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Abstract This paper focuses on the theoretical and numerical development of the J-integral 
concept for three-dimensional problems. A new integral parameter, developed for the real three-
dimensional case, computes the combined energy release rate for an arbitrary crack front. A path-
independent integral is verified in both the static and crack propagation cases. Generalization of 
the 𝐽"#-integral toward its 𝐺%"# implementation form is performed. The efficiency of this proposed 
integral is then compared with a number of 𝐽 integrals available in the literature. Lastly, the paper 
offers a finite element implementation along with its numerical validation. 
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Nomenclature 
 
𝐽   Rice’s integral 
𝐽"#   three dimensional 𝐽-integral 
𝜃   vector field 
𝐺%"#   three dimensional 𝐽-integral with 𝜃 fields 
𝑥(, 𝑥*, 𝑥" 	  coordinates in a Cartesian reference system 
𝑊   strain energy density  
𝑢, 𝜀/0,	𝜎/0  displacements, strains, and stresses components 
𝑆   surface integral domain 
𝑉    volume integral domain 
𝑛   normal vector  
𝑆567, 𝑆/8   external and internal surface of the cylinder 
𝑆9:; and 𝑆9:<  lower and upper crack lip surfaces 
𝑉567, 𝑉/8   external and internal volume of the cylinder 
Γ   curvilinear integration path 
𝐴(Γ)    area integration path 
𝐽𝐴   integral proposed by Amestoy et al. 
𝐺   average value of the energy release rate 



𝑃0,(   Eshelby's energy-momentum tensor 
𝛿C0   Kronecker symbol 
𝐸   elastic modulus 
𝜐   Poisson’s ratio 
𝑅9   the inside radius of cylinder 
𝐶H   crack width 
𝐺(𝑀)   energy release rate around a point M 
𝑑𝑤   strip of width 
𝑐M   crown position 
 

 

1. Introduction 
In the field of fracture mechanics and in accordance with global approaches, the energy release 
rate is usually calculated nowadays using the J-integral [1-2-3] and its derived forms in 
conjunction with a finite element implementation. The basic J-integral definition assumes that 
calculations are conducted along a contour around the crack tip in a two-dimensional case. A 
number of applications have been proposed within many scientific settings for elastic [4], 
hyperelastic [5], composite [6] and viscoelastic materials [7], generalized to accommodate a crack 
growth model [8]. The J-integral concept has now been generalized for complex loadings with 
coupling friction effects [9], transverse loadings [10], mixed-mode configurations [11-12], and 
fatigue applications [13]. 

The effects of climatic conditions on the environment are also studied [14-15]. In association with 
works proposed regarding experimental approaches using J-integrals and digital image correlation 
techniques as applied to wood, steel and composite materials [16-17-18], all these efforts are 
limited to a two-dimensional scope [19-20-21-22]. Thin steel or glass composites are some of the 
materials for which 2D approaches may suffice. However, all studies that account for 
environmental effects inducing temperature or humidity gradients in the element stiffness require 
introducing out of-plane effects, such as e.g. torsion (mode III). This reality is more present in 
thicker structures (e.g. concrete elements, timber structures). A body of work has been undertaken 
to adapt the J-integral to specific three-dimensional cases [23-24] by means of adding a second 
integral that incorporates out of-plane stresses [25]. According to the general case, while the J-
integral formulation can rather easily be derived in its 2D form, its finite element implementation 
remains difficult due to the surface integration definition and the necessity to perform 
interpolations between mesh nodes and integration points. To overcome these hurdles, some 
authors have suggested various approaches, including the equivalent domain integral [26] and the 
virtual crack growth method using specific elements near the crack front line [27-28]. This paper 
therefore discusses the implementation of a generalized J-integral method for three-dimensional 
media. Ensuring accurate results requires a refined mesh around the crack front line plus the use of 
specific elements that minimize errors in the interpolation subroutines. In 2D cases, an alternative 
method allows restricting the interpolation process by transforming the linear integral into a 
surface integral [29]; this method is called the "theta method" and is capable of respecting the 
independent path property. These approaches have been proposed for both two-dimensional and 
axisymmetric problems [30]. This paper is thus focused on generalizing the J-integral formalism 
for a three-dimensional problem and adapting the G-theta method for future finite element 



implementation by considering a three-dimensional problem that includes any crack front and any 
external loading direction. 

As demonstrated on occasion, Noether's approach [31] initiates the development for a three-
dimensional medium. The first part of this paper will be devoted to defining a new 𝐽-integral 
parameter adapted to three-dimensional problems; it is called the 𝐽"#-integral, and its definition is 
used to determine the energy release rate distribution calculated along the crack front line. A 
generalization of the theta method will be provided in Section 3, along with a presentation of the 
new 𝐺%"#-integral, offering a different view of the role of 𝜃 distribution along the integration 

domain and serving to calculate the average energy release rate and its specific value at each point 
positioned in the crack front line. The last section will compare these global formulations with 
other authors' formulations. This paper is concluded by a numerical validation section that proves 
the lack of path dependence within the integration domain and moreover highlights the capacity to 
calculate the energy release rate distribution along the crack front line in accordance with various 
shapes. This validation step exposes the distinction between a three-dimensional approach and the 
typical two-dimensional J-integral. 

2. Description of the 𝑱𝟑𝑫-integral 
Crack front parameters, which are expressed as a surface integral of stress, strain and displacement 
derivative terms around a finite-sized path surrounding a crack front, have generally been used as 
linear and nonlinear fracture parameters. Let's consider a crack front line in a three-dimensional 
medium, within a Cartesian coordinate system (𝑥(, 𝑥*, 𝑥"), as a line formed by the intersection of 
two crack surfaces [32] (see Fig. 1). 

 
Fig. 1: Crack surface with a crack system coordinate system 

 

The J-integral formulation is based on application of Noether's theorem [31], whereby the strain 
energy density 𝑊 is defined by: 

 𝑊 𝑥(, 𝑥*, 𝑥" = 𝜎/0𝑑𝜀/0

RST(UV,UW,UX)

Y

	 , (𝑖, 𝑗) ∈ 1; 2; 3 *	 (1) 

In (1), 𝑥(, 𝑥*, 𝑥" 	 denote the coordinates in a Cartesian reference system. The transformed 
Noether's theorem is based on a stationary Lagrangian condition [33-34-35]; in considering an 
infinitesimal variation 𝑑𝑊, Noether's theorem assumes a Lagrangian non-variation. Following the 
same procedure as that described in [35], a Gauss-Ostrogradski transformation allows expressing 
the Lagrangian's invariance in the form: 



 𝑊. 𝑛( − 𝜎/0. 𝑛0. 𝑢/,( . 𝑑𝑆
c

− 𝑊,( − 𝜎/0. 𝜀/0 ,(
. 𝑑𝑉

d

= 0 (2) 

where 𝑆 designates the surface integral domain, oriented by the normal vector 𝑛, thus delimiting 
the range of certain assumptions considered in the two-dimensional case [8]. As shown in Figure 
2, the integral domain assumes the form of a torus surrounding the crack front line; this form can 
be considered as the difference between an external volume of the cylinder, 𝑉567, and the internal 
volume of the cylinder, 𝑉/8, such that: 

 𝑽 = 𝑽𝒐𝒖𝒕 − 𝑽𝒊𝒏 (3) 

 

 
Fig. 2 : Closed volume and surface integration domains 

 

The surface domain is composed of the outside surfaces of 𝑉567 and 𝑉/8, called respectively 𝑆567 
and 𝑆/8, as well as the lower and upper crack lip surfaces, respectively 𝑆9:; and 𝑆9:<, i.e.: 

𝑆 = (𝑆567 + 𝑆mn<) − (𝑆/8 + 𝑆mn;) (4) 

Let's note that the minus sign is in accordance with the oriented curvilinear line in a classical two-
dimensional problem. In order to simplify the following analytical developments, we have 
introduced 𝐼( and 𝐼*, such that: 

 𝐼( = 𝑊. 𝑛( − 𝜎/0. 𝑛0. 𝑢/,( 	𝑎𝑛𝑑	𝐼* = 𝜎/0. 𝜀/0 ,(
− 𝑊,( (5) 

In this case, Equation (2) can be written as: 

𝐼(. 𝑑𝑆
c

+ 𝐼*. 𝑑𝑉
d

= 0	 (6) 

By introducing the surface and volume separations in (4), Equation (6) becomes: 

𝐼(. 𝑑𝑆
cqrs

+ 𝐼(. 𝑑𝑆
ctu<

+ 𝐼*. 𝑑𝑉
dqrs

= 𝐼(. 𝑑𝑆
cvw

+ 𝐼(. 𝑑𝑆
ctu;

+ 𝐼*. 𝑑𝑉
dSx

 (7) 



In considering virtual crack growth in the direction given by the crack orientation and assuming 
that the crack lips run parallel to the crack growth direction 𝑥C, then the component 𝑛C equals zero 
on the crack lips: 

𝐼(. 𝑑𝑆
ctu< y ctu;

= − 𝜎/0. 𝑛0. 𝑢/,C. 𝑑𝑆
ctu< y ctu;

 
(8) 

Moreover, for a surface S/8 close to the crack front, the volume 𝑉/8 is reduced and tends to zero. 
We can write: 

lim
~Sx→Y

𝐼*. 𝑑𝑉
dSx

= 0 (9) 

Under such considerations, Equation (7) is reduced as follows: 

𝐼(. 𝑑𝑆
cqrs

+ 𝐼(. 𝑑𝑆
ctu< y ctu;

+ 𝐼*. 𝑑𝑉
dqrs

= lim
~Sx→Y

𝐼(. 𝑑𝑆
cvw

 (10) 

By analogy with Rice's integral definition in a two-dimensional configuration [3], the right-hand 
term of (10) designates the J-integral, which today is called the 𝐽"#-integral, as defined below: 

𝐽"# = lim
~Sx→Y

𝐼(. 𝑑𝑆
cvw

 (11) 

We can now write: 

𝐽"# = 𝐼(. 𝑑𝑆
cqrs

+ 𝐼(. 𝑑𝑆
ctu< y ctu;

+ 𝐼*. 𝑑𝑉
dqrs

 (12) 

Considering Equations (8) and (12) and using the expressions in (5) for 𝐼( and 𝐼*, we obtain: 

 

𝐽"# = 𝑊. 𝑛C − 𝜎/0. 𝑛0. 𝑢/,C . 𝑑𝑆
cqrs

− 𝜎/0. 𝑛0. 𝑢/,C. 𝑑𝑆
ctu< y ctu;

+ 𝜎/0. 𝜀/0 ,C
− 𝑊,C . 𝑑𝑉

dqrs

 
(13) 

According to Equation (13), the 𝐽"#-integral is composed of three separate terms. The first one 
corresponds to the classical part used to determine crack growth initiation. This term can be 
completed by the effects of a crack lip pressure introduced by the second term. The last term 
allows generalizing the crack propagation by ensuring path independence once the crack tip moves 
inside the integral domain. 

3. Physical interpretation 
This section discusses the physical interpretation of generalizing the J-integral to the 𝐽"# integral. 
Let's consider a crack crossing a plate structure, as shown in Fig. 3. Earlier, Amestoy et al. [27] 
had proposed an initial generalization of the standard 𝐽-integral to a three-dimensional case by 
means of writing 𝐽"# as: 

𝐽"# = 𝐽𝐴 = 𝑊. 𝑛( − 𝜎/0. 𝑛0. 𝑢/,( . 𝑑Γ
~

−
𝑑
𝑑𝑥"

𝜎/". 𝑢/,( . 𝑑𝐴(Γ)
�(~)

 (14) 



This definition assumes that the crack lips are oriented in the 𝑥( direction with a linear crack front 
line parallel to 𝑥". As shown in the expression in (14), the standard J-integral is completed by a 
second term that integrates the stress components projected into the third dimension. As indicated 
in Figure 3 however, this form is merely the superposition of a two-dimensional multilayer 
problem in which the curvilinear integration domain is the intersection between a cylinder, whose 
generatrix is oriented along	𝑥", and the plane of coordinates 𝑥" = 0 [3]. 

 
Fig. 3: Surface integration domains for Amestoy's integral 

 

Integrating (14) along the geometry thickness (i.e. along 𝑥") yields: 

𝐽𝐴. 𝑑𝑥"

UX�y�/*

UX���/*

= 𝑊. 𝑛( − 𝜎/0. 𝑛0. 𝑢/,( . 𝑑Γ
~

UX�y�/*

UX���/*

𝑑𝑥"

−
𝑑
𝑑𝑥"

𝜎/". 𝑢/,( . 𝑑𝑥(𝑑𝑥*𝑑𝑥"
�(~)

UX�y�/*

UX���/*

 

(15) 

The link between line Γ and cylinder surface 𝑆567 is expressed below: 

𝑆��� = 𝑑Γ
~

UX�y�/*

UX���/*

𝑑𝑥" (16) 

 

Considering the integration domain change in (16), Expression (15) becomes: 

𝐽𝐴. 𝑑𝑥"

UX�y�/*

UX���/*

= 𝑊. 𝑛( − 𝜎/0. 𝑛0. 𝑢/,( . 𝑑𝑆
cqrs

− 𝜎/". 𝑢/,( . 𝑑𝑥(𝑑𝑥*
� ~
UX�Y

 (17) 

Next, comparing Expression (17) with the definition of the 𝐽"#-integral in (13) and considering a 
stationary crack along with unloaded crack lips, the following can be written: 



𝐽𝐴. 𝑑𝑥"

UX�y�/*

UX���/*

= 𝐽"# − 𝜎/". 𝑢/,( . 𝑑𝑥(𝑑𝑥*
� ~
UX�Y

 (18) 

In the crack front vicinity, let's note: 

𝐽"# = lim
� ~ →Y

𝐽𝐴. 𝑑𝑥"
UX��

�
*

UX��
�
*

 (19) 

In this form, 𝐽"# is interpreted as the integration of the 𝐽𝐴-integral along the crack front line. In 
other words, the expression in (19) can be generalized as: 

𝐽"# = lim
� ~ →Y

𝐽𝐴. 𝑑𝑙
9��

 (20) 

In this case, the form of the 𝐽"#-integral may be used to evaluate the average value of the energy 
release rate 𝐺 along the crack front line, such that: 

 𝐺 =
𝐽"#

𝑑𝑙9��
 (21) 

This new integral however is unable to calculate the distribution of the energy release rate along 
the crack front line, which is a necessary calculation in the definition of non-homogeneous crack 
propagation in the thickness (e.g. elliptical crack). To overcome this limitation, a theta method will 
prove to be more appropriate in generalizing this three-dimensional formalism for a definition of 
the energy release rate distribution along the crack front line. 

4. The 𝑮𝜽𝟑𝑫-integral 
Generalization of the 𝐽"#-integral toward its 𝐺%"# form is based on a Gauss- Ostrogradski 
transformation [36]. Let's introduce Eshelby's energy-momentum tensor [37], whose components 
are defined by: 

 𝑃0,( = 𝑊. 𝑛( − 𝜎/0. 𝑛0. 𝑢/,(  (22) 

Equation (22) corresponds to the first conservative law defined by Knowles and Sternberg [38]. 
Now, by introducing (22) into (13), we obtain: 

 𝐽"# = 𝑃0,(. 𝑛0. 𝑑𝑆
cqrs

− 𝜎/0. 𝑛0. 𝑢/,C. 𝑑𝑆
ctu< y ctu;

+ 𝜎/0. 𝜀/0 ,C
− 𝑊,C . 𝑑𝑉

dqrs

 (23) 

The generalized formalism, i.e. (23), for any crack propagation direction requires changing the 𝑃0,( 

definition by means of introducing a vector field 𝜃, such that: 

 𝑃0,( = 𝑃0,C. 𝜃C, 𝑘 ∈ 1,2,3  (24) 

with: 

 𝑃0,C = 𝑊. 𝛿C0 − 𝜎/0. 𝑢/,C  (25) 

𝛿C0 is the Kronecker symbol. In the case of crack extension in the 𝑥C direction, the 𝜃 coordinates 

are fixed, on the surface 𝑆567, at these following values: 

 𝜃C = 𝛿C0 (26) 



Based on expression (24), Equation (23) can be rewritten as follows: 

 

𝐽"# = − 	𝑃0,C. 𝜃C. 𝑛0. 𝑑𝑆
cqrs

− 𝜎/0. 𝑢/,C. 𝑛0. 𝜃C. 𝑑𝑆
ctu< y ctu;

− 𝑊,C − 𝜎/0. 𝜀/0 ,C
. 𝜃C. 𝑑𝑉

dqrs

 
(27) 

In considering the non-dependence of the integration domain, the transition between the open 

surface 𝑆��� and the 𝑆 surface becomes possible, hence Equation (27) becomes: 

𝐽"# = − 	𝑃0,C. 𝜃C. 𝑛0. 𝑑𝑆
c

− 𝜎/0. 𝑢/,C. 𝑛0. 𝜃C. 𝑑𝑆
ctu< y ctu;

− 𝑊,C − 𝜎/0. 𝜀/0 ,C
. 𝜃C. 𝑑𝑉

dqrs

 
(28) 

The Gauss-Ostrogradski transformation allows transitioning between a surface integration and a 
volume integration 𝑉, situated between 𝑆~��� and	𝑆~Sx, in which the theta field equals zero. When 

applied to the first term in (27), this transformation yields: 

 

𝐺%"# = − 	 𝑃0,C. 𝜃C ,0
. 𝑑𝑉

d

− 𝜎/0. 𝑢/,C. 𝑛0. 𝜃C. 𝑑𝑆
ctu< y ctu;

− 𝑊,C − 𝜎/0. 𝜀/0 ,C
. 𝜃C. 𝑑𝑉

dqrs

 
(29) 

From Figure 2, the following can be derived: 

 𝑉��� = 𝑉�� − 𝑉 (30) 

Replacing 𝑉��� in Equation (29) leads to: 

 

𝐺%"# = − 	 𝑃0,C. 𝜃C ,0
. 𝑑𝑉

d

− 𝜎/0. 𝑢/,C. 𝑛0. 𝜃C. 𝑑𝑆
ctu< y ctu;

+ 𝑊,C − 𝜎/0. 𝜀/0 ,C
. 𝜃C. 𝑑𝑉

d

− 𝑊,C − 𝜎/0. 𝜀/0 ,C
. 𝜃C. 𝑑𝑉

dvw

 
(31) 

By transforming the derivation in the first integral, Equation (31) is replaced by: 

𝐺%"# = − 	(𝑃C0,0. 𝜃C + 𝑃C0. 𝜃C,0). 𝑑𝑉
d

− 𝜎/0. 𝑢/,C. 𝑛0. 𝜃C. 𝑑𝑆
ctu< y ctu;

+ 𝑊,C − 𝜎/0. 𝜀/0 ,C
. 𝜃C. 𝑑𝑉

d

− 𝑊,C − 𝜎/0. 𝜀/0 ,C
. 𝜃C. 𝑑𝑉

dvw

 
(32) 

In recalling Noether's theorem, as cited in Equation (2), we finally obtain: 

 

𝐺%"# = − 	 𝑊. 𝜃C,C − 𝜎/0. 𝑢/,C . 𝜃C,0 . 𝑑𝑉
d

− 𝜎/0. 𝑢/,C. 𝑛0. 𝜃C. 𝑑𝑆
ctu< y ctu;

− 𝑊,C − 𝜎/0. 𝜀/0 ,C
. 𝜃C. 𝑑𝑉

dvw

 
(33) 

The Gauss-Ostrogradski transformation assumes that vector field 𝜃 is a vector-derivable function. 
The form of vector field 𝜃 can now be used to obtain different definitions and physical 
interpretations of this 𝐺%"#-integral. Let's provide three main applications herein. 

a) Average energy release rate value for a rectilinear crack front 



As previously shown for the 𝐽"#-integral, the average value of the energy release rate can be 
calculated by choosing a specific format for 𝜃. Let's consider a rectilinear crack oriented by a 
constant vector 𝑐 along the sample thickness with a width of 𝐶H (see Fig. 4). The average energy 
release rate 𝐺 is calculated using Expression (33) by setting 𝜃 to be constant along the width 
sample, i.e. as follows: 

 𝜃 =
𝑐
𝑐
	𝑜𝑛	𝑆567	𝑎𝑛𝑑	𝜃 = 0	𝑜𝑛	𝑆/8 (34) 

 

 
Fig. 4: Crack annotations for a rectilinear crack front 

 

In this case, the 𝐺%"#-integral is a direct application of the 𝐽"#-integral. According to the expression 

in (21), the average energy release rate value is given by: 

 𝐺 =
𝐺%"#

𝐶�
 (35) 

b) Average energy release rate value for a curvilinear crack front 

Let's now consider a curvilinear crack oriented along 𝑐 that is assumed to be constant along the 
crack front (Fig. 5). 

 
Fig. 5: Crack annotations for a curvilinear crack front 
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The average energy release rate 𝐺 is calculated using an analogy with the Expression (34), by 
substituting the following form for 𝜃 (with 𝑐𝑓𝑙 being the developed crack front width): 

 𝜃 =
𝑐
𝑐
	𝑜𝑛	𝑆567	𝑎𝑛𝑑	𝜃 = 0	𝑜𝑛	𝑆/8 (36) 

c) Energy release rate at a single point 

The goal of this calculation is to determine the energy release rate 𝐺(𝑀) around a point M, i.e. at 
any point lying on the crack front. For this application, let's consider a strip of width 𝑑𝑤, as 
displayed in Fig. 6. The intersection between this strip and the volume integration domain forms a 
closed crown 𝐶, on which the 𝜃 field is defined by: 

𝜃 = 0	𝑜𝑛	𝑆/8 

𝜃 = 0	𝑜𝑢𝑡𝑠𝑖𝑑𝑒	𝑡ℎ𝑒	𝑐𝑙𝑜𝑠𝑒	𝑐𝑟𝑜𝑤𝑛 

𝜃 =
𝑐

𝑐 . 𝑑𝑤
	𝑜𝑛	𝐶 ∩ 𝑆567 

(37) 

 
 

 

Fig. 6: Definition of 	𝜽 in the vicinity of a closed crown 
 

The average energy release rate can then be calculated by integrating 𝐺(𝑀) along the crack front 
line divided by the crack width. In this case, at position 𝑙( on the crack front line, the comparison 
between this 𝐺%"#-integral and the 𝐽�6/"#  can be written as follows: 

 𝐽�6/"# = 𝐺%"# 𝜔  (38) 

This last application most certainly represents the most significant advance offered by this paper, 
making it possible to compute the evolution in energy release rate along the crack front. The 
curvilinear crack front is targeted first, followed by integration of the non-homogeneous energy 
release distribution induced by the three-dimensional mechanical state of the sample geometry in 
association with surface boundary conditions. 

5. Numerical validation 
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The finite element implementation of this set-up is based on a Double Cantilever Beam submitted 
to opening mode fracture. We use Cast3M finite element software. This geometry of the Double 
Cantilever Beam is shown in Fig. 7. 

 

 
 

Fig. 7. Double Cantilever Beam geometry 
 

The crack lips and fracture surface reveal a symmetrical surface, thus making it possible to reduce 
the discretization volume. The displacement loading is applied with the two-hole axes by assuming 
a frictionless state. In this case, the finite element mesh can assume the shape depicted in Fig. 9, 
depending on its boundary conditions (Fig. 8). 
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Fig. 8: Boundary conditions 

 

To limit computing time, we have chosen 6-node linear prisms. The loading by imposed 
displacement is applied at the symmetrical surface and by blocking the hole that models the 
frictionless contact between the hole axis and the sample. For this theoretical validation step, let's 
consider an isotropic material, such as steel (mechanical properties: 𝐸 = 210𝐺𝑃𝑎, 𝜈 = 0.3). As 
shown in Fig. 9, the crack front line is surrounded by a cylindrical mesh, inside which the integral 
domain is defined. The mesh has been divided into two parts. 

 
Fig. 9. Integral domain around the crack front line 

 

The first part is a hollow cylinder used to build the theta field using a stationary Fourier's equation, 
according to which constant temperatures are imposed on both the inside and outside faces. The 
second part of the mesh is a cylinder surrounded by the crack front line, over which the theta field 
is a unit constant vector. Let's denote 𝑅9 the inside radius of this cylinder. Consider, for example, a 
straight crack front and a crack extension along 𝑥; consequently, 𝜃 and its component 𝜃U can be 
illustrated by Fig. 10. 
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Fig. 10: Component 𝜽𝒙 

 

Based on this example, the goal of the first application is to validate the non-dependence of the 
integration domain by varying the size of the integration domain through its radius 𝑅9 used to 
calculate 𝐺. The sample thickness 𝐶� is set at 20 mm, and the initial crack length value equals 40 
mm. Moreover, we have chosen an imposed displacement of 0.25 mm. As indicated in Fig. 11, the 
integration domain size has been parameterized with 𝑅9 values lying between 1 mm and 22 mm. 

 
Fig. 11: Integration domain size 

 

Fig. 12 shows the variations in energy release rate vs. 𝑅9. Numerical results validate the non-
dependence of the integration domain, with an average value of 30.3 kJ/m² and a very small 
standard deviation (29 J/m²). Note that for 𝑅9 = 1	𝑚𝑚, the results display a few artefacts since the 
mechanical fields present occasional singularities around the crack front. 
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Fig. 12: Average energy release rate vs. Rc 

 

The second validation step entails a comparison with the 𝐽𝐴-integral proposed by Amestoy et al. 
[25]. In this case, let's focus on calculating the energy release rate at the middle of the crack front 
line. The main difference consists of how the theta field is defined (see the depiction in Figure 5). 
In the present case, the theta field is defined on a cylindrical plate domain, as shown in Fig. 13. 

 
 

Fig. 13: Integral defined on a cylindrical plate domain around the crack tip 
 

The domain width, labeled 𝑑�, is localized at a distance 𝑐M (crown position) in a global cylindrical 

mesh surrounding the crack front line. The average energy release rate is calculated along 𝑑�. In 
this first application, the cylinder is considered at the middle of the crack front line, with a 1-mm 
thickness. In parallel, the 𝐽𝐴-integral is computed using a 2D configuration, as depicted in Fig. 14, 
whereby the integration domain is a crown surrounding the crack tip. 

The subsequent simulations are intended to compare our 3D approach with the 2D approach 
generalized by Amestoy [25]; the size of both the 2D and the 3D integration domain is defined 
using the common radius 𝑅9. In the 3D simulation, we have opted for a cylinder centered on the 
sample stiffness. 
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Fig. 14: Integration domain size for the 2D model 
 

Many simulations are compared in Fig. 15. The reference is the new 𝐽"#, while 𝐽*# represents 
Rice's classical integral [3], which includes the theta method. Given that the sample thickness 
appears to be significant with respect to the 2D dimensions (20 mm), we have selected a plane 
strain configuration. In accordance with the definition of the 3D generalization proposed by 
Amestoy [25], the additional term in Expression (1) is isolated (i.e. Integral 𝐽𝐴). 

 
Fig. 15: Comparison between the J2D and J3D approaches 

 

Moreover, Amestoy's integral is denoted 𝐽𝐴. The results obtained give rise to the following 
remarks: 

− First, the comparison between the classical 𝐽*# and 𝐽"# highlights a rather sizable 
discrepancy (greater than 30%) while respecting the non-dependence of integration 
domains. 

− Second, we can reveal the effect of Amestoy's correction on the 𝐽*#-integral by noting 
that this additional term does not agree with the non-dependence properties. 

With this consideration and in reference to Expression (14), the following equality can be drawn: 

 𝐽"# = 𝐽*# − lim
� ~ →Y

¢
¢UX

𝜎/". 𝑢/,( 𝑑𝑆� ~  (39) 

Today, the difference between the two- and three-dimensional formulations are consistent with 
results for stress intensity factors for other mode I geometries [39] and can be explained in several 
ways. First, the 2D approach must choose either a plane stress or plane strain configuration. Other 
calculations enable deducing that these two configurations are incapable of explaining such a 
discrepancy. A second discussion thread focuses on the three-dimensional stress and strain 
distribution along the crack front. More precisely, they are may be a consequence of corner point 
singularities [40]. For instance, the Poisson's effect on the crack front could introduce a torsion 
mode that allows explaining a greater value in terms of energy release rate. Also, the presence of 
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corner point in the 3D case may contribute to the difference between 𝐽*# and 𝐽"#. Today, we are 
unable to respond since this investigation requires a separation mode procedure. 

The next application considers the evaluation of the energy release rate along the crack front line. 
According to the integration domain definition shown in Fig. 13 and the non-path dependence 
property, 𝑅9 was set at 20 mm and we opted to calculate the energy release rate distribution along 
the crack front line by varying 𝑑� and 𝑛�, with a total thickness equal to 20 mm. In this 
application, the crack front line is always a straight line of finite elements. For each plane cylinder, 
the energy release rate is calculated at the gravity center projected onto the crack front line. For a 
discretization of the sample stiffness with 𝑛� = 10 elements, Fig. 16 indicates the energy release 
rate distribution along the crack front line vs. thickness. 

 
Fig. 16: Energy release rate distribution along the crack front line 

This result leads to a few remarks. First of all, the energy release rate distribution exposes a non-
heterogeneity of the energy release rate through the sample thickness. Second, this distribution 
tends to a convergence with a very slim thickness (2 mm in this example). Through this 
illustration, the figure is completed by means of a calculation that integrates 20 elements along the 
crack front line plus a 1-mm thickness integration domain (gray line in the figure). Moreover, by 
comparing average values, equivalent to a 2D configuration, two conclusions can be drawn: the 
need to take into account the 3D effect on the energy release rate distribution; and during the crack 
growth process, when considering a crack growth criterion based on a critical energy release rate 
value, the crack front line must be transformed into a parabolic shape with a longer apparent crack 
length in the surface than in the sample volume. This approach however requires increased 
computing power. For example, using an Intel Core i7-4930MX (8 logic processors) and 32 Go of 
RAM, if the 2D computing is instantaneous, then the time calculation with 20 elements in the 
thickness sample exceeds 15 minutes with a parallel algorithm solution.  

In the vicinity of a corner point, we have a combination between stress intensity factors and corner 
point singularities. This “double” singular point which is the corner point cannot be represented by 
any asymptotic analysis. Nevertheless, the corner point can strongly affect the stress field in the 
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vicinity of the crack tip (see Fig. 17). This last effect is taken into account in our analysis. It’s to 
be noted that once again, if one determines the stress field in order to compute the SIF of corner 
point that will be influenced by the stress field of the crack tip. 

 

Fig. 17: Illustration of 2D crack tip (a) and corner point in 3D medium (b) 

 

The final application concerns the potential of the 𝐽"# in determining the energy release rate 
distribution for complex crack front line geometry. Based on this same geometry, the mesh near 
the crack front is deformed in order to obtain a parabolic crack front line (shown in Fig. 18). A 
total of ten element layers compose the sample stiffness. 

 
Fig. 18: Finite element mesh containing a parabolic crack front line 
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According to a two-dimensional vision, the crack length varies between 60 mm at the sample edge 
and 70 mm at its center. The 𝐽*# and Amestoy's form are computed at an equivalent crack length 
ranging from 61.8 mm to 69.8 mm, corresponding to the barycenter of each element on the sample 
stiffness. All calculations are performed by assuming a horizontal and axial crack propagation 
pattern. The full set of results is listed in Table 1. Only the half-specimen has been considered 
herein. These results reveal a tremendous discrepancy between the two- and three-dimensional 
approaches induced by the out-of plane-effects, which cannot be integrated into a two-dimensional 
calculation even with the Amestoy correction. 

Layer Average crack length (mm) 𝐽"# 𝐽*# JA 

1 61.8 42394 37646 30065 

2 65 21687 31710 22148 

3 67.4 14523 28034 19118 

4 69 12025 25835 17417 

5 69.8 11041 24835 16673 

Table 1: Energy release rate output by J3D, J2D and Amestoy's integral JA (N/m²) 
 

6. Conclusion and outlook 
This paper proposes a new formulation of the J-integral for studying the fracture process in 
elements by considering three-dimensional effects. Compared to a standard two-dimensional 
computation, this approach includes three-dimensional stress-strain states. Non-path dependence is 
proven thanks to the use of an analytical formulation. Various visions are proposed in terms of the 
average energy release rate definition and the energy release rate distribution along the crack front 
line. Based on a comparison with Amestoy's work, a 𝐺%"#-integral transformation is proposed for 

the purpose of computing the energy release rate along the crack front line.  

Results of preliminary studies suggest analytic functions of new three-dimensional J-integral 
useful in numerous applications, including representing of three-dimensional shape of crack front 
and repartition of energy release rate along this front. 

The 𝐽"#-integral is implemented using the finite element method by considering a theta method. 
Various developments and validations highlight the capacity of this modeling approach to take 
into account three-dimensional effects and the out-of-plane stress state. The theta formulation 
allows defining an average energy release rate or its distribution along the crack front by providing 
support for the non-dependent integration domain characterizing the invariant integral concept. A 
comparison with the classical two-dimensional integral highlights the need to consider three-
dimensional effects in order to obtain the energy release rate along the crack front. One promising 
perspective consists of completing this study by a theoretical approach proposing a three-
dimensional vision of the local mechanical states in the crack front vicinity, thus offering a 
relationship between stress intensity factors and the energy release rate and its distribution along 
the crack front line. This work will serve to introduce virtual mechanical states for extension of the 
J-integral to a mixed-mode loading case in three-dimensional problems. An M-integral 



generalization will allow for a mixed-mode separation with complex geometries and loadings, 
including tensile, shear and torsion fracture modes. 
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