic-Ray Produced

399 Nuclide Systematics on Earth) (U.S. National Science Foundation grant EAR-0345835), the

400 International Balzan Foundation, the German Academic Exchange Service (DAAD), the College de

401 France, the Lamont Climate Center, the Comer Science and Education Foundation and the Hans-

402 Sigrist Foundation. We thank Joe Licciardi and an anonymous reviewer for their constructive reviews,

403 which greatly improved the mauscript. This is Lamont-Doherty Earth Observatory publication xxx.

404

405 **References:**

406

Akçar, N., Deline, P., Ivy-Ochs, S., Alfimov, V., Hajdas, I., Kubik, P.W., Christl, M., Schlüchter, C., 2012. The AD 1717
 rock avalanche deposits in the upper Ferret Valley (Italy): a dating approach with cosmogenic ¹⁰Be. Journal of Quaternary
 Science 27, 383–392.

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997. Holocene climatic instability: A
 prominent, widespread event 8200 yr ago. Geology 25, 483-486.

André M.-F., 2002. Rates of postglacial rock weathering on glacially scoured outcrops (Abisko-Riksgransen Area, 68-N).
 Geografiska Annaler 84 A, 139–150.

Balco, G., Stone, J., Lifton, N., Dunai, T., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements. Quaternary Geochronology 3, 174-195.

Balco, G., Briner, J., Finkel, R.C., Rayburn, J.A., Ridge, J.C., Schaefer, J.M., 2009. Regional beryllium-10 production rate
calibration for late-glacial northeastern North America. Quaternary Geochronology 4, 93–107,
doi:10.1016/i.guageo.2008.09.001

418 doi:10.1016/j.quageo.2008.09.001.

Balco, G., 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier
 chronology, 1990-2010. Quaternary Science Reviews 30, 3-27, doi:10.1016/j.quascirev.2010.11.003.

421 Baroni, C., Orombelli, G., 1996. The Alpine "Iceman" and Holocene climatic change. Quaternary Research 46, 78–83.

422 Blass, A., Anselmetti, F.S., Ariztegui, D., 2003. 60 years of glaciolacustrine sedimentation in Steinsee (Sustenpass,

423 Switzerland) compared with historic events and instrumental meteorological data. Eclogae geologicae Helvetiae 96,

424 Supplement 1, S59–S71.

- 425 Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337-360.
- 426 Bronk Ramsey, C., 2013. OxCal Program 4.2.3, https://c14.arch.ox.ac.uk/oxcal/OxCal.html
- 427 Cossart, E., Fort, M., Bourlès, D., Braucher, R., Perrier, R., Siame, L., 2012. Deglaciation pattern during the
- 428 Lateglacial/Holocene transition in the southern French Alps. Chronological data and geographical reconstruction from the
- 429 Clarée Valley (upper Durance catchment, southeastern France). Palaeogeography, Palaeoclimatology, Palaeoecology 315-
- 430 316, 109–123.
- 431 Cuffey, K.M. and Paterson, W.S.B., 2010. The Physics of Glaciers. Fourth edition. Butterworth-Heinemann/Elsevier, 432
- Burlington, USA. 693 p.
- 433 Fenton C.R., Hermanns R., Blikra L., Kubik P.W., Bryant C., Niedermann S., Meixner A., Goethals M.M., 2011. Regional 434 ¹⁰Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock 435 avalanches at 69° N, Norway. Quaternary Geochronology 6, 437–452.
- 436 Glaciological reports, 1881-2009. "The Swiss Glaciers", Yearbooks of the Cryospheric Commission of the Swiss Academy 437 of Sciences (SCNAT) published since 1964 by the Labratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH 438 Zürich. No. 1-126, (http://glaciology.ethz.ch/swiss-glaciers/).
- 439 Goehring, B.M., Schaefer, J.M., Schluechter, C., Lifton, N.A., Finkel, R.C., Jull, A.J.T., Akçar, N., Alley, R.B., 2011a. The 440 Rhone Glacier was smaller than today for most of the Holocene. Geology 39, 679-682.
- 441 Goehring B.M., Lohne Ø.S., Mangerud J., Svendsen J.I., Gyllencreutz R., Schaefer J., Finkel R., 2011b. Late Glacial and 442 Holocene beryllium-10 production rates for western Norway. Journal of Quaternary Science 27, 89-96.
- 443 Grove, J.M., 2001. The initiation of the 'Little Ice Age' in regions round the North Atlantic. Climate Change 48, 53–82.
- 444 Holzhauser, H., Magny, M., Zumbühl, H.J., 2005. Glacier and lake-level variations in west-central Europe over the last 445 3500 years. The Holocene 15, 789-801, doi:10.1191/0959683605hl853ra.
- 446 Hormes, A., Müller, B.U., Schlüchter, C., 2001. The Alps with little ice: evidence for eight Holocene phases of reduced 447 glacier extent in the Central Swiss Alps. The Holocene 11, 255-265.
- 448 Ivy-Ochs S., Schlüchter C., Kubik P.W., Synal H.-A., Beer J., Kerschner H., 1996. The exposure age of an Egesen moraine 449 at Julier Pass, Switzerland, measured with the cosmogenic radionuclides ¹⁰Be, ²⁶Al and ³⁶Cl. Eclogae Geologicae Helvetiae 450 89(3): 1049–1063.
- 451 Ivy-Ochs, S., Kerschner, H., Reuther, A., Maisch, M., Sailer, R., Schaefer, J., Kubik, P., Synal, H., 2006. The timing of
- 452 glacier advances in the northern European Alps based on surface exposure dating with cosmogenic ¹⁰Be, ²⁶Al, ³⁶Cl, and
- 453 21Ne. In: Siame, L.L., Bourlès, D.L., Brown, E.T. (Eds.), In Situ-Produced Cosmogenic Nuclides and Quantification of 454 Geological Processes. Geological Society of America, Special Paper 415, 43-60.
- 455 Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., Schluechter, C., 2009. Latest Pleistocene and Holocene 456 glacier variations in the European Alps. Quaternary Science Reviews 28, 2137-2149.
- 457 Joerin, U.E., Stocker, T.F., Schlüchter, C., 2006. Multicentury glacier fluctuations in the Swiss Alps during the Holocene: 458 The Holocene 16, 697–704, doi:10.1191/0959683606hl964rp.
- 459 Joerin, U.E., Nicolussi, K., Fischer, A., Stocker, T.F., Schlüchter, C., 2008. Holocene optimum events inferred from 460 subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Science Reviews 27, 337-350.
- 461 Kaufman L., Rousseeuw, P., 1987. Clustering by Means of Medoids. In Y. Dodge (Ed.) Statistical Data Analysis Based on 462 the L1-Norm and Related Methods, pp. 405–416. North-Holland.
- 463 Kelly, M.A., Kubik, P.W., Blanckenburg von, F., Schlüchter, C., 2004. Surface exposure dating of the Great Aletsch
- 464 Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide ¹⁰Be. Journal of Quaternary Science 19, 465 431-441.
- 466 King, L., 1974. Studien zur postglazialen Gletscher- und Vegetationsgeschichte des Sustenpassgebietes. Baseler Beiträge 467 zur Geographie 18, 1-123.
- 468 Licciardi, J.M., Schaefer, J.M., Taggart, J.R., Lund, D.C., 2009. Holocene glacier fluctuations in the Peruvian Andes
- 469 indicate northern climate linkages. Science 325, 1677-1679, doi:10.1126/science.1175010.

- Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and
 Planetary Science Letters 104, 424-439, doi: 10.1016/0012-821X(91)90220-C.
- 472 Nicolussi, K., Schlüchter, C., 2012. The 8.2 ka event—Calendar-dated glacier response in the Alps. Geology 40, 819-822.
- 473 Nishiizumi K., Imamura M., Caffee M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of ¹⁰Be
- 474 AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and
- 475 Atoms 258, 403–413.
- 476 Oerlemans, J., 2005. Extracting a Climate Signal from 169 Glacier Records. Science 308, 675-677.
- 477 Putnam A.E., Schaefer J.M., Barrell D.J.A., Vandergoes M., Denton G.H., Kaplan M.R., Finkel R.C., Schwartz R.,
- 478 Goehring B.M., Kelley S.E., 2010. In situ cosmogenic ¹⁰Be production-rate calibration from the Southern Alps, New Zealand. Quaternary Geochronology 5, 392–409.
- Rasmussen, S.O., Vinther, B.M., Clausen, H.B., Andersen, K.K., 2007. Early Holocene climate oscillations recorded in
 three Greenland ice cores. Quaternary Science Reviews 26, 1907–1914, doi:10.1016/j.quascirev.2007.06.015.
- 482 Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-
- 483 L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.
- E., Ruth, U., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research
 111, D06102, doi:10.1029/2005JD006079.
- 486 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., Guilderson, T.P.,
- 487 Haflidason, H., Hajdas, I., Hatte, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B.,
- 488 Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der
- Plicht, J., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon 55, 1869-1887.
- 491 Röthlisberger, F., Schneebeli, W., 1979. Genesis of lateral moraine complexes, demonstrated by fossil soils and trunks:
 492 Indicators of postglacial climatic fluctuations, in Schlüchter, C., ed., Moraines and varves. Rotterdam, A.A. Balkema, pp. 387–419.
- Schaefer, J.M., Denton, G.H., Kaplan, M., Putnam, A., Finkel, R.C., Barrell, D.J.A., Andersen, B.G., Schwartz, R.,
 Mackintosh, A., Chinn, T., Schlüchter, C., 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from
 the northern signature. Science, 324, 622–625, doi:10.1126/science.1169312.
- 497 Schimmelpfennig, I., Schaefer, J.M., Akçar, N., Ivy-Ochs, S., Finkel, R.C., Schlüchter, C., 2012. Holocene glacier 498 culminations in the Western Alps and their hemispheric relevance. Geology 40, 891-894, doi:10.1130/G33169.1.
- Schindelwig, I., Akçar, N., Kubik, P.W., Schlüchter, C., 2012. Lateglacial and early Holocene dynamics of adjacent valley
 glaciers in the Western Swiss Alps. Journal of Quaternary Science, 27, 114–124, doi:10.1002 /jqs.1523.
- 501 Schwander, J., Eicher, U., Ammann, B., 2000. Oxygen isotopes of lake marl at Gerzensee and Leysin (Switzerland),
- covering the Younger Dryas and two minor oscillations, and their correlation to the GRIP ice core. Palaeogeography,
 Palaeoclimatology, Palaeoecology, 159, 203–214, doi:10.1016/S0031-0182(00)00085-7.
- 504 Severinghaus, J.P, Beaudette, R., Headly, M. A., Taylor, K., Brook, E.J., 2009. Oxygen-18 of O₂ Records the Impact of Abrupt Climate Change on the Terrestrial Biosphere. Science 324, 1431-1434.
- 506 Vermeesh, P., 2012. On the visualisation of detrital age distributions. Chemical Geology 312-313, 190-194.
- Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad,
 I.K., Siggaard-Andersen, M.-L., Steffensen, J.P., Svensson, A., Olsen, J., Heinemeier, J., 2006. A synchronized dating of
 three Greenland ice cores throughout the Holocene. J. Geophys. Res. 111, D13102, doi:10.1029/2005JD006921.
- Ward, G.K., Wilson, S.R., 1978. Procedures for comparing and combining radiocarbon age-determinations Critique.
 Archaeometry 20, 19-31.
- Young, E.Y., Schaefer, J.M., Briner, J.P., Goehring, B.M., 2013. A ¹⁰Be production-rate calibration for the Arctic: Journal of Quaternary Science 28, 515-526.
- 514 Zoller, H., 1958. Pollenanalytische Untersuchungen im unteren Misox mit den ersten Radiokarbondatierungen in der
- 515 Südschweiz. Veröffentlichungen des Geobotanischen Instituts Rübel 34, 166–175.

- Zoller, H., 1960. Pollenanalytische Untersuchungen zur Vegetationsgeschichte der insubrischen Schweiz. Denkschriften
 der Schweizerischen Naturforschenden Gesellschaft 83, 45–156.
- Zoller, H., Schindler, C., Röthlisberger, 1966. Postglaziale Gletschstände und Klimaschwankungen im Gotthardmassiv und
 Vorderrheingebiet. Verhandlungen der Naturforschungs Gesellschaft Basel 77, 97–164.
- 520

521 Figure Captions and Tables:

522

Fig. 1: Map of Holocene moraines and ¹⁰Be boulder ages at Steingletscher (Central Swiss Alps, 47°N 523 latitude) on ALTI3D model by Swisstopo® (left panel). LIA: Little Ice Age; CE: Common Era. Inset 524 (A) highlights study area in red. ¹⁰Be ages (in years before 2010 CE) are shown in white boxes with 1σ 525 errors including analytical and ¹⁰Be production rate uncertainties and followed by sample names in 526 orange. Outliers are in italic. Inset (B) shows detail of LIA and post-LIA moraine sequence in the north 527 528 of the Bockberg mountain. Pink boxes give years of historically recorded moraine deposits (Fig. 3). 529 Blue boxes show calibrated bracketing radiocarbon ages (in years before 2010 CE for comparison with 530 ¹⁰Be ages) obtained by King (1974) from the peat bog profiles or fossil soils in outcrops, followed by 531 profile or outcrop name. Black numbers are maximum ages, and white numbers are minimum ages for 532 moraine deposits or glacier retreats/advances. Yellow numbers are ages associated with certain pollen 533 assemblages. For relationship with moraines and climate significance see Table 2. Panel (C) shows part of the moraine map produced by King (1974) (modified). The original German legend and labels 534 are translated. Colored numbers are mean ¹⁰Be moraine ages inferred in our study. "Gö2" refers to the 535 Göschener II Oscillation, a cold phase in the middle of the 1st millennium CE regionally defined by 536 Zoller et al. (1966) (Ivy-Ochs et al., 2009 and references therein). 537

538

Fig. 2: Photographs of moraines and related geomorphic features at Steingletscher. A: View of glacier
forefield showing the proglacial lake Steinsee, partly encircled by the LIA limit. B: On the top of hill
Chüebergli, view on the sharp LIA crest with boulder STEI-17, embedded in a slightly inboard located
sub-ridge. C: Part of the inner moraine relicts on the Hublen plateau. In the back, view on the visible
LIA limit and the right-lateral LIA composite moraine. D: Moraine deposited in the year 1988 with
boulder STEI-7. E: Sequence of interlaced individual LIA moraine ridges in the north of Bockberg
mountain.

Fig. 3: Post-LIA length measurements of Steingletscher between the years 1893 and 2011
(Glaciological reports, 1881-2009). The reference length 0 m corresponds to the glacier length in the
first measurement year. During this period, two significant re-advance (blue arrows) ended in the years
1920 and 1988, both followed by decadal retreats (red arrows).

551

Fig. 4: Holocene glacier culminations of Steingletscher (Central Swiss Alps) based on ¹⁰Be moraine 552 ages (grey panel F, this study) compared to independent climate records in Greenland and Switzerland 553 and to other documentations of glacier variations in the European Alps based on ¹⁰Be moraine dating. 554 555 Glacier sites are sorted from west to east as depicted by red dots in the inset map. Reference year 0 corresponds to 2010 Common Era. LIA: Little Ice Age. YD: Younger Dryas. Each mean ¹⁰Be moraine 556 557 age is represented by a summed probability curve with the number of averaged boulder ages indicated 558 by n=x. Only analytical errors are taken into account in the probability curves. Colors represent the 559 stratigraphic order of the moraine ridges at each site, from outer to inner: red-blue-green-yellow-violet. 560 Vertical lines inside each curve are the arithmetic means of each moraine age, and colored bands inside

561 the curves are 1σ errors including the production rate uncertainty. A: Oxygen-isotope record from 562 NGRIP ice core in Greenland (Vinther, et al., 2006; Rasmussen et al., 2006) with YD stadial and Early 563 Holocene cold spells highlighted by grey vertical bands. B: Oxygen-isotope records in sediment cores 564 of the two Swiss lakes Gerzensee and Leysin (Schwander et al., 2000). Locations are represented by blue dots in inset map. Panels C-E and H show Glacier culminations based on recalculated ¹⁰Be 565 566 moraine ages. C: Tsidjiore Nouve Glacier (Western Swiss Alps) (Schimmelpfennig et al., 2012). D: 567 Belalp Glacier (Western Swiss Alps) (Schindelwig et al., 2012). E: Left-lateral moraine of Great 568 Aletsch Glacier (Western Swiss Alps) (Kelly et al., 2004). The same panel shows Late Holocene glacier fluctuations of Great Aletsch Glacier based on ¹⁴C-dating, dendrochronologic analysis, 569 570 archeological and historical data (Holzhauser et al., 2005). G: Glacier and climate variations at Steingletscher based on calibrated bracketing ¹⁴C ages from peat bogs and outcrops at Steingletscher 571 572 (King, 1974; Fig. 1; Table 2). Arrows pointing to the right stand for minimum ages, arrows pointing to 573 the left stand for maximum ages. The arrow lengths correspond to the 2σ intervals of calibrated ¹⁴C 574 ages. The arrows are vertically sorted according to the distance of the peat bog or outcrop locations from the LIA limit (outer to inner). Plain arrows indicate bracketing ages for moraine deposits or 575 576 glacier retreats/advances. Dashed arrows correspond to climate cooling (black) or warming (grey) 577 interpreted from pollen assemblages. H: Kartell site moraine (Eastern Alps, Austria) (Ivv-Ochs et al., 578 2006).

579 580 Fig. 5: Comparison of Little Ice Age (LIA) glacier records in the Swiss Alps. CE: Common Era, A: Probability Density Plot (PDP, thick curve) and Kernel Density Estimation (KDE, blue area; 581 bandwidth 30 yr; Vermeesh, 2012) of LIA¹⁰Be boulder ages at Steingletscher (this study). Individual 582 ages and analytical errors are represented by thin Gauss curves. Arrows indicate timing of KDE peaks. 583 584 For comparison with the other glacier records, arrows are vertically extended by grey bands. B: Glacier 585 fluctuations of the three Swiss glaciers Great Aletsch (upper curve), Gorner (middle curve), and Lower 586 Grindelwald (lower curve) based on ¹⁴C-dating, dendrochronologic analysis, archeological and 587 historical data (Holzhauser et al., 2005).

588

Table 1: Sample details, analytical data and surface exposure ages. 10 Be/ 9 Be ratios, measured at the Center for Accelerator Mass Spectrometry of the Lawrence Livermore National Laboratory, were normalized to standard 07KNSTD with the 10 Be/ 9 Be ratio 2.85 x 10⁻¹² (Nishiizumi et al., 2007). The ages are calculated using the 'Arctic' 10 Be production rate with a value of 3.96 ± 0.15 atoms (g yr)⁻¹ at sea level/high latitude (Young et al. 2013, normalized to standard 07KNSTD) and the scaling method 'Lm' (time-dependent version of Lal, 1991) according to Balco et al. (2008). We assumed standard atmospheric pressure and a rock density of 2.7 g cm³. The rock density is needed to calculate the cosmic ray flux attenuation below the sample surface and thus to integrate the depth-dependent 10 Be production rate over the sample thickness. The local 10 Be production rate of each sample is for spallation only. Note that the local time-integrated production rates as a function of 500- to 1000-year time steps are provided in a separate file when calculating individual samples. Here, these data points were averaged over the respective rough exposure duration of each sample, and must therefore be considered approximate values. All ages are reported in calendar years before 2010 CE. Outliers are in italic.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample name	Latitude (°N)	Longitude	Elevation	Thickness	Shielding	Qtz weight	Carrier	CAMS	¹⁰ Be/ ⁹ Be	Blank	[¹⁰ Be]	Local ¹⁰ Be	¹⁰ Be age	1σ Analyt.	1σ error
$ \begin{array}{ c c c c c c c c c c c c c$			(°E)	(m)	(cm)	factor	(g)	(mg ⁹ Be)	number	x10 ⁻¹⁴	correct-	(x10 ³ atoms g ⁻¹)	production rate	(years)	error	incl. prod.
DTFL: Start 2009 1.0 985 0.01401 982.338 1.9.9e.035 0.13% 23.24-3 21.0 1080 2001 (91) 460 STEF.4 46.72013 8.42541 20.35 1.10 0.981 20.06 0.13% 23.24-1 20.7 1050 2001 (91) 460 STEF.4 46.72013 8.42541 20.35 1.11 0.081 20.00 0.0883 BE1216 45.201.35 0.01 20.01 </td <td>E DEVI HOLOGENE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10N</td> <td></td> <td>(atoms g ' yr ')</td> <td></td> <td></td> <td>rate error</td>	E DEVI HOLOGENE										10N		(atoms g ' yr ')			rate error
STEE II (6) (903) 23.18 0.1873 1212.16 45.28.0.86 0.157 223.64.1 20.7 1080 201(197) 640 STEE A 467.26.13 8.42551 32.066 4.10 0.981 20.00 0.1873 125.12.16 0.07 125.85.4 20.2 1080 201(2.55) 460 STEE A 467.26.13 8.42541 20.21 2.00 0.014 125.85.4 0.025 125.85.4 20.25 10802 201(2.55) 460 STEE A 467.2621 8.42541 157.8 0.993 0.027 443.66 0.180.0 185.257 10.090 291(2.55) 460 STEE A 467.2021 8.42647 187.4 294 0.957 48.36 0.180.0 185.257 10.0100 291(4.56) 17.6 0.354 821(4.56) 17.6 0.354 821(4.56) 17.6 0.354 821(4.56) 17.6 0.354 821(4.56) 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7<	STEL 27	46 72616	8 12172	2060	1.10	0.085	10.05	0.18401	DE22279	18 00±0 25	0.129/	222 244 2	21.0	10860	200 (1.0%)	460
STEE-8 4, 72,763 8, 42,813 2064 4,10 0.081 2000 0.1883 BE1230 42,24,083 0.04% 212,83,24 20.2 10400 200 (2,85) 400 STEE-40 4,72,657 8,42552 2055 2,81 0.911 15.5 0.01831 BE1230 27,74,10 0.00% 1084-49 20,4 1000 250 (2,85) 400 STEE-40 4,72,667 8,42547 1.88 2,94 0.939 49,34 0.16420 BE1230 27,74,10 0.00% 1084-49 77,7 83,74 10,11%,11 13,5 0.539 43,21 43,24 0.00% 10,444,4 0,07% 12,64-4,5 17,7 83,7 81,7,09 330 STE-5 4,7306,2 8,424,4 1.990 0.039 20,00 0.1823 BE3337 4,140,10 0.2% 51,24+1,65 17,7 83,44 1,090 10,00 10,00 13,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,0	STEL-27 STEL-11	46.72672	8 42504	2009	1.68	0.985	25.18	0.18371	BE31216	15.97±0.55	0.15%	232.2=4.3	21.0	10580	200 (1.9%)	450
STEP-10 46,7202 84,255 2054 213 0.081 15.3 0.1881 BE1220 26,664,76 0.11% 215.54,61 20.3 10230 209 (2.5%) 409 STEP-10 46,72027 84,2554 2055 2.81 0.981 15.54 0.1811 BE2377 25,786,60 0.06% 28,4-4-94 24,0 10000 25,04,13 17,6 10000 150 (1.5%) 40,0 <td>STEL-11 STEL-8</td> <td>46 72613</td> <td>8 42551</td> <td>2055</td> <td>4 10</td> <td>0.981</td> <td>20.00</td> <td>0.18883</td> <td>BE32356</td> <td>34 21+0 85</td> <td>0.04%</td> <td>215 8+5 4</td> <td>20.7</td> <td>10490</td> <td>260 (2.5%)</td> <td>480</td>	STEL-11 STEL-8	46 72613	8 42551	2055	4 10	0.981	20.00	0.18883	BE32356	34 21+0 85	0.04%	215 8+5 4	20.7	10490	260 (2.5%)	480
STEE-10 46,7267 84,2527 238 0.081 15.54 0.1881 BE3257 27.778-1.0 0.06% 181.2-27 17.6 10000 2.29 (2.39) 450 STEE-10 46,7300 8.42249 1571 1.55 0.957 46,96 0.1550 BE3230 0.778-1.00 0.065 181.2-27 17.6 1050 8121.34 0.778-1.00 0.065 181.2-27 17.6 1050 8121.34 0.778-1.00 0.065 181.2-27 17.6 0.939 310 11.2331 0.778-1.00 0.065 181.2-27 17.6 0.831 81.079 320 STEE-10 46.7307.8 8.4244 1988 0.938 0.948 0.1223 81.1217 0.461.8 0.075 52.35.105 17.4 2.974 9.209 10.9 10.9 10.9 10.9 10.9 11.0 10.229 13.1 10.5 82.312 64.120 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 1	STEL 9	46.72672	8 42556	2050	2.13	0.981	15.15	0.18381	BE31220	26 60±0 76	0.11%	215.5+6.1	20.2	10320	200 (2.8%)	400
STEI-109 46-7300-2 8-82564 197 1.75 0.005 0.01350 0.02350 72.77-1.0 0.0065 101.2-2.7 1.76 10000 150 1.250 410 STE2-10 46-7300-2 8-4204 1878 1.58 0.55 0.0150 0.02255 612.340 0.065 100.44.15 17.6 8354 81.0.95 81.0.95 90.005 100.44.15 17.6 8354 81.0.95 81.0.95 90.02 0.0150 0.02255 612.340 0.065 100.44.15 17.6 8354 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 81.0.95 82.0.95 10.0.95 84.0.11 17.2 28.55 24.0.95 10.0.95 81.0.95 80.41.1 17.2 28.55 24.0.95 10.0.95 10.0.95 10.0.95 90.0.11.50 81.0.95 80.0.95 10.0.95 90.0.15 10.0.95 90.0.12 10.0.95 10.0.95 10.0.95 10.0.95 10.0.95 10.0.95 10.0.95	STEL-9	46.72657	8 42552	2055	2.15	0.981	15.15	0.18501	BE32357	25.78±0.60	0.06%	208 4+4 9	20.5	10030	230 (2.3%)	450
STEE-20 46.73901 8.42971 158 105 0.957 45.96 0.1800 0.02311 0.758 10.241.5 17.7 9395 \$11.0490 370 LATH HORCENS 5 46.73983 8.4394 0.980 20.0 0.1822 86.3352 69.381.55 0.075 15.241.05 17.6 85.45 871.049 130 STEL-12 46.73984 8.4394 1900 20.1 0.01391 BE33352 69.381.51 17.7 89.56 \$1.241.05 17.4 88.7 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 11.2 10.2 10.2 10.5 22.52 61.09 10.9 10.9 11.2 10.2 10.5 22.52 61.09 10.9 10.9 11.2 10.2 10.5 22.52 61.09 10.9 10.9 10.1 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	STEL 10	46 73062	8 42564	1871	1.75	0.958	49 24	0.18360	BE32380	72 77+1 10	0.06%	181 2+2 7	17.6	10090	150 (1.5%)	410
STEE-17 46,7002 8,2024 184 2.94 0.88 0.828 0.8222 BE2382 0.0040.0 0.070 150.4-1.5 17.4 854 831.009 330 STE-25 46.77083 8.42044 1008 201 0.939 2002 0.1839 BE3352 8.430.17 0.275 51.21.105 17.4 2874 59(.05) 130 STE-24 46.7279 8.420.17 1880 30.80 0.989 10.01 0.975 50.44.1 12.1 22.25 61.2(.25) 130 STE-13 46.71053 8.42377 1880 1.89 1.87 0.1870 BE2325 8.439.017 0.355 46.142 1.67 2211 51(.19,0) 130 STE-13 46.71088 8.42907 2.105 1.33 0.969 5.07 0.1357 BE3272 6.884.0069 2.596 1.21.0 2.44 53.11 6.6.09 5.5 1.22.1.0 1.34 8.48.345 53 1.35 6.6.09 1.35	STEL-20	46 73031	8 42591	1878	1.58	0.957	48.96	0.18360	BE32381	67.80+0.58	0.06%	169.8+1.5	17.0	9395	81 (0.9%)	370
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	STEI-21	46.73002	8.42624	1884	2.94	0.958	49.83	0.18422	BE32382	60.90±0.61	0.07%	150.4 ± 1.5	17.6	8354	83 (1.0%)	330
STEP-2000000000000000000000000000000000000	LATE HOLOCENE															
STEE-12 467,2979 8,42671 188 3.08 0.98 10.03 0.1391 BE3377 4.136-0.090 0.99% 50.4-1.1 17.2 28.22 61 (2.9%) 120 STEE-14 467.3155 8.42070 18.80 1.88 0.990 10.12 0.1810 BE33279 1127.9.21 0.66% 467.10.89 16.7 2212 52 (1.9%) 120 STEE-14 467.3155 8.42370 18.30 1.88 0.995 3.012 0.1870 BE32397 1127.9.21 0.66% 46.31-12 16.7 2212 52 (1.9%) 120 STEE-12 467.1087 8.42960 1/13 0.954 8.070 0.1870 BE32375 18.499.07 0.187 122-10 2.04 63.0 19.6 (2.0%) 77 STEE-12 467.1087 8.42980 11.2 0.954 6.970 0.1555 BE32572 5.164.008 0.66% 6.976.007 12.24 0.016 5.38 10.40% 5.380.047 12.49.0 1.33 0.26 (2.0%) 7.25 5.380.147 1.24.04 1.33 0.26 (2.0%) 7.25	STEI-25	46.73083	8.42944	1908	2.01	0.939	20.02	0.18258	BE33352	8.43±0.17	0.22%	51.23±1.05	17.4	2874	59 (2.0%)	120
STEI-12 46,73154 8,42342 1838 5.49 0.950 24.64 0.18422 BE31217 9.66-0.18 0.72% 47.03:6.01 1.65 2.822 54 (19%) 1.20 STEI-14 46.73152 8.4233 1849 2.42 0.950 11.69 0.18800 BE32358 13.29.0 0.55% 46.511.2 16.7 2711 73 (2.7%) 130 LTTE-16 46.73018 8.42967 1.13 0.954 8.77 0.18750 BE32459 18.49-0.37 0.189 BE32450 2.5% 9.2±1.0 2.4 50 4.8 (2.8%) 53 STE1-12 46.71658 8.42957 1.50 9.880-0.00 2.5% 9.71.2021 17.6 58 11.0 0.98 53 9.55 9.71.2021 17.6 58 11.0 0.98 53 11.240.04 2.06 530 19.0.6% 2.5% 9.71.2021 17.6 58 11.0.0% 53 11.0.0% 13.3 2.6.2% 2.25 9.6.0.0 19.0.6% 53.0 19.0.6% 53.0 19.0.6% 53.0 19.0.6% 53.0	STEI-22	46 72979	8 42671	1880	3.08	0.958	10.03	0 18391	BE33377	4 136±0 090	0.59%	50 4±1 1	17.2	2852	63 (2.2%)	130
STEI-14 46,71155 8,42370 1840 1.88 0.950 10.12 0.12800 1127-0.21 0.60% 46,710.89 16.7 2721 52(19%) 120 STEI-13 46,710.87 8,2066 17.6 17.1 0.095 1.870 0.1870 0.823258 43,30-12 0.05% 46,31-12 16.7 2711 52(19%) 130 STEI-13 46,710.85 8,42966 17.5 130 0.958 58.17 0.1857 BE2327 18,490-0.37 0.18% 33.02.0.66 17.5 18.06 36.2.0.46 77 STEI-12-13 46,71055 8,4090 0.195 131 0.958 69.75 0.18514 BE33277 252-068 0.76 12.14 0.66 50 19.0.6% 25 STEI-12-0 46,710.05 8,4002 21.15 0.952 16.2 0.977 25.10 16.8 252-068 17.8 18.220.40 17.3 48.8 23.6 (2%) 25 STEI-12-14 46,710.58 8,4002 21.16 0.952 15.4 0.1865 852-257 18.0.40.47	STEI-12	46.73154	8.42342	1838	3.49	0.950	24.64	0.18422	BE31217	9.66±0.18	0.72%	47.93±0.91	16.5	2832	54 (1.9%)	120
STEI-13 46.73152 8.4253 18.99 2.42 0.95 1.169 0.18780 BE23278 4.33.012 0.38% 46.3a.12 1.67 27.11 73 (2.7%) 130 STEI-14 4.67181 8.42967 1.016 8.429637 0.18780 BE32378 1.8499.437 0.18780 BE32378 1.8499.437 0.18780 BE32478 1.8499.437 0.18780 BE32478 1.8499.437 0.18780 BE32478 1.8499.437 0.18780 BE32478 1.8499.437 0.18780 BE32459 0.5881.000 2.566 9.77 BE3017 1.101 0.588 8.490.400 1.06 5.38 1.101 (5.6%) 2.38 1.101 (5.6%) 2.38 1.101 (5.6%) 2.38 1.101 (5.6%) 2.38 1.101 (5.6%) 2.382.040 1.73 4.68 2.26 (5.6%) 2.27 2.25% 7.800.47 2.03 3.73 2.36 (2.5%) 2.7 2.557.7 3.101 (5.6%) 5.780.047 2.03 3.73 2.36 (2.5%) 2.7 2.551.11 3.51 (5.6%) 5.800.166 7.2 7.11 7.56 (7.86) 3.551.11 3.51 (5.6%) 5.800.166 7.2	STEI-14	46.73155	8.42370	1840	1.88	0.950	30.12	0.18801	BE32359	11.27±0.21	0.66%	46.71±0.89	16.7	2721	52 (1.9%)	120
STEE-12-M 46.73081 8.42966 19/6 1.13 0.94 58.17 0.1557 BE3463 0.1884	STEI-13	46.73152	8.42353	1839	2.42	0.950	11.69	0.18780	BE32358	4.33±0.12	0.35%	46.3±1.2	16.7	2711	73 (2.7%)	130
UPTILICITAGE UPTILICITAGE STEL-123 4671618 442957 100 1.53 0.9868 8770 0.8860-00 2.56% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±0.0 7.6 5.71 5.71 2.66% 1.22±1.0 2.66% 1.22±1.0 2.66% 1.22±0.0 7.71 2.66% 1.22±0.0 7.56% 4.67% 2.66% 2.66% 2.66%	STEI-24	46.73081	8.42966	1916	1.13	0.954	58.17	0.15575	BE32378	18.49±0.37	0.18%	33.02±0.66	17.8	1806	36 (2.0%)	77
STEI-12-23 46.71618 8.42977 2105 1.53 0.968 8.70 0.1805 BE34659 0.980-0.09 2.5764 12.2-1.0 2.04 580 48 (8.3%) 53 STEI-1-23 46.71505 8.43060 2139 1.62 0.957 25.37 0.1806 BE34688 2.325±.083 0.74% 11.24±.041 2.06 538 110 (2.0%) 23 23 23 (4.5%) 23 24 (4.5%) <t< td=""><td>LITTLE ICE AGE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	LITTLE ICE AGE															
STEI-23 46,7305 8,4390 1915 1.31 0.954 0.909 0.15244 BE3252 6,504.13 0.52% 9,7140.20 1.7.6 538 11 (2.0%) 23 STEI-24 46,73069 8,4392 1901 1.59 0.951 23.3 0.1806 BE3466 0.766.008 1.3% 8.320-040 1.7.3 468 23 (6.2%) 27 STEI-12-16 46,73069 8,4392 2.131 4.33 0.909 7.66 0.1796 BE34657 0.443a.0.037 5.10% 7.32a.0.70 2.01 333 82 (2.6%) 36 STEI-12-14 46,71605 8,43095 2.112 3.13 0.907 4.01 0.1508 BE34657 0.443a.0037 5.10% 7.32a.07.0 2.01 333 82 (2.6%) 15 STEI-12-14 46,71605 8,43005 2.112 3.13 0.907 4.01 0.1508 BE34657 0.454.0053 7.60% 5.343.03 0.02 2.41 16(6.5%) 1.5 0.55 5.110.48 2.02 2.63 (9.6%) 2.14 0.63 (9.6%) 1.5 0.55 5	STEI-12-23	46.71618	8.42957	2105	1.53	0.968	8.70	0.1805	BE34659	0.880±0.069	2.56%	12.2±1.0	20.4	580	48 (8.3%)	53
STE1-12-13 46,71505 8,43060 2139 1.62 0.957 25.37 0.1806 BE34668 2.325-0083 0.74% 11.24-0.41 20.6 530 19 (3.6%) 28 STE1-12-05 46,71407 8,43092 2167 2.19 0.928 15.14 0.1805 BE34666 0.976-0.075 2.25% 7.80-0.47 20.3 373 23 (6.2%) 27 STE1-12-05 46,71407 8,43092 2167 2.06 0.960 67.34 0.15462 BE32571 4.176.11 0.81% 6.16-0.17 19.2 313 8.26.4%) 15 STE1-15 46,71484 8.43005 2112 4.75 0.967 20.01 0.1810 BE34678 0.9956.0057 2.4% 5.343-0.6 20.0 2.4 18 (6.8%) 2.0 STE1-12-14 46,71605 8.43005 2112 4.75 0.967 2.00 0.1810 BE34658 0.956.0057 2.4% 5.318-0.64 2.00 2.64 18 (3.6%) 2.0 STE1-12-14 46,71655 8.430267 2.148 0.937 7.07 0.1817	STEI-23	46.73085	8.42980	1915	1.31	0.954	69.09	0.15524	BE32572	6.50±0.13	0.52%	9.71±0.20	17.6	538	11 (2.0%)	23
STEI-12-05 46,73069 8.42932 1901 1.59 0.951 24.30 0.1842 BE33353 1.659±0.078 1.13% 8.32±0.40 17.3 468 22 (4.9%) 29 STEI-12-04 46.71532 8.43042 2131 4.33 0.960 7.06 0.1899 BE3465 0.976±0.07 2.52% 7.80±0.47 2.03 3.73 2.6 (0.9%) 3.6 STEI-12 4.67122 8.43042 2131 4.33 0.960 6.034 0.1542 BE32571 4.170±11 0.165% 5.78±0.24 2.03 2.78 114 (4.0%) 1.5 STEI-12 46.71848 8.43005 212 4.75 0.96 0.201 0.1810 BE33570 2.7810.10 1.65% 5.78±0.24 2.03 2.78 114 (4.0%) 1.5 STEI-12-14 46.71475 8.43005 214 2.96 0.944 1.03 0.180 BE34659 0.9540.05 3.140.48 2.04 2.02 2.5 2.5 2.5 2.5 2.6 0.40.54 2.04 1.02 2.2 2.6 0.6 2.2 0.181.	STEI-12-13	46.71505	8.43060	2139	1.62	0.957	25.37	0.1806	BE34688	2.325±0.083	0.74%	11.24±0.41	20.6	530	19 (3.6%)	28
STEI-12-05 46,71407 8,43092 2167 2.19 0.928 1514 0.1096 BE34657 0.074:0057 2.25% 7.80:0.47 2.03 373 2.36 (2.%) 350 357 251(-2.7) 353 357 (0.%) <td>STEI-26</td> <td>46.73069</td> <td>8.42932</td> <td>1901</td> <td>1.59</td> <td>0.951</td> <td>24.30</td> <td>0.18452</td> <td>BE33353</td> <td>1.659±0.078</td> <td>1.13%</td> <td>8.32±0.40</td> <td>17.3</td> <td>468</td> <td>23 (4.9%)</td> <td>29</td>	STEI-26	46.73069	8.42932	1901	1.59	0.951	24.30	0.18452	BE33353	1.659±0.078	1.13%	8.32±0.40	17.3	468	23 (4.9%)	29
STEI-12-14 46,71532 8,43042 2131 4.33 0.960 7.06 0.1796 BE3457 0.443-0.037 5.10% 7.32=0.70 20.1 353 55 (26.%) 15 STEI-18 46,71532 8,43005 2128 3.15 0.960 69.34 0.15432 BE32571 4.179.011 0.81% 616-01.7 19.2 31.3 82.6%) 15 STEI-12 46,71655 8,43005 212 4.75 0.967 20.01 0.1801 BE3458 0.05540.057 2.4% 5.43.0.36 20.0 2.44 18.16.68%) 2.0 STEI-12.11 46,71457 8.43002 2.149 1.51 0.93 7.02 0.1817 BE34687 0.249% 5.430.03 2.04 2.02 2.45 2.16,01%) 2.2 2.1(1.5%) 2.3 (2.6%) 2.2 2.15,37% 2.16,17% 2.0 2.16,187 BE3467 0.289.00.29 8.45% 4.200.024 2.04 2.0 2.6 (1.3%) 2.2 2.1(1.5%) 2.3 (2.6%) 2.1 (3.7%) 10 STEI-12.04 46,71457 8.43062 2.109 2.08 <td>STEI-12-05</td> <td>46.71407</td> <td>8.43092</td> <td>2167</td> <td>2.19</td> <td>0.928</td> <td>15.14</td> <td>0.1809</td> <td>BE34686</td> <td>0.976±0.057</td> <td>2.25%</td> <td>7.80±0.47</td> <td>20.3</td> <td>373</td> <td>23 (6.2%)</td> <td>27</td>	STEI-12-05	46.71407	8.43092	2167	2.19	0.928	15.14	0.1809	BE34686	0.976±0.057	2.25%	7.80±0.47	20.3	373	23 (6.2%)	27
STEI-18 46,72112 8.43968 2037 2.06 0.900 69.34 0.15422 BE32371 4.176.011 0.81% 6.166.017 19.2 313 8 (2.6%) 15 STEI-15 46,71848 8.43005 2.112 4.75 0.900 4.38 0.1530 BE3237 2.51±0.10 0.65% 5.78±0.24 2.0 2.24 18 (8.8%) 2.0 STEI-12-21 46,71457 8.43005 2.112 4.75 0.967 0.1810 BE34639 0.953±0.057 2.79% 5.78±0.24 2.0 2.24 18 (8.9%) 2.0 STEI-12-07 46,71410 8.43137 2.164 1.76 0.929 7.99 0.1817 BE34638 0.282±0.029 8.45% 4.20±0.54 2.04 192 2.61(1.8%) 2.4 STEI-12-0 46,71448 8.43067 2.104 1.75 8.43067 2.18 0.965 1.51.6 0.1837 BE34637 0.28±0.01 1.28% 2.9±50.70 2.0.3 162 8.449% 3.4 STEI-12-0 46,71350 8.43165 2.00 9.65 1.51.6 <	STEI-12-14	46.71532	8.43042	2131	4.33	0.960	7.06	0.1796	BE34657	0.443±0.037	5.10%	7.32±0.70	20.1	353	35 (9.6%)	36
STEI-1.5 46,71848 8,43005 2128 3.15 0.960 43.81 0.15380 BE32377 2.51±0.10 1.65% 5.78±0.24 20.3 278 114 (40%) 15 STEI-1.2:1 46,71457 8,43000 2112 4.75 0.967 20.0 0.1805 BE34639 0.454±0.038 7.00% 5.11±0.48 20.2 245 23 (61.30%) 27 STEI-12-01 46,71475 8,43002 2149 1.51 0.935 7.02 0.1816 BE34638 0.282±0.029 8,45% 4.206.0.42 20.4 120 26 (13.0%) 27 STEI-12-04 46,71445 8,43042 2109 2.78 0.976 70.6 0.1816 BE3463 0.282±0.029 7.77% 4.04±0.47 20.4 192 22 (13.5%) 24 STEI-12-0 46,71848 8,43062 2109 2.08 0.965 15.16 0.1807 BE34639 0.052±0.019 12.8% 2.95±0.70 20.3 140 34 (24.3%) 34 STEI-12-0 46,71836 8,43165 2100 2.08 0.1545 BE34639	STEI-18	46.72112	8.42968	2037	2.06	0.960	69.34	0.15442	BE32571	4.17±0.11	0.81%	6.16±0.17	19.2	313	8 (2.6%)	15
STEI-12-21 46.71605 8.43005 2112 4.75 0.967 20.01 0.1801 BE34658 0.905-0.057 2.49% 5.43:0.36 20.0 2.64 18 (6.8%) 20 STEI-12-07 46.71475 8.43002 2149 1.51 0.935 7.02 0.1817 BE14687 0.259:0.029 8.45% 4.20:0.54 20.4 200 26 (13.0%) 27 STEI-12-07 46.71475 8.4302 2164 1.76 0.929 7.99 0.1816 BE14687 0.259:0.029 8.45% 4.20:0.54 20.4 20.2 22 (13.0%) 24 STEI-12-0 46.71575 8.43026 2118 2.93 0.965 15.16 0.18452 BE3269 0.28:0.019 1.28% 2.95:0.70 20.3 140 3.4 (24.3%) 34 PORT-ITTLE ICE AGE STEI-16 46.71830 8.43:08 2.140 0.934 52.14 0.1242 BE3269 2.40:011 1.42% 3.37:0.16 2.03 162 8 (4.9%) 10 STEI-16 46.71830 8.43:08 STEI-16 0.18771 BE31218 <t< td=""><td>STEI-15</td><td>46.71848</td><td>8.43005</td><td>2128</td><td>3.15</td><td>0.960</td><td>43.81</td><td>0.15380</td><td>BE32377</td><td>2.51±0.10</td><td>1.65%</td><td>5.78±0.24</td><td>20.3</td><td>278</td><td>11 (4.0%)</td><td>15</td></t<>	STEI-15	46.71848	8.43005	2128	3.15	0.960	43.81	0.15380	BE32377	2.51±0.10	1.65%	5.78±0.24	20.3	278	11 (4.0%)	15
STEI-12-11 46,71475 8,43000 2149 2.96 0.94 10.13 0.1805 BE34639 0.454±0.038 7.60% 5.11±0.48 2.02 2.24 2.2 (0.4%) 2.5 STEI-12-04 46,71440 8,43107 2164 1.76 0.925 7.02 0.1817 BE34687 0.282±0.029 7.7% 4.04±0.47 2.04 1.92 22 (11.3%) 2.4 STEI-12-04 46,71948 8,43027 2.18 2.93 0.965 1.56 0.1807 BE34639 0.052±0.019 1.28% 4.04±0.47 2.04 1.92 22 (11.3%) 2.4 STEI-12-20 46,71830 8,430267 2.118 2.93 0.965 15.16 0.1807 BE34693 0.052±0.019 1.28% 2.95±0.70 2.03 1.62 8 (4.9%) 1.0 STEI-12-20 46,71830 8.43105 2.100 2.08 0.966 7.2.0 0.15380 BE32569 1.40±10.071 1.79% 2.23±0.11 1.7.1 1.7 7.5.5%) 8 STEI-16	STEI-12-21	46.71605	8.43005	2112	4.75	0.967	20.01	0.1801	BE34658	0.905±0.057	2.49%	5.43±0.36	20.0	264	18 (6.8%)	20
STEI-12-07 46,71445 8,43102 2149 1.51 0.925 7.02 0.1816 BE34687 0.259-0.029 8,45% 4.206.054 20.4 200 26(13.0%) 27 STEI-12-0 46,71410 8,43102 2109 2.78 0.976 7.99 0.1816 BE34685 0.259-0.029 8,45% 4.04-0.47 20.4 190 2.2(11.5%) 24 STEI-12-0 46,71948 8,43042 2109 2.78 0.976 7.076 0.1842 BE34693 0.052±0.019 12.8% 2.95±0.70 20.3 140 34 (24.3%) 34 POST-LITTLE ICE AGE 52.16 46.71830 8.43105 2100 2.08 0.966 72.20 0.15380 BE32569 2.40±0.11 1.42% 3.37±0.16 20.3 162 8.49.%) 10 STEI-7 46.712326 8.43105 2100 2.08 0.966 72.20 0.15380 BE32569 2.40±0.11 1.42% 3.37±0.16 20.3 16.2 8.49.%) 10 STEI-10 with with with 0.18607 BE32567	STEI-12-11	46.71475	8.43090	2149	2.96	0.944	10.13	0.1805	BE34639	0.454±0.038	7.60%	5.11±0.48	20.2	245	23 (9.4%)	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	STEI-12-07	46.71445	8.43102	2149	1.51	0.935	7.02	0.1817	BE34687	0.259±0.029	8.45%	4.20±0.54	20.4	200	26 (13.0%)	27
STEI-17 46.71948 8.43042 2109 2.78 0.976 70.76 0.15452 BE32570 2.78±0.11 1.22% 4.01±0.16 20.5 191 7 (3.7%) 10 STEI-12-20 46.71575 8.430267 2118 2.93 0.965 15.16 0.1807 BE34693 0.052±0.019 12.8% 2.95±0.70 20.3 140 34 (24.3%) 34 POST-LITTLE ICE AGE 46.71830 8.43105 2100 2.08 0.966 72.20 0.15800 BE32569 2.40±0.11 1.42% 3.37±0.16 20.3 162 8 (4.9%) 10 Blank name Processed Total number of automber of automb	STEI-12-04	46.71410	8.43137	2164	1.76	0.929	7.99	0.1816	BE34685	0.282±0.029	7.77%	4.04±0.47	20.4	192	22 (11.5%)	24
STEI-12-20 46,71575 8,430267 2118 2.93 0.965 15.16 0.1807 BE34693 0.052±0.019 12.8% 2.95±0.70 20.3 140 34 (24.3%) 34 POST-LITLE ECR AGE 46,71350 8,43105 2100 2.08 0.966 72.20 0.15380 BE32569 2.40±0.11 1.42% 3.37±0.16 20.3 162 8(4.9%) 10 STEI-17 46,72326 8,43268 1936 4.14 0.934 52.14 0.12462 BE32569 2.40±0.11 1.42% 3.37±0.16 20.3 162 8(4.9%) 10 Blank name Processed with V <td>STEI-17</td> <td>46.71948</td> <td>8.43042</td> <td>2109</td> <td>2.78</td> <td>0.976</td> <td>70.76</td> <td>0.15452</td> <td>BE32570</td> <td>2.78±0.11</td> <td>1.22%</td> <td>4.01±0.16</td> <td>20.5</td> <td>191</td> <td>7 (3.7%)</td> <td>10</td>	STEI-17	46.71948	8.43042	2109	2.78	0.976	70.76	0.15452	BE32570	2.78±0.11	1.22%	4.01±0.16	20.5	191	7 (3.7%)	10
POST-LITILE LER AGE STEL-IG 46.71830 8.43105 2100 2.08 0.966 72.20 0.15380 BE32566 1.42% 3.37±0.16 20.3 162 8 (4.9%) 10 STEL-7 46.718326 8.43105 2100 2.08 0.966 72.20 0.15380 BE32566 1.421% 0.79% 2.33±0.11 17.1 127 7 (5.5%) 8 Biank name Processed Totams "Brex 10" with Totams "Brex 10" Biank 2.2011Jan18 STEL-4 0.18371 BE32565 0.030±0.015 8.5±1.8 Biank 2.2011Jan18 STEL-4 0.1870 BE32565 0.015±0.000 3.7±1.2 Biank 2.2011Sep07 STEL-4 0.18657 BE32565 0.015±0.001 3.5±1.5	STEI-12-20	46.71575	8.430267	2118	2.93	0.965	15.16	0.1807	BE34693	0.052±0.019	12.8%	2.95±0.70	20.3	140	34 (24.3%)	34
STE1-16 46,71830 8.43105 2100 2.08 0.966 72.20 0.15380 BE32569 2.40±0.11 1.42% 3.37±0.16 20.3 162 8 (4.9%) 10 STE1-7 46,72326 8.43268 1936 4.14 0.934 52.14 0.12462 BE32566 1.421±0.071 1.79% 2.33±0.11 17.1 127 7 (5.5%) 8 Blank name Processed with STE1-1, 1.2 0.18471 BE31218 0.069±0.015 85±18 55±12 55±18 55±12	POST-LITTLE ICE AGE															
STEI-7 46,72326 8,43268 1936 4.14 0.934 52,14 0.12462 BE32566 1.421±0.071 1.79% 2.23±0.11 17.1 127 7 (5.5%) 8 Blank name Processed	STEI-16	46.71830	8.43105	2100	2.08	0.966	72.20	0.15380	BE32569	2.40±0.11	1.42%	3.37±0.16	20.3	162	8 (4.9%)	10
Blank name Processed with Total number of atoms ¹⁰ Bex 10 ³ Blank 2_2011Jan18 STEI-11, -12 0.18371 BE31218 0.069 ± 0.015 8.5 ± 1.8 Blank 1_2011Jan18 STEI-9 0.18493 BE31221 0.030 ± 0.010 3.7 ± 1.2 Blank 1_2011Sp07 STEI-8, -10, - 0.18708 BE32365 0.015 ± 0.009 1.9 ± 1.2 Blank 2_2011Sep07 STEI-14 0.18657 BE32565 0.075 ± 0.024 9.4 ± 3.0 Blank 1_2011Oct4 STEI-15 0.12380 BE322365 0.026 ± 0.016 2.1 ± 3 Blank 1_2011Nov4 STEI-16, -17, -18, -23, -24 0.15524 BE32373 0.034 ± 0.012 4.2 ± 1.3 Blank 1_2012Feb02 STEI-19, -20, -18, -23, -24 0.18391 BE32383 0.044 ± 0.014 5.4 ± 1.7 Blank 1_2012Feb02 STEI-22, -27 0.18483 BE33381 0.022 ± 0.007 2.76 ± 0.86 Blank 2_2012Feb02 STEI-22, -27 0.18493 BE33351 0.02 ± 0.007 2.76 ± 0.86 Blank 2_2012Feb02 STEI-22, -27 0.18493 BE33351	STEI-7	46.72326	8.43268	1936	4.14	0.934	52.14	0.12462	BE32566	1.421±0.071	1.79%	2.23±0.11	17.1	127	7 (5.5%)	8
atoms "Bex 10" atoms "Bex 10" Blank 2 2011Jan18 STEI-1, 12 0.18371 BE31218 0.069±0.015 8.5±1.8 Blank 1 2011Jan18 STEI-9 0.18493 BE31221 0.030±0.010 3.7±1.2 Blank 1 2011Sep07 STEI-8, -10, - 0.18708 BE32365 0.015±0.009 1.9±1.2 Idopt 10 (10 (10 (10 (10 (10 (10 (10 (10 (10	Blank name	Processed										Total number of				
Blank_2_2011Jan18 S1E-11, -12 0.18371 BE31218 0.009 ± 0.015 8.5 ± 1.8 Blank_1_2011Jan18 STEI-9 0.18473 BE31212 0.030 ± 0.010 3.7 ± 1.2 Blank_2_2011Jan18 STEI-8, -10, - 0.18708 BE32265 0.03 ± 0.010 3.7 ± 1.2 Blank_2_2011Sep07 STEI-14 0.18657 BE32265 0.075 ± 0.024 9.4 ± 3.0 Blank_1_2011Oct4 STEI-7 0.12380 BE32379 0.04 ± 0.012 4.2 ± 1.3 Blank_2_2011Nov4 STEI-15, -17,	DI 1 0 00111 10	with							DEALALO	0.000.004.5		atoms "Be x10"				
Blank_1_2011Jap18 S1E1-9 0.18493 BE31221 0.030±0.010 3.7±1.2 Blank_1_2011Sep07 STE1-8, -10, - 0.18708 BE32365 0.015±0.009 1.9±1.2 Blank_2_2011Sep07 STE1-14 0.18657 BE32565 0.075±0.024 9.4±3.0 Blank_1_2011Octd STE1-7 0.18524 BE32379 0.041±0.012 4.2±1.3 Blank_2_2011Nov4 STE1-16, -17,	Blank_2_2011Jan18	STEI-11, -12						0.18371	BE31218	0.069±0.015		8.5±1.8				
Blank_1_2011Sep0/ S1E1-8, -10, - 13 1.941.2 Blank_2_2011Sep07 STEI-14 0.18708 BE32565 0.015±0.009 1.941.2 Blank_1_2011Oct4 STEI-7 0.18657 BE32567 0.026±0.016 2.1±1.3 Blank_1_2011Nov4 STEI-15 0.15524 BE32573 0.034±0.012 4.2±1.3 Blank_2_2011Nov4 STEI-16, -17, -18, -23, -24 0.15524 BE32383 0.044±0.014 5.4±1.7 Blank_2_2011Nov4 STEI-19, -20, -21 0.18493 BE33381 0.022±0.007 2.76±0.86 Blank_2_2012Feb02 STEI-22, -27 0.18493 BE33351 0.019±0.001 2.3±1.2 Blank_2_2012Feb04 STEI-24, -4 0.18493 BE33351 0.019±0.001 <	Blank_1_2011Jan18	STEI-9						0.18493	BE31221	0.030±0.010		3.7±1.2				
Blank 2 2011Sep07 STEI-14 0.18657 BE32565 0.075±0.024 9.4±3.0 Blank 1 2011Oct4 STEI-7 0.12380 BE32567 0.026±0.016 2.1±1.3 Blank 1 2011Nov4 STEI-16,-17, 0.15524 BE32573 0.034±0.012 4.2±1.3 Blank 2 2011Nov4 STEI-16,-17, 0.15524 BE32573 0.034±0.015 3.5±1.5 Blank 3 2011Nov4 STEI-19,-20, -18,-23,-24 -18 -18 -18 Blank 1 2012Feb02 STEI-22,-27 0.18438 BE3381 0.022±0.007 2.76±0.86 Blank 2 2012Feb02 STEI-22,-27 0.18493 BE33351 0.019±0.001 2.3±1.2 Blank 1 2012Feb04 STEI-25,-26 0.18504 BE33351 0.019±0.001 2.3±1.2	Blank_1_2011Sep07	STEI-8, -10, -						0.18/08	BE32365	0.015±0.009		1.9±1.2				
Blank 2 2011Sep0/ S1E1-14 0.1857 BE3255 0.07 ± 0.024 9.4 ± 3.0 Blank 2 2011Sev 0.12380 BE32565 0.07 ± 0.024 9.4 ± 3.0 Blank 1 2011Sev STEI-15 0.12380 BE32570 0.02 ± 0.016 2.1±1.3 Blank 2 2011Nov4 STEI-16, -17, -18, -33, -24 0.15524 BE32379 0.04 ± 0.012 4.2 ± 1.3 Blank 3 2011Nov4 STEI-19, -20, -21 0.18391 BE32383 0.04 ± 0.014 5.4 ± 1.7 Blank 1 2012Feb02 STEI-22, -27 0.18493 BE33381 0.02 ± 0.007 2.76 ± 0.86 Blank 2 2012Feb02 STEI-22, -27 0.18493 BE33351 0.01 ± 0.001 2.3 ± 1.2 Blank 2 2012Apt/06 STEI-25, -26 0.18504 BE33351 0.01 ± 0.001 2.3 ± 1.2 Blank 1 2 0131an11 STEI-12,-04 - 0.1810 BE33351 0.01 ± 0.001 2.3 ± 1.2	DI 1 2 20115 07	15						0.10657	DESSEC	0.075.0.024		0.4.2.0				
Blank 1_20110ct4 STEI-7 0.1280 BE2250 0.026 ± 0.016 2.1 ± 1.5 Blank 1_2011Nov4 STEI-15 0.1524 BE32573 0.04 ± 0.012 4.2 ± 1.3 Blank 2_2011Nov4 STEI-16, -17, -18, -23, -24 0.1554 BE32373 0.04 ± 0.012 4.2 ± 1.3 Blank 1_2012Feb02 STEI-19, -20, -21 0.18483 BE3381 0.02 ± 0.007 2.76 ± 0.86 Blank 2_2012Feb02 STEI-22, -27 0.18493 BE33382 0.02 ± 0.007 2.76 ± 0.86 Blank 2_2012Apr06 STEI-22, -27 0.18493 BE33351 0.02 ± 0.007 2.3 ± 1.2 Blank 2_2012Apr06 STEI-22, -27 0.18493 BE33351 0.01 ± 0.001 2.3 ± 1.2 Blank 1_2.012Apr06 STEI-12, -04 - 0.1810 BE33454 0.02 ± 0.007 2.76 ± 0.86	Blank_2_2011Sep07	SIEI-14						0.18657	BE32565	0.075±0.024		9.4±3.0				
Blank_1_2011Nov4 STEI-15 0.15524 BE32579 0.041±0.012 4.2±1.5 Blank_2_2011Nov4 STEI-16,-17, 0.15544 BE32573 0.034±0.015 3.5±1.5 Blank_3_2011Nov4 STEI-19,-20, -18,-23,-24 -21 -18,-23,-24 -21 Blank_1_2012Feb02 STEI-22,-27 0.18483 BE33381 0.022±0.007 2.76±0.86 Blank_2_2012Feb02 STEI-22,-27 0.18493 BE33351 0.019±0.001 2.3±1.2 Blank_2_2012Apt06 STEI-25,-26 0.18104 BE33351 0.019±0.001 2.3±1.2	Blank_1_20110ct4	STEL-/						0.12580	BE32307	0.026±0.016		2.1±1.3				
Blank_2_2011Nov4 S1E1-19, -20, -21 Blank_1_2012Feb02 STEI-22, -27 Blank_2_2012Feb02 STEI-22, -27 0.18493 BE33351 0.019±0.001 2.3±1.2 Blank_1_2-2013Jan11 STEI-12, -04 -	Blank_1_2011Nov4	STEL 16 17						0.15524	BE32379	0.041 ± 0.012		4.2±1.5				
Blank_3_2011Nov4 5.72-7 0.18391 BE32383 0.044±0.014 5.4±1.7 Blank_1_2012Feb02 STEI-22, -27 0.18493 BE33381 0.022±0.007 2.76±0.86 Blank_2_2012Feb02 STEI-22, -27 0.18493 BE33382 0.026±0.008 3.24±0.98 Blank_2_2012Apr06 STEI-25, -26 0.18404 BE33351 0.019±0.001 2.3±1.2 Blank_1_2013Ian11 STEI-12-04 - 0.1810 BE3454 0.022±0.009 2.7±1	DIalik_2_20111004	31EI-10, -1/, 18 22 24						0.15544	DE323/3	0.054±0.015		3.3±1.3				
Blank_5_2011N044 S1E1-19, -20, -21 Blank_1_2012Feb02 STE1-22, -27 Blank_2_2012Feb02 STE1-22, -27 0.18493 BE33382 0.024±0.007 2.76±0.86 Blank_2_2012Feb02 STE1-22, -27 0.18493 BE33382 0.026±0.008 3.24±0.98 Blank_2_2012Apr06 STE1-25, -26 0.18104 BE33351 0.019±0.001 2.3±1.2 Blank_1_2_013Ian11 STE1-12-04 - 0.1810 BE4684 0.022±0.009 2.7±1	Blamly 2 2011Novid	-18, -23, -24 STEL 10 20						0.19201	DE22282	0.044+0.014		5 4 1 7				
Blank_1_2012Feb02 STEI-22, -27 0.18483 BE33381 0.022±0.007 2.76±0.86 Blank_2_2012Feb02 STEI-22, -27 0.18493 BE33382 0.026±0.008 3.24±0.98 Blank_2_2012Apr06 STEI-25, -26 0.18504 BE33351 0.019±0.001 2.3±1.2 Blank_1_2_013Ian11 STEI-12-104 - 0.1810 BE34364 0.022±0.009 2.7±1	Dialik_3_20111004	-21 -21						0.16391	DE32363	0.044±0.014		J.#I./				
Blank 1_20121602 STEI-22, -27 0.18493 BE33382 0.022±0.007 2.70±0.00 Blank 2_2012Feb02 STEI-22, -27 0.18493 BE33382 0.026±0.008 3.24±0.98 Blank 2_2012Apr06 STEI-25, -26 0.18504 BE33351 0.019±0.001 2.3±1.2 Blank 1_2013Ian11 STEI-12-04 - 0.1810 BE3464 0.022±0.009 2.7±1	Blank 1 2012Eeb02	STEL 22 _ 27						0 18483	BE33381	0.022+0.007		2 76+0 86				
Blank 2_2012Apr06 STEI-25, -26 0.1850 BE3351 0.019±0.001 2.3±1.2 Blank 2_2012Apr06 STEI-25, -26 0.1810 BE34684 0.022±0.009 2.7±1	Blank 2 2012Feb02	STEL22, -27						0 18493	BE33382	0.022±0.007		3 24+0 98				
Blank 1 2013 Jan 1 STE 12-04 - 01810 BE34684 00224009 27±1	Blank 2 20121 002	STEL22, -27						0 18504	BE33351	0.019+0.001		2 3+1 2				
	Blank 1 2013Jan11	STEI-12-04 -						0 1810	BE34684	0.019 ± 0.001 0.022±0.009		2.7±1.1				

	05, -07				
Blank 2 2013Jan11	STEI-12-13	0.1808	BE34691	0.017±0.008	2.11±0.99
Blank_1_2013Jan24	STEI-12-20	0.1837	BE34698	0.052±0.019	6.6±2.4
Blank_2_2012Dec21	STEI-12-11	0.1811	BE34642	0.034±0.012	4.3±1.5
Blank_4_2013Jan11	STEI-12-14, -	0.1802	BE34656	0.023±0.016	2.8±2.0
	21 -23				

Table 2: Bracketing radiocarbon ages from peat bog profiles or fossil soils in outcrops at Steingletscher, determined by King (1974), and their glacier-climatic significance. Sample locations are indicated in Fig. 1. All calibrated ages are given as 2σ intervals, reported relative to the years 1950 CE and 2010 CE (for comparison with ¹⁰Be ages). They are calibrated with OxCal 4.2.3 (Bronk Ramsey, 2009, 2013) relative to the IntCal13 calibration data set (Reimer et al., 2013).

Sample number	Profile and sample ¹⁴ C age, Calibrated age, 2σ name uncalibrated interval		Calibrated age, 2σ interval	Location	Dated material	Significance	
		(yr)	(yr before 1950 CE)	(yr before 2010 CE ¹)			
B-2292	ST5 - Basisprobe	9200 ± 100	10650 – 10199	10710 – 10259	Peat bog about 300 m outboard of lower Early Holocene moraine on plateau 'In Miseren', presumably inboard of glacier position that corresponds to higher Early Holocene moraines on plateau 'Hublen'	Organic material from near base of peat bog	Minimum age for deglaciation of plateau 'In Miseren'; according to King (1974) minimum age for glacier retreat after deposition of higher Early Holocene moraines on plateau 'Hublen'
B-2293	ST1 - Basisprobe	8320 ± 380	10234 - 8411	10294 - 8471	Peat bog on plateau 'Hublen' directly outboard of outmost moraine in the sequence	Lowest gyttja in peat bog (only small amounts of organic material)	Minimum age for glacier retreat from this position
B-2289	ST8 -Basisprobe	8090 ± 110	9395 - 8636	9455 - 8696	Peat bog about 25 m outboard of lower Early Holocene moraine on plateau 'In Miseren'; no direct relationship with moraine	Organic material from base of peat bog	Minimum age for deglaciation of plateau 'In Miseren'; according to King (1974) pollen assemblage corresponding to this date implies mavbe warmer climate afterwards
B-2378	ST9 - Basisprobe	6700 ± 110	7788 – 7420	7848 7480	Peat bog directly outboard of lower Early Holocene moraine on plateau 'In Miseren'; peat bog was dammed by moraine	Organic material from base of peat bog	Minimum age for adjacent moraine, because moraine dammed peat bog
B-2291	ST5 - Abiesanstieg	6380 ± 100	7482 – 7024	7542 – 7084	Peat bog about 300 m outboard of lower Early Holocene moraine on plateau 'In Miseren', presumably inboard of glacier position that corresponds to higher Early Holocene moraines on plateau 'Hublen'	Organic material in lower part of profile	Based on pollen assemblage: King assumes that this date marks the end of a slightly 'colder' phase (maybe 'Misox Oscillation' ²)
B-2290	ST5 - Piceaanstieg	4840 ± 100	5876 - 5320	5936 - 5380	Peat bog about 300 m outboard of lower Early Holocene moraine on plateau 'In Miseren', presumably inboard of glacier position that corresponds to higher Early Holocene moraines on plateau 'Hublen'	Organic material in middle part of profile	Based on pollen assemblage: King assumes warm climate before this date and a longer period (~3000 years) of 'unstable' climate including several cold excursions afterwards (maybe including the 'Göschener 1 Oscillation' ³)
B-2516	Grabung D	3490 ± 70	3961 - 3588	4021 - 3648	Outcrop dug on right-lateral side on slope of cliff; directly outboard of oldest moraine on 'LIA limit'	Soil material from uppermost part of fossil A- horizon, overtopped by glacial sediment	Maximum age for adjacent moraine deposit
B-2287	Hotel 2, über Fels	3040 ± 100	3454 - 2955	3514 - 3015	In basement of 'Hotel'	Decomposed organic matter below fluvioglacial sediments	Maximum age for glacier advance
B-2288	Hotel 1 - Basisprobe	2820 ± 130	3339-2737	3399 - 2797	In basement of 'Hotel'	Organic material from base of peat profile	Minimum age for glacier retreat from this position
B-2286	Steinalp - Basisprobe	2210 ± 100	2461 - 1946	2521 - 2006	Profile dug on right-lateral side, at valley bottom close to river; a few meters outboard of 'LLA limit'	Wood fragment from base of peat that lies on fluvioglacial	Minimum age for glacier retreat from this position

¹ We added 60 years to the calibrated radiocarbon ages to synchronize with the ¹⁰Be ages, which are referenced to 2010 CE.

² The 'Misox Oscillation' has regionally been defined by Zoller (1958, 1960) and dated to about 7500 - 6500^{14} C- years ago (~8.4-7.3 cal kyr, Ivy-Ochs et al., 2009), based on pollen profiles; this cold oscillation might include the 8.2 kyr. event identified in Greenland ice cores and other paleoclimate records (e.g. Alley et al., 1997).

³ The 'Göschener 1 Oscillation' has regionally been defined by Zoller et al., (1966) and dated to about 2900 – 2300¹⁴C- years ago (~3.0-2.3 cal kyr, Ivy-Ochs et al., 2009), based on pollen profiles.

Table 3: Results of statistical tests on the Little Ice Age ¹⁰Be age distribution at Steingletscher to identify age groups that might represent individual glacier culminations. Mean ages from the Kernel Density Estimation (KDE) are visually inferred from the plot in Fig. 3A, generated using DensityPlotter published by Vermeesh (2012) with a bandwidth of 30 years. Analytical uncertainties in the ages are not taken into account in the KDE. The cluster analysis Partitioning Around Medoids (PAM) follows Kaufman and Rousseeuw (1987); it does not account for the age uncertainties. The results of the PAM test indicate that STEI-18 might belong to group 2, but is dissimilar with the other ages in group 2, and is therefore not included in the mean age. The Chi-square test takes into account the analytical uncertainties, following Ward and Wilson (1978). STEI-26 and STEI-18 do not fit in group 1 and group 2, respectively, and are not included in the respective mean ages.

Sample 10Be age		Age groups	Kernel Density Estimation	cluster analysis PAM	Chi-square test		
	anarytical		(voors bafara 2010 CE) and	(voors bafara 2010 CE) and	standard doviation (years before 2010 CE)		
	(vears ago)		corresponding year CE	corresponding year CE	and corresponding year CE		
STEL 12 22	(years ago)		corresponding year CE	corresponding year CE	and corresponding year CE		
STEI-12-25	530 ± 48	C	5.40	520 + 46	538 ± 9 years ago		
STEI-23	538 ± 11	Group 1	540 years ago	529 ± 46 years ago	(1472 CE)		
STEI-12-13	530 ± 19		(1470 CE)	(1481 CE)	· · · · · · · · · · · · · · · · · · ·		
STEI-26	468 ± 23						
STEI-12-05	373 ± 23	Group 2	248 years ago	363 ± 14 years ago	367 ± 19 years ago		
STEI-12-14	353 ± 34	Gloup 2	(1662 CE)	(1647 CE)	(1643 CE)		
STEI-18	313 ± 8		(1002 CL)				
STEI-15	278 ± 11		259 10000 000	262 + 17 years and	270 + 0 100000 000		
STEI-12-21	264 ± 18	Group 3	238 years ago (1752 CE)	202 ± 17 years ago (1748 CE)	270 ± 9 years ago (1740 CE)		
STEI-12-11	245 ± 23		(1752 CE)	(1748 CE)	(1740 CE)		
STEI-12-07	200 ± 26						
STEI-12-04	192 ± 22	Crown 4	200 years ago	181 ± 27 years ago	190 ± 6 years ago		
STEI-17	191 ± 7	Group 4	(1810 CE)	(1829 CE)	(1820 CE)		
STEI-12-20	140 ± 34						

- We present a comprehensive Holocene moraine chronology from the Central Swiss Alps.
- Early Holocene advances are nearly synchronous with those elsewhere in the Alps.
- Late Holocene ¹⁰Be boulder ages suggest a significant glacier advance ~3 kyr ago.
- Fourteen of the youngest boulder ages resolve four Little Ice Age glacier peaks.
- LIA boulder ages are partly derived from quartz weights as little as 7-20 g.

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Supplement.pdf