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ABSTRACT

The development of embedded systems according to Model-Driven
Development relies on two complementary activities: system mod-
eling on the one hand and analysis of the non-functional properties,
such as timing properties, on the other hand. Yet, the coupling be-
tween models and analyses remains largely disregarded so far: e.g.
how to apply an analysis on a model? How to manage the analysis
process? This paper presents an application of our research on this
topic. In particular, we show that our approach makes it possible
to combine heterogeneous models and analyses in the design of
an avionic system. We use two languages to model the system at
different levels of abstraction: the industry standard AADL (Ar-
chitecture Analysis and Design Language) and the more recent
implementation-oriented CPAL language (Cyber-Physical Action
Language). We then combine different real-time scheduling analy-
ses so as to gradually define the task and network parameters and
finally validate the schedulability of all activities of the system.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Real-
time systems; Real-time languages; » Software and its engineer-
ing — Software notations and tools;

KEYWORDS

Embedded systems, Model-Driven Development, Real-time

1 INTRODUCTION

Context. The development of embedded systems is a complex and
critical task, especially because of the non-functional requirements.
Embedded systems have indeed to fulfill a set of non-functional
properties dictated by the environment and the application, in
particular real-time constraints. For instance, missing a temporal
constraint (e.g. deadline) in an avionic system can have hazardous
consequernces.
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In order to develop real-time embedded systems, models can
be used to first define the system and then analyze its real-time
behavior. For example, languages such as AADL [1], EAST-ADL/
AUTOSAR [2], SysML [3], MARTE [4], etc. provide various for-
malisms to describe real-time embedded systems. On the other
hand, analytical frameworks for Verification & Validation activities
include real-time scheduling tools [5, 6], model checkers [7], etc, in
order to evaluate the fulfillment of real-time properties.

Problem. The modeling and analysis capabilities offered by in-
tegrated environments such as the AADL-based tool platform OS-
ATE [8] are de facto limited. To extend their modeling and analysis
capabilities, model transformation is the most-widely used tech-
nique. Typically, a model transformation translates a model used
for design in a first tool into a model used for analysis in a third-
party tool. For instance, several model transformations have been
implemented from AADL models to real-time scheduling tools [9].
Yet, we note important limitations with this approach: multiple
transformations to implement, difficulty to ensure the correctness
of the transformation, etc. Importantly, a model transformation
does not take into account the semantics of the analysis, and it
does not answer questions such as: is the analysis applicable on
the design model under study? What is the meaning of the anal-
ysis result? How to qualify the analysis (in terms of complexity,
rapidity, precision, etc)? How to deal with the analysis process, for
instance, is there a way to combine several analyses so as to prove
a high-level property?

Contribution. In past contributions, we proposed a general ap-
proach to integrate the analysis of non-functional properties in
Model-Driven Engineering for embedded systems [10]. Our ap-
proach is based on four application layers: (1) models to represent
the system, (2) accessors to extract data from a model, (3) analy-
ses to compute output data and/or properties from input data, (4)
contracts to represent the analysis interfaces and orchestrate the
analysis process.

The current paper presents an application of this approach in
the real-time domain through an aerospace case study. The studied
system is inspired by the Flight Management System case study [11]
and the ROSACE case study [12]. We combine heterogeneous mod-
els and analyses so as to design and validate the avionic system. On
the one hand, we use two modeling languages: AADL (Architecture
Analysis and Design Language) and CPAL (Cyber-Physical Action
Language, see [13, 14]). On the other hand, we combine different
analyses so as to gradually define the task and network parameters
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and finally validate the schedulability of all the activities of the
system.

The experimental results presented in this paper can be repro-
duced from our tool prototype and models are available online!.

Outline. The paper is organized as follows. We discuss related
works in Section 2. Section 3 introduces our approach to combine
heterogeneous models and analyses. We present the avionic system
in Section 4. Section 5 explains the modeling of the system with the
help of two different languages, AADL and CPAL, whereas Section 6
deals with the real-time scheduling analysis of these models. Finally,
Section 7 concludes the paper.

2 RELATED WORKS

We distinguish between three types of approaches providing both
modeling and analysis features: integrated environments, exten-
sions based on model transformations and integration frameworks.

Integrated environments offer both modeling and analysis fea-
tures in the same environment. These environments are built on
diverse concepts and theories: the real-time scheduling theory, the
synchronous approach, the cyber-physical systems approach, model
checking, architecture description languages, etc. In this category,
we can cite the standard MATLAB/Simulink [15] and SCADE [16]
in the industry, the Ptolemy project in academia [17], or AADL-
based environments OSATE [8] or MASIW [18], etc. We can also
mention real-time scheduling tools (e.g. MAST [6] or Cheddar [5])
and various model checkers such as Spin [19] and Uppaal [7]. We
note that the modeling and analysis capabilities provided by these
environments are de facto restricted to a specific and closed envi-
ronment.

The modeling and analysis capabilities can be extended through
model transformations. In this case, a model used for design in a first
tool must be transformed into a model used for analysis in another
tool. For example, many transformations have been implemented
to connect AADL models to analysis tools: real-time scheduling
tools as MAST and Cheddar with the OCARINA tool suite [20] and
MoSaRT [21]; model checkers as Uppaal [22], TINA [23]; depend-
ability analyses [24]. A more exhaustive list of transformations
applied to AADL models is available in a survey paper [9]. Yet, this
approach suffers important limitations: multiple transformations to
implement, difficulty to ensure the correctness of the transforma-
tion, etc. In addition, we observe that the semantics of the analysis is
not central in any of these approaches (i.e. integrated environments
and transformation-based extensions) and they do not answer ques-
tions as: is the analysis applicable on the design model which is
considered? If not, is it relevant to execute a transformation? What
is the meaning of the analysis result? How to qualify the analysis (in
terms of complexity, rapidity, precision, etc.)? How to deal with the
analysis process, for instance, is there a way to combine analyses
so as to prove a high-level property?

The last class of works to which we aim to contribute seeks to de-
fine better and more powerful integrations between modeling and
analysis techniques. We can cite three main initiatives that have in-
spired our works. MoSaRT (Modeling-oriented Scheduling analysis
of Real-Time systems) [25] is an intermediate framework between

The tool with the models can be found on the git repository https://github.com/gbra/
maiwen
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real-time design languages and real-time analysis tools. MoSaRT
consists of a Domain Specific Modeling Language providing the
core concepts of real-time systems, and an Analysis Repository
to analyze the models with the help of the real-time scheduling
theory. A main novelty is the automatic selection of real-time sched-
uling analyses based on the notion of real-time context (i.e. a set
of assumptions related to the tasks). Real-time contexts are then
automatically checked on the models to choose a suitable analysis.
Gaudel [26] builds on architectural design patterns to select real-
time schedulability tests in the Cheddar tool. The authors define
an architectural design pattern as a set of applicability constraints
applying on architectural models. They implement their own algo-
rithms to select the schedulability tests in the Cheddar tool. This
algorithm aims at detecting the design patterns which are present
in a model and analyze their composition if multiple patterns are
represented. Ruchkin et al. [27] deal with the integration of analyses
for Cyber-Physical Systems in the context of the OSATE/AADL tool
environment. They acknowledge that properties of AADL models
can be computed by tools coming from different scientific domains
(e.g. schedulability, power consumption, safety or security). Thus,
they firstly propose to use analysis contracts to capture the seman-
tics of analysis domains. Then, at analysis time, they can verify
the contracts through methods involving model checking and SMT
solving so as to avoid the execution of conflicting tools (i.e. not to
invalidate properties computed by a tool with one another).

In our integration approach [10], we aim at unifying these solu-
tions in a more general framework and organize them according
to a layered architecture: modeling, access, analysis and orchestra-
tion layers (see Section 3 for a more detailed presentation of the
approach). Thus, previous related works can be seen as specific
and separate implementations of these layers. Model transforma-
tion can be seen as a particular way to implement accessors, i.e.
extract data from a model. The verification of real-time contexts,
applicability constraints or contracts can be seen as a kind of pre
and/or post analysis. And, at the topmost level, contracts enable to
represent the analysis interfaces and then orchestrate the analysis
process. In addition, we provide different implementations for these
layers: heterogeneous languages (e.g. AADL and CPAL) to model
the system, Python to support the whole prototyping and Alloy to
formally define and evaluate the contracts.

3 OVERVIEW OF THE INTEGRATION
APPROACH

This section introduces our approach to combine heterogeneous
models and analyses. The approach is implemented in a tool pro-
totype called MAIWEn (Modeling and Analysis Integration Work-
bench for the Engineering of embedded systems).

Figure 1 represents the four layers of the approach. The next
paragraphs present the layers in a few words.

Models. Models enable to represent the system. Typically distinct
models written in different languages provide different points of
view on the system, e.g. architectural view, behavioral view, etc. In
Section 5, we use two different modeling languages to represent an
avionic system at different levels of abstraction: overall and opera-
tional architecture of the system in AADL, functional architecture
of the applications in CPAL.
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Otchestration Alloy
Analysis External Tools

y (TKRTS, etc.)

OCARINA
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AADL, CPAL
Models DL, CPAL,
etc.

Figure 1: Modular and layered integration approach. The
modules from modeling to orchestration are organized in
layers. In our tool, these modules may use the resources in
light gray.

Accessors. The interaction between models and analyses is man-
aged via accessors. These accessors enable to extract data from a
model in order to analyze them. The expected benefit is that an
analysis can be associated to any kind of model as soon as an im-
plementation of accessors to model internals is provided. This layer
includes a data model and the accessors:

o the data model holds analysis-specific data about the sys-
tem. For example, Figure 2 details a subset of the data model
to describe real-time systems: tasks, processors, shared re-
sources and scheduling algorithms are some of the data
structures required to analyze timing behavior,

e accessors to model internals must then be implemented
according to the mapping between the analysis data struc-
tures and the model concepts. In our tool, we use for ex-
ample OCARINA to parse AADL models, and the cpal2x
tool to extract data from CPAL source files.

Analyses. An analysis is a program to compute output data
and/or derive properties from input data. Analyses can be per-
formed using simulation, model checking or, more broadly, any
analytical techniques (queuing theory, dependability analysis, etc).
For example, Algorithm 1 details a simple procedure to compute the
processor utilization factor of a set of tasks as for instance used in
schedulability tests. This algorithm relies on the Task data structure
in Figure 2.

In our tool, analyses are implemented using the Python program-
ming language or we rely on existing specialized external tools. For
instance, there are bridges to REAL, TkRTS, Cheddar, MAST, etc,
through the OCARINA toolchain.

Orchestration. This module orchestrates the analysis process
by taking into account three parameters: (1) input models, (2) the
repository of analysis, and (3) the analysis goals. The orchestration
relies on the core concept of contract introduced in [28]. A con-
tract completely defines the interfaces of an analysis in terms of
processed data and properties:

e Inputs/Outputs (I/O) describe input and output data,
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Figure 2: Subset of the data model from which the system
load can be derived. Accessors enable to retrieve these data
in a model (e.g. AADL) and analyze them in a program.

Algorithm 1: Compute the processor utilization factor of a set
of real-time tasks

1 compute_processor_utilization_factor is
Input :Task[] list_of _tasks
Output:Float utilization_factor

2 utilization_factor < 0.0 ;
3 foreach task € list_of _tasks do
4 utilization_factor «
utilization_factor + task.wcet [task.period
5 end
6 return utilization_factor;
7 end

o Assumptions/Guarantees (A/G) describe input and output
properties.

Listing 1 describes a simple contract in the Alloy language
[29]. This contract specifies the interfaces of the fixed-priority
non-preemptive schedulability analysis rts_periodic_np coming
from [30] in terms of the data model defined in Figure 2. For ex-
ample, in input, the analysis requires a precise hierarchy of data
structures which consists of a real-time system with a scheduling
policy and tasks, and properties attached to the components, e.g.
periods are required, of fsets are not required.

We can then use methods to automate the reasoning about these
interfaces, and answer complex questions about the analysis pro-
cess: which analysis can be applied on a given model? Which are
the analyses that meet a given goal? Are there analyses to combine
to meet a high-level objective? Are there interferences between
analyses? Etc. We use SAT resolution methods provided by the
Alloy analyzer to derive an analysis graph. The analysis graph pro-
vides all the analysis paths to execute in order to fulfill a goal for
an input model. The orchestration module finally visits the graph,
and execute the analyses. The strength of the approach is that it
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/= An example of analysis contract=/
one sig rts_periodic_np extends Contract {}{
input={S:Component | S.type=system and

(some sub:S.subcomponents | sub.type =processor and
(scheduling_protocol+preemptive_scheduler) in sub.properties) and
(some sub:S.subcomponents | sub.type =process and
thread in sub.subcomponents.type and
( let th=sub.subcomponents & thread.~type |
(dispatch_protocol +period +compute_execution_time +priority+deadline) in th.properties

and

(not (offset) in th.properties)

)
}

output ={thrd:Component | thrd.type=thread and

thrd.subcomponents=none and

thrd.properties=response_time

}

assumption=mono_processor+periodic_tasks+no_jitter+implicit_deadlines+independent_tasks+fixed_computation_times+non_self_suspension+

no_preemption+no_overheads+fixed_priority
guarantee=is_schedulable

}

Listing 1: Specification of an analysis contract in Alloy. Input/output fields are defined with respect to the data model. Here,
the analysis takes as inputs a system with a scheduling policy and tasks; with properties attached to the components, e.g.

periods are required while offsets are not required.

ensures that if there is an analysis path that can fulfill a goal, it will
necessarily be found (see [28]).

Section 6 presents an application of this approach to orchestrate
the schedulability analyses for an avionic system. The analysis
graph in Figure 7 involves different analyses (WCET, task sched-
uling, communication delays, simulation, etc.) so as to gradually
define the task and network parameters and finally validate the
schedulability of the system.

4 AVIONIC SYSTEM

This section presents the avionic system that we study in this article.
It also introduces the Integrated Modular Avionics (IMA) platform
that hosts the avionic functions.

4.1 Application

The avionic system comprises a Flight Management System (FMS) [11,
31] and a Flight Control System (FCS) [12, 32].

Flight Management System. The primary task of a Flight Manage-
ment System is in-flight management of the flight plan. The Flight
Management System uses values measured from various sensors
to compute the flight plan during flight and guide the aircraft. The
crew interacts with the FMS by means of a Multi-Function Control
and Display Unit (MCDU).

Figure 3 describes the functional architecture of the Flight Man-
agement System. This system is made up of five main functions.
The Keyboard and cursor control Unit (KU) handles requests from
the crew while the Multi Functional Display (MFD) displays data
from the flight plan such as waypoints or the Estimated Time of
Arrival. The Flight Manager (FM) computes the flight plan by query-
ing static data (waypoints, airways, etc.) from the Navigation Data
Base (NDB) and dynamic data (altitude, speeds, position, etc.) from
the Air Data Inertial Reference Unit (ADIRU).

Flight Control System. The Flight Management System also in-
terfaces with several other avionic systems in order to accomplish
these functions, in particular the Flight Control System. The aim

| Crew i
e ~ o I
i req 1 disp
KU MFD
wpld wplnfo
e

answer

Figure 3: Functional architecture of the Flight Management
System. The functional architecture shows the set of func-
tions and the data flows among the functions.

of the FCS is to control the altitude, the speed and the trajectory
of the aircraft from the flight plan [32]. In this paper, we model
the functional architecture coming from the ROSACE (Research
Open-Source Avionics and Control Engineering) case study [12]
that implements a longitudinal flight controller.

4.2 Integrated Modular Avionics

The functions are executed on an Integrated Modular Avionics (IMA)
platform. The IMA defines the use of the hardware and software
resources with two main standards:
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Figure 4: Overview of the operational architecture of the Flight Management System in AADLv2. AADL components represent

the ARINC653 calculators and the AFDX network.

e ARINC653 [33] for computational resources,
e ARINC664 (part 7) [34] for communication resources.

One important objective of the IMA is to ensure timing pre-
dictability. In the following, we review some important concepts of
its two core standards. This description emphasizes the parameters
that are to be modeled and analyzed in this article.

Calculators — ARINC653. The ARINC653 is a standard to share
processing and memory resources between several functions in
a hardware module, or calculator. According to ARINC653, each
function is hosted in a specific partition with a statically defined
strict access to processing and memory resources:

e temporal partitioning ensures that partitions are executed
during specific time slots,

e spatial partitioning guarantees that each partition has a
reserved memory space.

Hence, an ARINC653 schedule is both static and cyclic. Partitions
are scheduled according to several parameters:

o at module level: a major time frame is defined for each
module (MAF,); possibly, a minor cycle can also be defined
(MIFy,).

e at partition level: an offset (Opm, p) that is the delay between
the MAFp, origin and the start of the partition execution;

and a duration (Dy,,p) that is the time allocated to each
partition to access the processor.

During the major cycle, each partition is scheduled once or sev-
eral times. This major cycle is then repeated indefinitely. In a parti-
tion, a function is implemented through one or several processes.
These processes are scheduled at the partition level according to a
specific scheduling algorithm (e.g. FIFO or NPFP).

Networks — ARINC664. This standard defines a predictable com-
munication network based on Ethernet called Avionics Full Duplex-
Switched Ethernet (AFDX). It uses full-duplex links to transmit the
packets and switches to route packets from a source to one or sev-
eral destinations. AFDX defines the core concept of Virtual Link
(VL) to share the network bandwidth between the data flows. A VL
is a unidirectional logical connection from one sender to one or
several receiver(s) (i.e. unicast or multicast VLs). In particular, each
VL has:

o alimited bandwidth (p,) according to two parameters: the
Bandwidth Allocation Gap (bag,,) that is the minimum time
interval between two successive transmissions of frames
of the same flow; and the maximal allowed packet size
(smaxy); po = %,

e a predefined and static route (route,) crossing one or sev-
eral switch(es).
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5 ARCHITECTURAL AND BEHAVIORAL
MODELING

In the following, the architecture of the system, and a subset of its
functional behavior, is modeled with AADL and CPAL.

5.1 Operational architecture in AADL

We represent the highest-level operational architecture of the avionic
system in AADL.

AADL: the Architecture Analysis and Design Language. AADL is
an architecture description language dedicated to “the specification,
analysis, automated integration and code generation of real-time
performance-critical (timing, safety, schedulability, fault tolerant,
security, etc.) distributed computer systems”?. AADL is an SAE
International standard [1]. AADL originates from the former MetaH
language [35] and has been improved and revised several times?.

AADL is a textual language first, but also has a graphical repre-
sentation. It represents both the static and dynamic architecture of
a system:

o the static architecture consists of a hierarchy of interacting
software and hardware components,

o the dynamic architecture describes operational modes, con-
nection configurations, fault tolerant configurations, be-
haviors of individual components, etc.

AADL model. The Flight Management System (FMS) is first spec-
ified in AADL. The model uses AADLv2 core specifications and the
ARINC653 Annex. Figure 4 shows a graphical view of the model.
The model includes four ARINC653 calculators to host the avionic
functions connected through an AFDX network®.

The model follows the FMS specifications and the AADL design
patterns for ARINC653 systems: each module is a distinct system
with a global memory and a processor. A module hosts partitions
modeled as processes. Each partition has its own memory segment
and must be executed on a virtual processor. Finally, thread
components contained in partitions realize the avionic functions.
The ARINC653 Annex guidelines provide support for the precise
modeling of the ARINC653 components and associated parame-
ters (e.g. major time frames for modules, durations of partitions,
scheduling policies within the partitions).

AADL on the other hand does not provide specific support for
modeling AFDX networks. The AADL concept of virtual bus
defines a connection supported in a bus. We rely on this concept
to define AFDX virtual links. Switches are represented by device
components bound to the virtual links. A dedicated property set
is defined to model parameters attached to virtual links, end sys-
tems and switches: bandwidth allocation gaps, transmission jitters,
technological delays, etc.

http://www.aadlinfo/ accessed September 2016

3 AADLv2.1 is the latest version to date, from September 2012. AADLv2.2 and AADLv3
are in the planning stage.

4The full AADLv2 textual model is part of the AADLib project, see http://www.
openaadl.org for more details.
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5.2 Functional architecture in CPAL

A functional description of the calculators completes the highest-
level operational architecture. We model the functions (i.e. pro-
cesses) of the Flight Control System with the CPAL language. The
CPAL models of the FCS come from [36].

CPAL: the Cyber-Physical Action Language. CPAL is a Domain-
Specific Language (DSL) to model, simulate, verify and program
Cyber-Physical Systems [13, 14, 37]. The language is inspired by
the synchronous programming approach [38], Promela [19] and
time-triggered architecture description languages as Giotto [39]
and Prelude [40]. The syntax of CPAL is close to the syntax of the
C language but provides abstractions specific to embedded systems,
especially for non-functional concerns specified via an internal
DSLs, together with a formal execution semantics. In addition,
CPAL is a real-time execution engine: CPAL models are interpreted
with the property that a model will have the same behavior in
simulation mode on a workstation and in real-time mode on an
embedded target.

CPAL model. Figure 5 shows the functional architecture of the
FCS in the CPAL graphical representation. The functional architec-
ture describes the processes, their activation pattern and the data
flows among them. For instance, the process az_filter executes
at a rate of 100Hz (i.e. Ty, fijser = 10ms), computes, from input
variables Az_Filter_Conf and az, an output variable az_meas that
is used by another process named vz_controller.

Az_Filter_Conf

‘ az }—{:\Lﬁ]!er [100H z])

altitude_holder [50Hz]

vz_controller [SOHz]

vz_filter [100Hz]

q_filter [100Hz]

ad

va_controller [SOHZ]H delta_x_c

‘ Q_Filter_Conf

‘ Va }—D[\':\,ﬁ]!er [lOOHz]j

Va_Filter_Conf

Figure 5: Functional architecture of the flight controller in
CPAL. The functional architecture describes the processes,
their activation pattern and the data flows among them.

[ vae

The CPAL model describes the logic of each process under the
form of a Finite-State Machine (FSM) with conditional and timed
transitions between states. For example, the FSM in Figure 6 imple-
ments two distinct functioning modes for the altitude_holder
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process: Manual and Auto. The operations in each state are specified
in a textual syntax close to C but providing higher-level constructs
such as loop over to iterate over a collection, and communication
channels that can be found in Promela (see [41] for a comparison a
both languages).

Figure 6: Finite-State Machine to describe two running
modes of the altitude_holder process: Manual and Auto.

6 REAL-TIME SCHEDULING ANALYSIS

We use the approach introduced in section 3 to analyze the schedu-
lability of the avionic system from the AADL and CPAL models
presented in Section 5. Throughout the process, several parame-
ters of the avionic system are derived so as to meet the timing
constraints expressed at tasks and network levels.

6.1 Analysis graph
The analysis graph in Figure 7 is automatically generated from the
contracts using their Alloy specification. The graph depicts the
analysis process that will enable us to check whether the avionic
system, as specified with the AADL and CPAL models (respectively
aadl_model and cpal_model nodes in the graph), can respect the
timing constraints (isSched node in the graph).

The analysis graph comprises three analysis flows that converge
towards the same goal:

(1) the right-hand analysis flow, starting from the cpal_model,
enables to check the schedulability of the tasks described
in CPAL models, which are part of the ARINC653 processes
to be represented in AADL,

(2) the analysis flow appearing in the middle uses task param-
eters defined in the CPAL model to define the ARINC653
parameters in the AADL model. Then, the ARINC653 pa-
rameters must be validated,

(3) the left-hand analysis flow, starting from the aadl_model,
includes several analyses in order to iteratively define pa-
rameters of the AFDX network and finally validate them,

In the following sections, we explain the analysis steps in greater
depth and provide experimental results.

6.2 From the analysis of CPAL processes to the
definition of ARINC653 modules
This first analysis flow aims at fully validating the timing behavior

of the software, that is to verify that all the processes will meet
their deadlines at run time.
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© WCET analysis. The first step is to measure the Worst-Case
Execution Times experienced by the CPAL processes on several tar-
get platforms with the help of the CPAL-interpreter option --stats.
In particular, we measure the WCETs on two execution platforms:

o Embedded Linux 64-bit: a laptop with a processor Intel
Core i7-4710HQ @2.50GHz (4 cores), 7895 MiB of RAM,
and running under Ubuntu 14.10 operating system,

e Raspberry Pi: a single-board embedded computer Rasp-
berry Pi 2 - Model B V1.1 with a ARM Cortex-A7 processor
@900MHz (4 cores), 1 GiB of RAM, and running under
Raspbian operating system.

Table 1 summarizes the WCET measured on the Raspberry Pi
platform in each running mode of the Flight Control System, i.e.
the vertical speed, airspeed and climb modes. The WCETs measured
on an Embedded Linux platform can be found in [10].

Process WCET (ps)
Vertical Airspeed Climb
Speed
va_filter 498.210 241.769 259.894
vz_filter 188.797 252.915 192.916
q_ﬁlter 440.518 218.801 209.739
az_filter 3402.323 371.920 190.832
h_filter 543.221 303.957 238.227
altitude_holder 162.448 164.531 262.551
vz_controller 194.634 263.957 216.561
va_controller 208.125 232.967 241.405

Table 1: WCET measured on a Raspberry Pi platform
(wcet_analysis) in the different running modes of the Flight
Control System: vertical speed, airspeed and climb modes.

Although this has not been done in this study, it is possible on
the basis of the measurements to provision for a safety margin,
typically using probabilistic arguments [42]. This margin can for
instance account for cache latencies linked to the scheduling which
have not been considered here. Another option is to make use
of an analytic WCET analysis, generally considered as safer than
measurement-based techniques although much more conservative.

@ Schedulability of the CPAL processes. In a second step, we
evaluate the schedulability of the FCS processes in each functioning
mode, and analyze it with two non-preemptive scheduling policies
available in CPAL: First-In First-Out (FIFO) and Non-Preemptive
Fixed Priority (NPFP) (see the corresponding paths on Figure 7).
Schedulability analysis is performed with two different techniques
depending on the policy: simulation for FIFO (i.e. cpal_simu) and
a schedulability test based on response time analysis for NPFP
(i-e. rts_periodic_np). Simulation cannot in general be used as a
schedulability test for non-preemptive policies because of sched-
uling anomalies [43]. This is however not the case for FIFO which
is sustainable with respect to execution times [44] and simulation
provides an exact test for strictly periodic tasks with offsets.
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Figure 7: Analysis graph for the avionic case study. The graph shows the analysis process to check the schedulability of the
system (isSched goal) according to input aadl_model and cpal_model. Black arrows conveys data, red arrows involve properties.

(a) Simulation with FIFO. A CPAL model can be simulated so as to
evaluate the timing behavior of the software. The CPAL simulator
uses the following data from the CPAL model:

o the scheduling algorithm,

o the task activation model that usually consists of a few
tasks’ parameters, e.g. periods and offsets, although arbi-
trary complex activation patterns are possible,

e timing annotations that may be execution times, jitters,
priorities or deadlines.

The processes execute in zero time when the code is not an-
notated. Timing annotations defined within a @cpal: time block
specifies the timing behavior that a CPAL program must have at
run-time. We thus inject the WCETs previously measured as timing
annotations in the CPAL model in order to achieve a simulation
that is timing accurate with respect to the WCETs.

Figure 8 shows the simulation result of the CPAL model of the
flight controller in the Vertical Speed mode. The figure describes the
schedule of the processes according to their periods, offsets (which
are null here) and the FIFO scheduling policy. Each rectangle repre-
sents a process execution and the thickness of the rectangle denotes
the process execution time. According to FIFO, the processes are
executed in the exact order of their activation. In Figure 8, we ob-
serve from a simulation over more than 2 LCMs of the periods
that the system meets the scheduling constraints: (1) the process
activation respects the periods; (2) only one process is scheduled
on the processor at the same time; (3) all the processes complete
before their deadlines, i.e. before the activation of the next job.

(b) Schedulability tests with NPFP scheduling policy. We use a
schedulability test based on response time analysis to evaluate the
schedulability of the FCS processes under a NPFP scheduling policy.

We evaluate the task response times from the CPAL model with
the help of the TKRTS tool [30]. For example, Table 2 shows the
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Figure 8: Timing simulation of the flight controller
(cpal_simu) under FIFO scheduling in the VerticalSpeed mode.

worst-case response times (i.e. bound) under NPFP scheduling in the
Airspeed scenario. The results are conclusive as every calculated
worst-case response times bound is less than the corresponding
relative deadline D. Thus, every laxity, which is the remaining time
to deadline, is positive. Therefore, the task set is schedulable in the
Airspeed scenario under the NPFP scheduling algorithm.
Complete experimental results with an evaluation of all the
scheduling policies and running modes can be found in [10].

O definition of ARINC653 partitions and © validation. This anal-
ysis aims at setting up an ARINC653 module M5 to host the CPAL
processes. The approach chosen here is to define a unique partition
for all the processes. With that design choice, it is straightforward to
define the parameters of the partition from those of the processes:

o the MAF; is equal to the lcm of the process periods,
o a different MIFs is not necessary as there is only one par-
tition, hence MIF5 = MAFs,
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Algorithm Task C (ns) T (ns) D (ns) bound (ns) | laxity (ns)
altitude_holder | 164531 | 20000000 | 20000000 2049989 17950011
va_controller 232967 | 20000000 | 20000000 2049989 17950011
vz_controller 263957 | 20000000 | 20000000 1885458 18114542

np-fp va_filter 241769 | 10000000 | 10000000 1652491 8347509
h_filter 303957 | 10000000 | 10000000 1410722 8589278
az_filter 371092 | 10000000 | 10000000 1146765 8853235
g_filter 218801 | 10000000 | 10000000 842808 9157192
vz_filter 252915 | 10000000 | 10000000 624007 9375993

Table 2: Worst-case response times computed by the rts_periodic_np analysis under NPFP scheduling in the Airspeed mode.

o the duration to execute the single partition P; of Ms is
Ds,1 = MAF;s

In this particular case, the scheduling analysis is trivial as there
is only one partition and the MAF is set to the hyperperiod of the
processes.

If we choose a different partitioning of the processes (i.e. by
assigning processes to different partitions), the analysis graph in
Figure 7 has to be recomputed and a dedicated scheduling analysis
must be available. In that case, the scheduling becomes hierarchical
with a partition level schedule and a process level schedule. Here,
a compositional analysis methodology as [45] could be applied to
determine whether the processes are schedulable or not.

6.3 Iterative definition of the Bandwidth
Allocation Gap from the AADL model

This second analysis flow aims at validating the temporal behavior
of the AFDX network as specified in the AADL model. A problem
at that stage is to define the parameters of the Virtual Links, in
particular the Bandwidth Allocation Gap (BAG), in order to meet
the latency constraints expressed on the dataflows.

As can be seen in the analysis graph in Figure 7, applying suc-
cessively the two following analyses allows to set the BAGs:

O bnh_bag_dimensioning to identify the set of suitable BAG
candidates for each VL in the network. This analysis is
detailed in [46],

@ pegase_nc_analysis that relies on Network-Calculus to
compute upper bounds on communication delays (worst-
case traversal times) in AFDX networks once BAGs have
been set. This analysis is performed by the RTaW-Pegase
tool [47].

The analysis process is here iterative as the analyses depend on
each other: bnh_bag_dimensioning calculates the set of suitable
BAGs that meets the latency constraints based, in part, on an esti-
mation of communication delays in the Virtual Links, whereas the
pegase_nc_analysis estimates the actual communication delays
in the AFDX network based on the actual BAG definition.

Figure 9 shows the 3 iterations needed for the BAG definition
process. The maximum BAG (i.e. bnh_bag_dimensioning) is re-
fined at each iteration according to the traffic in the network (i.e.
pegase_nc_analysis), which itself depends on the set of BAGs. Ac-
cording to the standard [34], every BAG must be set to BAG= 2K ms
with k € {1,2,...,7}. A fixed-point is reached at the third itera-
tion, i.e. the set of parameters is identical to the previous iteration,

|

—<—BAGI_MAX

2 —+—BAG2_MAX
BAG3_MAX

—8—BAG4_MAX

—A—BAGS_MAX
BAGL

e BAG2

BAG3

BAG (ms)

BAGA
> —— BAGS

iterl iter2 iter3

Analysis iteration

Figure 9: BAG definition process. At each analysis iteration,
a BAG compliant with the AFDX standard is defined from
the maximum value that meets the latency constraints ex-
pressed on the data flows. Three iterations are here required
to find a stable solution.

meaning that the set of BAGs cannot be refined anymore. Accord-
ing to this BAG definition, the latency constraints expressed on
the dataflows are met. Complete experimental results are available
in [10, 46].

7 CONCLUSION

To couple models and analyses in Model-Driven Engineering for
embedded systems, we propose an approach based on 4 layers: (1)
models to define the system, (2) accessors to extract data from mod-
els, (3) analyses to compute output data and/or derive properties
from input data, (4) contracts to specify the analysis interfaces and
orchestrate the analysis process.

In this work, we present an application of the proposed approach
in the real-time domain through a aerospace case study. Importantly,
the approach allows to combine heterogeneous models and analyses.
On the one hand, we used two modeling languages to specify the
system at different levels of abstraction: overall and operational
architecture of the system in AADL, functional architecture of the
applications in CPAL. On the other hand, we combine different
analyses (WCET, task scheduling, communication delays, various
simulators, etc.) so as to gradually define important parameters of
the system, and ultimately validate the schedulability of the system.
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The applicability of our integration approach to the design of
non-trivial real-time systems is illustrated through the case study
treated in this work. From the system engineering perspective, we
believe that such kind of integration approaches will facilitate the
use by non-experts of the wealth of real-time scheduling results.
As shown in this paper, valuable contributions from the real-time
scheduling community such as real-time task models and schedula-
bility tests can be integrated with usual descriptive modeling lan-
guages (AADL, SysML, etc.), qualified for a given context of use via
contracts, and their execution can be fully automated through rea-
soning on contracts. From an engineering perspective, we believe
that the systematic use of analyses, such as real-time scheduling
analyses, with domain-specific models may substantially improve
our way to develop critical embedded systems.

Future works may explore three lines of research: (1) extension
of the integration approach, e.g. support of other types of analyses
such as dependability analyses, investigate other languages for
the specification and evaluation of contracts; (2) implementation
of the approach: additional accessors, support the approach via a
dedicated analysis and orchestration language, improve tooling; (3)
integration with standard or emerging engineering processes and
tools as SysML, CAPELLA, MATLAB/Simulink.
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