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This paper focuses on the theoretical and numerical development of the J-integral concept for three-dimensional problems. A new integral parameter, developed for the real threedimensional case, computes the combined energy release rate for an arbitrary crack front. A pathindependent integral is verified in both the static and crack propagation cases. Generalization of the 𝐽 "# -integral toward its 𝐺 % "# implementation form is performed. The efficiency of this proposed integral is then compared with a number of 𝐽 integrals available in the literature. Lastly, the paper offers a finite element implementation along with its numerical validation.

Nomenclature

Introduction

In the field of fracture mechanics and in accordance with global approaches, the energy release rate is usually calculated nowadays using the J-integral [1-2-3] and its derived forms in conjunction with a finite element implementation. The basic J-integral definition assumes that calculations are conducted along a contour around the crack tip in a two-dimensional case. A number of applications have been proposed within many scientific settings for elastic [START_REF] Zhang | Path independent integrals in equilibrium electro-chemo-elasticity[END_REF],

hyperelastic [START_REF] Barbieri | J-integral-based arc-length solver for brittle and ductile crack propagation in finite deformation-finite strain hyperelastic solids with an application to graphene kirigami[END_REF], composite [START_REF] Serier | A new formulation of the J integral of bonded composite repair in aircraft structures[END_REF] and viscoelastic materials [START_REF] Dubois | Modelling of the crack growth initiation in viscoelastic media by the 𝐺𝜃 £ -integral[END_REF], generalized to accommodate a crack growth model [START_REF] Dubois | Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture[END_REF]. The J-integral concept has now been generalized for complex loadings with coupling friction effects [START_REF] Yan | Analysis on crack tip j integral value under sliding contact effect[END_REF], transverse loadings [START_REF] Fang | A J-integral approach in characterizing the mechanics of a horizontal crack embedded in a cantilever beam under an end transverse force[END_REF], mixed-mode configurations [START_REF] Pitti | A finite element analysis for the mixed mode crack growth in a viscoelastic and orthotropic medium[END_REF][START_REF] Sarrado | An experimental data reduction method for the Mixed Mode Bending test based on the J-integral approach[END_REF], and fatigue applications [START_REF] Chapuliot | A ΔJ approach for the evaluation of Fatigue Crack Growth in nozzle corners[END_REF].

The effects of climatic conditions on the environment are also studied [START_REF] Riahi | Mixed-mode fracture analysis combining mechanical, thermal and hydrological effects in an isotropic and orthotropic material by means of invariant integrals[END_REF][START_REF] Angellier | Influence of hygrothermal effects in the fracture process in wood under creep loading[END_REF]. In association with works proposed regarding experimental approaches using J-integrals and digital image correlation techniques as applied to wood, steel and composite materials [16-17-18], all these efforts are limited to a two-dimensional scope [19-20-21-22]. Thin steel or glass composites are some of the materials for which 2D approaches may suffice. However, all studies that account for environmental effects inducing temperature or humidity gradients in the element stiffness require introducing out of-plane effects, such as e.g. torsion (mode III). This reality is more present in thicker structures (e.g. concrete elements, timber structures). A body of work has been undertaken

to adapt the J-integral to specific three-dimensional cases [START_REF] Hein | A generalized J-integral for thermal shock analyses of 3D surface cracks in spatially and temperature dependent materials[END_REF][START_REF] Leguillon | An attempt to extend the 2D coupled criterion for crack nucleation in brittle materials to the 3D case[END_REF] by means of adding a second integral that incorporates out of-plane stresses [START_REF] Amestoy | On the definition of local path independent integrals in three dimensional[END_REF]. According to the general case, while the Jintegral formulation can rather easily be derived in its 2D form, its finite element implementation remains difficult due to the surface integration definition and the necessity to perform interpolations between mesh nodes and integration points. To overcome these hurdles, some authors have suggested various approaches, including the equivalent domain integral [START_REF] Nikishkov | Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the equivalent domain integral method[END_REF] and the virtual crack growth method using specific elements near the crack front line [START_REF] Li | A comparison of methods for calculating energy release rates[END_REF][START_REF] Delorenzi | Energy release rate calculations by the finite element method[END_REF]. This paper therefore discusses the implementation of a generalized J-integral method for three-dimensional media. Ensuring accurate results requires a refined mesh around the crack front line plus the use of specific elements that minimize errors in the interpolation subroutines. In 2D cases, an alternative method allows restricting the interpolation process by transforming the linear integral into a surface integral [START_REF] Destuynder | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF]; this method is called the "theta method" and is capable of respecting the independent path property. These approaches have been proposed for both two-dimensional and axisymmetric problems [START_REF] Dubois | Finite element model for crack growth process in concrete bituminous[END_REF]. This paper is thus focused on generalizing the J-integral formalism for a three-dimensional problem and adapting the G-theta method for future finite element implementation by considering a three-dimensional problem that includes any crack front and any external loading direction.

As demonstrated on occasion, Noether's approach [START_REF] Noether | Invariant variations problems[END_REF] initiates the development for a threedimensional medium. The first part of this paper will be devoted to defining a new 𝐽-integral parameter adapted to three-dimensional problems; it is called the 𝐽 "# -integral, and its definition is used to determine the energy release rate distribution calculated along the crack front line. A generalization of the theta method will be provided in Section 3, along with a presentation of the new 𝐺 % "# -integral, offering a different view of the role of 𝜃 distribution along the integration domain and serving to calculate the average energy release rate and its specific value at each point positioned in the crack front line. The last section will compare these global formulations with other authors' formulations. This paper is concluded by a numerical validation section that proves the lack of path dependence within the integration domain and moreover highlights the capacity to calculate the energy release rate distribution along the crack front line in accordance with various shapes. This validation step exposes the distinction between a three-dimensional approach and the typical two-dimensional J-integral.

Description of the 𝑱 𝟑𝑫 -integral

Crack front parameters, which are expressed as a surface integral of stress, strain and displacement derivative terms around a finite-sized path surrounding a crack front, have generally been used as linear and nonlinear fracture parameters. Let's consider a crack front line in a three-dimensional medium, within a Cartesian coordinate system (𝑥 ( , 𝑥 * , 𝑥 " ), as a line formed by the intersection of two crack surfaces [START_REF] Moran | Crack tip and associated domain integrals from momentum and energy balance[END_REF] (see Fig. 1).

Fig. 1: Crack surface with a crack system coordinate system

The J-integral formulation is based on application of Noether's theorem [START_REF] Noether | Invariant variations problems[END_REF], whereby the strain energy density 𝑊 is defined by: 𝑊 𝑥 ( , 𝑥 * , 𝑥 " = 𝜎 /0 𝑑𝜀 /0 R ST (U V ,U W ,U X ) Y , (𝑖, 𝑗) ∈ 1; 2; 3 *

In [START_REF] Irwin | Analysis of stresses and strains near the end of a crack traversing a plate[END_REF], 𝑥 ( , 𝑥 * , 𝑥 " denote the coordinates in a Cartesian reference system. The transformed Noether's theorem is based on a stationary Lagrangian condition [33-34-35]; in considering an infinitesimal variation 𝑑𝑊, Noether's theorem assumes a Lagrangian non-variation. Following the same procedure as that described in [START_REF] Dubois | A Finite Element Analysis of Creep-Crack Growth in Viscoelastic Media[END_REF], a Gauss-Ostrogradski transformation allows expressing the Lagrangian's invariance in the form: 

where 𝑆 designates the surface integral domain, oriented by the normal vector 𝑛, thus delimiting the range of certain assumptions considered in the two-dimensional case [START_REF] Dubois | Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture[END_REF]. As shown in Figure 2, the integral domain assumes the form of a torus surrounding the crack front line; this form can be considered as the difference between an external volume of the cylinder, 𝑉 567 , and the internal volume of the cylinder, 𝑉 /8 , such that: 

𝑽 = 𝑽 𝒐𝒖𝒕 -𝑽 𝒊𝒏 (3) 
Let's note that the minus sign is in accordance with the oriented curvilinear line in a classical twodimensional problem. In order to simplify the following analytical developments, we have introduced 𝐼 ( and 𝐼 * , such that:

𝐼 ( = 𝑊. 𝑛 ( -𝜎 /0 . 𝑛 0 . 𝑢 /,( 𝑎𝑛𝑑 𝐼 * = 𝜎 /0 . 𝜀 /0 ,( -𝑊 ,(

In this case, Equation (2) can be written as: 

𝐼 ( .
Moreover, for a surface S /8 close to the crack front, the volume 𝑉 /8 is reduced and tends to zero.

We can write:

lim ~Sx →Y 𝐼 * . 𝑑𝑉 d Sx = 0 (9) 
Under such considerations, Equation ( 7) is reduced as follows: 

𝐼 ( . 𝑑𝑆
By analogy with Rice's integral definition in a two-dimensional configuration [START_REF] Jr | A path independent integral and the approximate analysis of strain conservations by notches and cracks[END_REF], the right-hand term of ( 10) designates the J-integral, which today is called the 𝐽 "# -integral, as defined below:

𝐽 "# = lim ~Sx →Y 𝐼 ( . 𝑑𝑆 c vw (11) 
We can now write: 

𝐽 "# = 𝐼 ( . 𝑑𝑆
Considering Equations ( 8) and ( 12) and using the expressions in [START_REF] Barbieri | J-integral-based arc-length solver for brittle and ductile crack propagation in finite deformation-finite strain hyperelastic solids with an application to graphene kirigami[END_REF] for 𝐼 ( and 𝐼 * , we obtain: 

𝐽 "# = 𝑊. 𝑛 C -
According to Equation ( 13), the 𝐽 "# -integral is composed of three separate terms. The first one corresponds to the classical part used to determine crack growth initiation. This term can be completed by the effects of a crack lip pressure introduced by the second term. The last term allows generalizing the crack propagation by ensuring path independence once the crack tip moves inside the integral domain.

Physical interpretation

This section discusses the physical interpretation of generalizing the J-integral to the 𝐽 "# integral.

Let's consider a crack crossing a plate structure, as shown in Fig. 3. Earlier, Amestoy et al. [START_REF] Li | A comparison of methods for calculating energy release rates[END_REF] had proposed an initial generalization of the standard 𝐽-integral to a three-dimensional case by means of writing 𝐽 "# as:

𝐽 "# = 𝐽𝐴 = 𝑊. 𝑛 ( -𝜎 /0 . 𝑛 0 . 𝑢 /,( . 𝑑Γ ~-𝑑 𝑑𝑥 " 𝜎 /" . 𝑢 /,( . 𝑑𝐴(Γ)

€(~) (14) 
This definition assumes that the crack lips are oriented in the 𝑥 ( direction with a linear crack front line parallel to 𝑥 " . As shown in the expression in ( 14), the standard J-integral is completed by a second term that integrates the stress components projected into the third dimension. As indicated in Figure 3 however, this form is merely the superposition of a two-dimensional multilayer problem in which the curvilinear integration domain is the intersection between a cylinder, whose generatrix is oriented along 𝑥 " , and the plane of coordinates 𝑥 " = 0 [START_REF] Jr | A path independent integral and the approximate analysis of strain conservations by notches and cracks[END_REF]. 

The link between line Γ and cylinder surface 𝑆 567 is expressed below:

𝑆 … † ‡ = 𝑑Γ ŨX •y'/* U X •"'/* 𝑑𝑥 " (16) 
Considering the integration domain change in [START_REF] Méité | Mixed mode fracture properties characterization for wood by Digital Images Correlation and Finite Element Method coupling[END_REF], Expression [START_REF] Angellier | Influence of hygrothermal effects in the fracture process in wood under creep loading[END_REF] 

Next, comparing Expression [START_REF] Catalanotti | Measurement of resistance curves in the longitudinal failure of composites using digital image correlation[END_REF] with the definition of the 𝐽 "# -integral in [START_REF] Chapuliot | A ΔJ approach for the evaluation of Fatigue Crack Growth in nozzle corners[END_REF] and considering a stationary crack along with unloaded crack lips, the following can be written:

𝐽𝐴. 𝑑𝑥 " U X •y'/* U X •"'/* = 𝐽 "# - 𝜎 /" . 𝑢 /,( . 𝑑𝑥 ( 𝑑𝑥 * € ŨX •Y (18) 
In the crack front vicinity, let's note:

𝐽 "# = lim ˆ~→Y 𝐽𝐴. 𝑑𝑥 " U X •" ' * U X •" ' * (19) 
In this form, 𝐽 "# is interpreted as the integration of the 𝐽𝐴-integral along the crack front line. In other words, the expression in ( 19) can be generalized as:

𝐽 "# = lim ˆ~→Y 𝐽𝐴. 𝑑𝑙 9Š‹ (20) 
In this case, the form of the 𝐽 "# -integral may be used to evaluate the average value of the energy release rate 𝐺 along the crack front line, such that:

𝐺 = 𝐽 "# 𝑑𝑙 9Š‹ (21) 
This new integral however is unable to calculate the distribution of the energy release rate along the crack front line, which is a necessary calculation in the definition of non-homogeneous crack propagation in the thickness (e.g. elliptical crack). To overcome this limitation, a theta method will prove to be more appropriate in generalizing this three-dimensional formalism for a definition of the energy release rate distribution along the crack front line.

The 𝑮 𝜽 𝟑𝑫 -integral

Generalization of the 𝐽 "# -integral toward its 𝐺 % "# form is based on a Gauss-Ostrogradski transformation [START_REF] Rigby | Decomposition of the mixed-mode J-integral-Revisited[END_REF]. Let's introduce Eshelby's energy-momentum tensor [START_REF] Eshelby | The Continuum Theory of Lattice Defects[END_REF], whose components are defined by: 𝑃 0,( = 𝑊. 𝑛 ( -𝜎 /0 . 𝑛 0 . 𝑢 /,(

Equation ( 22) corresponds to the first conservative law defined by Knowles and Sternberg [START_REF] Knowles | On a class of conservation laws in linearized and finite elastostatics[END_REF]. Now, by introducing ( 22) into (13), we obtain:

𝐽 "# = 𝑃 0,( . 𝑛 0 . 𝑑𝑆 c qrs - 𝜎 /0 . 𝑛 0 . 𝑢 /,C . 𝑑𝑆 c tu < y c tu ; + 𝜎 /0 . 𝜀 /0 ,C -𝑊 ,C . 𝑑𝑉 d qrs (23) 
The generalized formalism, i.e. [START_REF] Hein | A generalized J-integral for thermal shock analyses of 3D surface cracks in spatially and temperature dependent materials[END_REF], for any crack propagation direction requires changing the 𝑃 0,( definition by means of introducing a vector field 𝜃, such that:

𝑃 0,( = 𝑃 0,C . 𝜃 C , 𝑘 ∈ 1,2,3 (24) 
with:

𝑃 0,C = 𝑊. 𝛿 C0 -𝜎 /0 . 𝑢 /,C (25) 
𝛿 C0 is the Kronecker symbol. In the case of crack extension in the 𝑥 C direction, the 𝜃 coordinates are fixed, on the surface 𝑆 567 , at these following values:

𝜃 C = 𝛿 C0 (26) 
Based on expression [START_REF] Leguillon | An attempt to extend the 2D coupled criterion for crack nucleation in brittle materials to the 3D case[END_REF], Equation ( 23) can be rewritten as follows: 

𝐽 "# = - 𝑃 0,
In considering the non-dependence of the integration domain, the transition between the open surface 𝑆 … † ‡ and the 𝑆 surface becomes possible, hence Equation ( 27) becomes: 

𝐽 "# = -𝑃 0,
The Gauss-Ostrogradski transformation allows transitioning between a surface integration and a volume integration 𝑉, situated between 𝑆 ~••' and 𝑆 ~Sx , in which the theta field equals zero. When applied to the first term in [START_REF] Li | A comparison of methods for calculating energy release rates[END_REF], this transformation yields: 

𝐺 % "# = - 𝑃 0,C .
From Figure 2, the following can be derived:

𝑉 … † ‡ = 𝑉 '" -𝑉 (30) 
Replacing 𝑉 … † ‡ in Equation ( 29) leads to: 

𝐺 % "# = - 𝑃 0,C .
In recalling Noether's theorem, as cited in Equation ( 2), we finally obtain: 

𝐺 % "# = - 𝑊. 𝜃 C,C -𝜎 /0 .
The Gauss-Ostrogradski transformation assumes that vector field 𝜃 is a vector-derivable function.

The form of vector field 𝜃 can now be used to obtain different definitions and physical interpretations of this 𝐺 % "# -integral. Let's provide three main applications herein.

a) Average energy release rate value for a rectilinear crack front

As previously shown for the 𝐽 "# -integral, the average value of the energy release rate can be calculated by choosing a specific format for 𝜃. Let's consider a rectilinear crack oriented by a constant vector 𝑐 along the sample thickness with a width of 𝐶 H (see Fig. 4). The average energy release rate 𝐺 is calculated using Expression (33) by setting 𝜃 to be constant along the width sample, i.e. as follows:

𝜃 = 𝑐 𝑐 𝑜𝑛 𝑆 567 𝑎𝑛𝑑 𝜃 = 0 𝑜𝑛 𝑆 /8 (34) 
Fig. 4: Crack annotations for a rectilinear crack front

In this case, the 𝐺 % "# -integral is a direct application of the 𝐽 "# -integral. According to the expression in [START_REF] Pitti | A proposed mixed-mode fracture for wood under creep loadings[END_REF], the average energy release rate value is given by:

𝐺 = 𝐺 % "# 𝐶 • (35) 
b) Average energy release rate value for a curvilinear crack front Let's now consider a curvilinear crack oriented along 𝑐 that is assumed to be constant along the crack front (Fig. 5). The average energy release rate can then be calculated by integrating 𝐺(𝑀) along the crack front line divided by the crack width. In this case, at position 𝑙 ( on the crack front line, the comparison between this 𝐺 % "# -integral and the 𝐽 •6/ "# can be written as follows:

𝐽 •6/ "# = 𝐺 % "# 𝜔 (38) 
This last application most certainly represents the most significant advance offered by this paper, making it possible to compute the evolution in energy release rate along the crack front. The curvilinear crack front is targeted first, followed by integration of the non-homogeneous energy release distribution induced by the three-dimensional mechanical state of the sample geometry in association with surface boundary conditions.

Numerical validation

out S G in S G c r c c dw q = ◊ r r r 0 q = r r 0 q = r r 0 q = r r 0 q = r r dw M
The finite element implementation of this set-up is based on a Double Cantilever Beam submitted to opening mode fracture. We use Cast3M finite element software. This geometry of the Double Cantilever Beam is shown in Fig. 7.

Fig. 7. Double Cantilever Beam geometry

The crack lips and fracture surface reveal a symmetrical surface, thus making it possible to reduce the discretization volume. The displacement loading is applied with the two-hole axes by assuming a frictionless state. In this case, the finite element mesh can assume the shape depicted in Fig. 9, depending on its boundary conditions (Fig. 8). To limit computing time, we have chosen 6-node linear prisms. The loading by imposed displacement is applied at the symmetrical surface and by blocking the hole that models the frictionless contact between the hole axis and the sample. For this theoretical validation step, let's consider an isotropic material, such as steel (mechanical properties: 𝐸 = 210𝐺𝑃𝑎, 𝜈 = 0.3). As shown in Fig. 9, the crack front line is surrounded by a cylindrical mesh, inside which the integral domain is defined. The mesh has been divided into two parts.

Fig. 9. Integral domain around the crack front line

The first part is a hollow cylinder used to build the theta field using a stationary Fourier's equation, according to which constant temperatures are imposed on both the inside and outside faces. The second part of the mesh is a cylinder surrounded by the crack front line, over which the theta field is a unit constant vector. Let's denote 𝑅 9 the inside radius of this cylinder. Consider, for example, a straight crack front and a crack extension along 𝑥; consequently, 𝜃 and its component 𝜃 U can be illustrated by Fig. 10. The second validation step entails a comparison with the 𝐽𝐴-integral proposed by Amestoy et al. [START_REF] Amestoy | On the definition of local path independent integrals in three dimensional[END_REF]. In this case, let's focus on calculating the energy release rate at the middle of the crack front line. The main difference consists of how the theta field is defined (see the depiction in Figure 5).

In the present case, the theta field is defined on a cylindrical plate domain, as shown in Fig. 13. Fig. 13: Integral defined on a cylindrical plate domain around the crack tip The domain width, labeled 𝑑 • , is localized at a distance 𝑐 M (crown position) in a global cylindrical mesh surrounding the crack front line. The average energy release rate is calculated along 𝑑 • . In this first application, the cylinder is considered at the middle of the crack front line, with a 1-mm thickness. In parallel, the 𝐽𝐴-integral is computed using a 2D configuration, as depicted in Fig. 14, whereby the integration domain is a crown surrounding the crack tip.

The subsequent simulations are intended to compare our 3D approach with the 2D approach generalized by Amestoy [START_REF] Amestoy | On the definition of local path independent integrals in three dimensional[END_REF]; the size of both the 2D and the 3D integration domain is defined using the common radius 𝑅 9 . In the 3D simulation, we have opted for a cylinder centered on the sample stiffness. Plate cylinder integration domain 0 x q = Fig. 14: Integration domain size for the 2D model Many simulations are compared in Fig. 15. The reference is the new 𝐽 "# , while 𝐽 *# represents Rice's classical integral [START_REF] Jr | A path independent integral and the approximate analysis of strain conservations by notches and cracks[END_REF], which includes the theta method. Given that the sample thickness appears to be significant with respect to the 2D dimensions (20 mm), we have selected a plane strain configuration. In accordance with the definition of the 3D generalization proposed by Amestoy [START_REF] Amestoy | On the definition of local path independent integrals in three dimensional[END_REF], the additional term in Expression (1) is isolated (i.e. Integral 𝐽𝐴). -First, the comparison between the classical 𝐽 *# and 𝐽 "# highlights a rather sizable discrepancy (greater than 30%) while respecting the non-dependence of integration domains.

-Second, we can reveal the effect of Amestoy's correction on the 𝐽 *# -integral by noting that this additional term does not agree with the non-dependence properties.

With this consideration and in reference to Expression [START_REF] Riahi | Mixed-mode fracture analysis combining mechanical, thermal and hydrological effects in an isotropic and orthotropic material by means of invariant integrals[END_REF], the following equality can be drawn:

𝐽 "# = 𝐽 *# -lim ˆ~→Y ¢ ¢U X
𝜎 /" . 𝑢 /,( 𝑑𝑆 ˆ~ [START_REF] Pook | A 50-year retrospective review of three-dimensional effects at cracks and sharp notches[END_REF] Today, the difference between the two-and three-dimensional formulations are consistent with results for stress intensity factors for other mode I geometries [START_REF] Pook | A 50-year retrospective review of three-dimensional effects at cracks and sharp notches[END_REF] and can be explained in several ways. First, the 2D approach must choose either a plane stress or plane strain configuration. Other calculations enable deducing that these two configurations are incapable of explaining such a discrepancy. A second discussion thread focuses on the three-dimensional stress and strain distribution along the crack front. More precisely, they are may be a consequence of corner point singularities [START_REF] Pook | State of the art of corner point singularities under in plane and out-of-plane loading[END_REF]. For instance, the Poisson's effect on the crack front could introduce a torsion mode that allows explaining a greater value in terms of energy release rate. Also, the presence of J 2D Amestoy's corr ection JA corner point in the 3D case may contribute to the difference between 𝐽 *# and 𝐽 "# . Today, we are unable to respond since this investigation requires a separation mode procedure.

The next application considers the evaluation of the energy release rate along the crack front line.

According to the integration domain definition shown in Fig. 13 and the non-path dependence property, 𝑅 9 was set at 20 mm and we opted to calculate the energy release rate distribution along the crack front line by varying 𝑑 • and 𝑛 • , with a total thickness equal to 20 mm. In this application, the crack front line is always a straight line of finite elements. For each plane cylinder, the energy release rate is calculated at the gravity center projected onto the crack front line. For a discretization of the sample stiffness with 𝑛 • = 10 elements, Fig. 16 indicates the energy release rate distribution along the crack front line vs. thickness. comparing average values, equivalent to a 2D configuration, two conclusions can be drawn: the need to take into account the 3D effect on the energy release rate distribution; and during the crack growth process, when considering a crack growth criterion based on a critical energy release rate value, the crack front line must be transformed into a parabolic shape with a longer apparent crack length in the surface than in the sample volume. This approach however requires increased computing power. For example, using an Intel Core i7-4930MX (8 logic processors) and 32 Go of RAM, if the 2D computing is instantaneous, then the time calculation with 20 elements in the thickness sample exceeds 15 minutes with a parallel algorithm solution.

In the vicinity of a corner point, we have a combination between stress intensity factors and corner point singularities. This "double" singular point which is the corner point cannot be represented by any asymptotic analysis. Nevertheless, the corner point can strongly affect the stress field in the vicinity of the crack tip (see Fig. 17). This last effect is taken into account in our analysis. It's to be noted that once again, if one determines the stress field in order to compute the SIF of corner point that will be influenced by the stress field of the crack tip. The final application concerns the potential of the 𝐽 "# in determining the energy release rate distribution for complex crack front line geometry. Based on this same geometry, the mesh near the crack front is deformed in order to obtain a parabolic crack front line (shown in Fig. 18). A total of ten element layers compose the sample stiffness. According to a two-dimensional vision, the crack length varies between 60 mm at the sample edge and 70 mm at its center. The 𝐽 *# and Amestoy's form are computed at an equivalent crack length ranging from 61.8 mm to 69.8 mm, corresponding to the barycenter of each element on the sample stiffness. All calculations are performed by assuming a horizontal and axial crack propagation pattern. The full set of results is listed in Table 1. Only the half-specimen has been considered herein. These results reveal a tremendous discrepancy between the two-and three-dimensional approaches induced by the out-of plane-effects, which cannot be integrated into a two-dimensional calculation even with the Amestoy correction. 

Layer

Conclusion and outlook

This paper proposes a new formulation of the J-integral for studying the fracture process in elements by considering three-dimensional effects. Compared to a standard two-dimensional computation, this approach includes three-dimensional stress-strain states. Non-path dependence is proven thanks to the use of an analytical formulation. Various visions are proposed in terms of the average energy release rate definition and the energy release rate distribution along the crack front line. Based on a comparison with Amestoy's work, a 𝐺 % "# -integral transformation is proposed for the purpose of computing the energy release rate along the crack front line.

Results of preliminary studies suggest analytic functions of new three-dimensional J-integral useful in numerous applications, including representing of three-dimensional shape of crack front and repartition of energy release rate along this front.

The 𝐽 "# -integral is implemented using the finite element method by considering a theta method.

Various developments and validations highlight the capacity of this modeling approach to take into account three-dimensional effects and the out-of-plane stress state. The theta formulation allows defining an average energy release rate or its distribution along the crack front by providing support for the non-dependent integration domain characterizing the invariant integral concept. A comparison with the classical two-dimensional integral highlights the need to consider threedimensional effects in order to obtain the energy release rate along the crack front. One promising perspective consists of completing this study by a theoretical approach proposing a threedimensional vision of the local mechanical states in the crack front vicinity, thus offering a relationship between stress intensity factors and the energy release rate and its distribution along the crack front line. This work will serve to introduce virtual mechanical states for extension of the J-integral to a mixed-mode loading case in three-dimensional problems. An M-integral generalization will allow for a mixed-mode separation with complex geometries and loadings, including tensile, shear and torsion fracture modes.
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Fig. 15 :

 15 Fig. 15: Comparison between the J2D and J3D approaches

Fig. 16 :

 16 Fig. 16: Energy release rate distribution along the crack front lineThis result leads to a few remarks. First of all, the energy release rate distribution exposes a nonheterogeneity of the energy release rate through the sample thickness. Second, this distribution tends to a convergence with a very slim thickness (2 mm in this example). Through this illustration, the figure is completed by means of a calculation that integrates 20 elements along the crack front line plus a 1-mm thickness integration domain (gray line in the figure). Moreover, by

Fig. 17 :

 17 Fig. 17: Illustration of 2D crack tip (a) and corner point in 3D medium (b)

Fig. 18 :

 18 Fig. 18: Finite element mesh containing a parabolic crack front line Crack front line

  

  In considering virtual crack growth in the direction given by the crack orientation and assuming that the crack lips run parallel to the crack growth direction 𝑥 C , then the component 𝑛 C equals zero on the crack lips:

				𝐼 ( . 𝑑𝑆	= -				𝜎 /0 . 𝑛 0 . 𝑢 /,C . 𝑑𝑆
		c tu < y c tu ;				c tu < y c tu ;			
					𝑑𝑆	+ 𝐼 * . 𝑑𝑉	= 0			(6)
				c		d					
	By introducing the surface and volume separations in (4), Equation (6) becomes:
	𝐼 ( . 𝑑𝑆	+	𝐼 ( . 𝑑𝑆	+	𝐼 * . 𝑑𝑉	=	𝐼 ( . 𝑑𝑆	+	𝐼 ( . 𝑑𝑆	+	𝐼 * . 𝑑𝑉	(7)
	c qrs	c tu <		d qrs			c vw			c tu ;		d Sx

  C . 𝜃 C . 𝑛 0 . 𝑑𝑆

		-	𝜎 /0 . 𝑢 /,C . 𝑛 0 . 𝜃 C . 𝑑𝑆
	c qrs	c tu < y c tu ;	
	-	𝑊 ,C -𝜎 /0 . 𝜀 /0 ,C	. 𝜃 C . 𝑑𝑉
	d qrs		

  C . 𝜃 C . 𝑛 0 . 𝑑𝑆

		-	𝜎 /0 . 𝑢 /,C . 𝑛 0 . 𝜃 C . 𝑑𝑆
	c	c tu < y c tu ;	
	-	𝑊 ,C -𝜎 /0 . 𝜀 /0 ,C	. 𝜃 C . 𝑑𝑉
	d qrs		

Table 1 :

 1 Energy release rate output by J 3D , J 2D and Amestoy's integral JA (N/m²)

		Average crack length (mm)	𝐽 "#	𝐽 *#	JA
	1	61.8	42394	37646	30065
	2	65	21687	31710	22148
	3	67.4	14523	28034	19118
	4	69	12025	25835	17417
	5	69.8	11041	24835	16673
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