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Perceiving the topological structure of space
through sensorimotor interaction

Valentin Marcel, Sylvain Argentieri and Bruno Gas

Abstract—This paper deals with the perception of mobile

robotic systems within the framework of interactive perception,

and inspired by the sensorimotor contingencies theory. These

approaches state that perception is an ability built from the

motor and sensory data that an agent/robot experiences through

its environment exploration. In a recent article, the authors

have shown that the perception of space, provided it is limited

to the agent’s own body, finds a solid mathematical basis in

the SMC theory. An extension of these results to the agent

working space is proposed in this paper. More precisely, it is

demonstrated that a specific motor quotient space constitutes

one possible support for a good representation of space. By

defining a partial order relation over all the set of partitions of

the motor space, a refinement process is defined on the basis on

the sensorimotor invariants. The finest motor partition, obtained

after having experienced all environment states, is then shown

to be homeomorphic to the robot working space. A very simple

algorithm implementing these ideas is proposed together with

mathematical proofs establishing its convergence. Simulations

show the properties of the obtained spatial representation for

different scenarios.

I. INTRODUCTION

Space perception is a central issue in mobile robotics.
Indeed, many abilities depend on it, as moving, trajectory
planning or obstacle avoidance. Traditional approaches con-
sider that space is something that exists objectively. But the
sensorimotor contingencies theory (SMC) [1], [2] claims
that it has not to be the case. Space has not to be an
established substrate per se, but something that an agent may
experiences via the determination of sensorimotor invariants
called contingencies. In other words the discovery, at first, and
then the use of such contingencies is enough to make an agent
realize actions without the need of having an internal, local or
global representation, analytic or not, of space. Terekhov et al.
[3] have shown it unambiguously by putting in obviousness a
' function that can be learned only from the sensorimotor flow,
and able to represent any translation, whatever its origin and
whatever the state of the environment. Le Clech et al. [4] have
extended this idea by proposing a representation of the group
of the two-dimensional space transformations. The underlying
idea is based on the notion of compensable sensory changes
proposed by Poincaré [5], [6]. The mathematician was the first
to formalize the idea that one can obtain informations about the
geometric space in which we are immersed, by only comparing
signals sent to our muscles with signals coming from our
sensory organs. Our performed actions induce sensory vari-
ations through the environment, which can then be perceived,
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provided the so called contingencies are detected. Poincaré
has defined a compensable transformation as an action that a
mobile agent can do in order to retrieve an initial sensation
previously modified by a transformation of the environment.
The set of these transformations forms a group which is at all
points identical to the group of geometric transformations of
the space. Since then, substantial works have been published
about considering action in the structuring of perception [7]–
[11], some of them aiming to verify the Poincaré idea, but
more recently with a growing interest for robotics applica-
tions. For instance, [12] introduces very recently ”interactive
perception” as a set of approaches in robotics concerned with
the implication of action in perception.

In the early 2000s, Philipona [13] proposed a first math-
ematical formalism by defining the sensorimotor law as
s =  (e, m) where s denotes the sensation vector, e the vector
representing the state of the environment and m the motor
state of the agent. By analyzing the sensory data received by
a simulated agent in a three-dimensional space (a rat equipped
with extremely simple visual, auditory and proprioceptive
sensors), he succeeded in extracting the order of the group of
compensable transformations, and thus the dimension of the
geometric space in which the simulated rat navigated. These
results corroborate Poincaré s intuition, but only in a limited
way in that they are limited to infinitesimal movements of
the agent. A constraint that can be explained by the linear
nature of the analysis tools used. In 2012, Laflaquière [14] has
taken up the idea using a bootstrap technique and a curvilinear
component analysis of data (CCA) [15]. By this way, he
confirmed the ideas of Poincaré for more realistic movements
amplitude (up to ten degrees for rotations).

The approach initiated by Philipona, however, requires a
strong assumption that contradicts the initial postulate of the
SMC theory. The agent must be able to determine by its own
whether the environment is stationary or not. The authors have
not proposed a clear solution to this problem, but Roschin
and Frolov [16] have raised this objection and have suggested
another formulation of the problem. They consider an agent
endowed with a tactile skin completely covering it, and a
redundant robotic arm equipped at its end with an optical
sensor. The arm end-effector has to touch the body itself so
as to ensure a stable perception, thus obtained without any
prior hypothesis on the environmental state. Such an agent may
be of any non-deformable shape, spherical for example. They
thus succeeded in obtaining an internal representation allowing
them to determine the dimension of the space delimited by
the body of the agent, in a multimodal context (the tactile
modality in addition to the arm end-effector sensor). Of course
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this approach temporarily avoids the problem of unstable
environment. But it remains crucial since the question of
the agent perception by itself constitutes a central point of
perception in general [17]. In the same vein, Laflaquière [18]
more recently proposed to analyze the perception of the body
in the SMC theory framework by letting the agent discovering
the visual fields generated by an initially unknown visual
sensor, without prior knowledge about the structure nor of
the agent body nor of the external world.

Laflaquière et al. [19] have also shown that, beyond the
dimension of space, it is also possible to obtain an external
space representation by using appropriate partitions of the
motor space, resulting in a much more motor oriented than
sensor oriented framework. In this contribution, they have
proposed to take up the Frolov idea of the robotic arm, but
performing an exploration not limited to the agent body. Each
end-effector position of the arm is represented by the subset of
the motor configurations letting invariant the sensory state, the
so-called kernel manifolds. Their objective was to understand
how the concept of space can emerge independently of the
environment while sensorimotor experiments are dependent
on the environment. By noting that, due to the mechanical
redundancy of the agent, different motor configurations of the
arm can lead to the same position of the end-effector, giving
rise to the same sensor signal, the authors have suggested a
partitioning of the motor configuration space for which each
element of a partition corresponds to a same position of the
sensor in its working space. Such a representation becomes
then independent of the state of the environment since it is
based on a motor coding. Using a CCA-type data analysis
and an adequate distance (the Hausdorff distance) defined on
the elements of the partition, Laflaquière [20] succeeded to
build a motor internal representation of the positions occupied
by the end-effector without any external knowledge about its
working space.

At this stage it should be noted that there is no mathe-
matical proof that the structure thus constructed is indeed a
representation of the external geometric space. Nevertheless,
the simulations clearly show a regularity of the built maps
suggesting that these are indeed tonotopic maps and that the
topology of the external geometric space seems correctly con-
structed. We have proposed in [21] to formalize this problem
by adopting an external point of view from the agent. For that,
we have taken at first Frolov’s experiment of the action space
limited to the body of the agent. By describing mathematically
the set of partitions of the motor space as a set of equivalence
classes, we have been able to show formally that the motor
representation is well isomorphic to the work space of the
robotic arm. In [22] we have further shown that the topological
properties of the space of the body are well captured. From
then on, it becomes possible to plan robotic arm movements
directly into the internal representation space.

In this article we propose to extend this proof to the general
case. The end-effector arm working space is extended outside
the body of the agent, in such a way that all the environ-
ment state possibilities have to be considered. By defining
the various environment states as state sequences, we show
that it is possible to construct a partitioning process of the

motor space (the quotient motor space) which, by successive
iterations, allow to obtain a final partition that fit the external
working space, unknown to the agent at first. Mathematical
proof are given to comfort algorithm convergence. Such a
process requires the comparison of successive partitions of the
engine space. This is done by defining a partial order relation
which is at the origin of the notion of space refinement. Finally,
we show that the topological properties of the end-effector
working space are identically extracted from the process of
refinement.

The first section of this article is devoted to the presentation
of the mathematical fundamentals required to formalize the
notion of space refinement. The second section presents how
the working space can be represented from the quotient motor
space. The point of view adopted here is clearly that of the
external observer, since the agent himself has no access to this
space. The section ends with topological considerations aiming
to explain the topological properties of the final obtained struc-
ture, in accordance with the topology of the external working
space. Finally, we propose a set of simulations as proofs of
concepts illustrating the way of achieving the reconstruction
of the agent working space.

II. MOTOR SPACE REFINEMENT FROM SENSORY
INVARIANCE: DEFINITION AND MATHEMATICAL

FORMALIZATION.
This first section is devoted to the mathematical roots

required to precisely formalize the notion of space refinement.
As a first step, the first subsection is devoted to the mathe-
matical considerations explaining how the motor space can be
partitioned using sensory invariance, giving rise to a partial
order at the origin of the notion of refinement. On this basis,
the theory is generalized to handle successive environments in
a second subsection. All along the sections, the same simple
example will be used to illustrate the theory and its limits.

A. The notion of space refinement

1) Notations and definitions: Let’s first consider a naive
agent, be it virtual or robotic, which can interact with its
environment by generating motor commands lying in the
motor configuration space M. This space can be described
by latent variables parameterizing the agent actuators states
(i.e. joint angles, positions, etc.), thus forming a motor state
m 2 M. The agent is also endowed with sensors rigidly
placed on its own body parts. Those sensors inform the
agent about the environment’s physical state, thus generating
a sensory state s 2 S , with S the sensory space. Of course,
the sensory state s relates to the agent motor state m through
the sensorimotor law  .(.), so that in a given environment
state ✏ 2 E and a motor configuration m, s =  ✏(m). This
relation also outlines the dependency of the sensory state s to
the environment state ✏, with E the set of environment states.

It is obvious that because of the possible redundancies
in the agent geometry or in the sensory redundancies for
an environment in state ✏, the function  ✏(.) is surjective.
Basically, it means that, at ✏, two different motor states mi

and mj , i 6= j, can lead to the very same sensory state s.
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Fig. 1. Representation of three partitions of the motor space M: the trivial
one {M} (blue), the set of equivalence classes at ✏ M/= ✏

(green), and
the set of singletons of motor configuration states {mi} (black).

As outlined in the previous authors work [22], one can then
define an equivalence relation = ✏ , such that

mi = ✏ mj ,  ✏(mi) =  ✏(mj). (1)

Thus, one can regroup all the motor states leading to the same
sensory state in their equivalence class K

✏
m

= {r 2M|r = ✏

m}. It is well known that the set of all equivalence classes
forms a partition1 of the set on which the equivalence relation
is defined. In other words, every element in M is included
in one and only one equivalence class K

✏
m

. Additionally, the
quotient set M/= ✏

= {K

✏
m

|m 2M} forms a refinement of
the trivial partition {M} of M, i.e. every element in M/= ✏

is composed of subsets of the trivial equivalence class M. The
refinement relation can then be written as

M/= ✏
 {M}, (2)

where the symbol  refers to the finer than relation, which
also defines a partial order2. The partition X is finer than the
partition Y if every element in X is a subset of some element
of Y , i.e. X can be seen as composed of fragmented parts of
Y . Equation (2) can then be completed such that

{{m}|m 2M} M/= ✏
 {M}, (3)

which is illustrated in Figure 1 in the particular case of a
finite motor configuration space M, made of 5 different motor
configurations mi, i 2 [1, 5]. In this illustration, consider
that at environment state ✏, the subsets surrounded by a
green contour are equivalence classes composing the partition
M/= ✏

of M. Then M/= ✏
is finer than the trivial partition

{M}. Similarly the set of singletons {mi} for i 2 [1, 5] is
again a finer partition than M/= ✏

or {M}. It is also the finest
partition of M. Then, for a naive agent with absolutely no
information about its sensorimotor flow, {M} is the coarsest
sensorimotor partition it can access to, where each motor
configuration is not distinguishable from each other. As such,
one can write {M} = M/= ? , i.e. {M} is the quotient
set obtained with ✏ = ?. Then, the aim of the sensorimotor
exploration of the agent could consist in establishing the finest
partition that can be obtained exploiting sensory invariances.
Such a partition might be coarser than the one obtained from
singletons as it captures the structure of sensory invariances

1A partition of a set X is a set of non-empty, pairwise disjoints, subsets
whose union forms the set X itself.

2A partial order is a binary relation satisfying the reflexivity, antisymmetry
and transitivity axioms.

of the agent’s sensorimotor flow. In that sense, it will be
called a representation of the agent’s interaction in a specific
environment state. Moreover, this kind of representation can
be extracted for any function  ✏, evaluated at any environment
state ✏ as relation (3) is always true.

2) Illustrative example: All the aforementioned consider-
ations were mainly theoretical. Let’s now focus on a more
experimental illustration of these points by using a very simple
simulated robot agent made of one serial arm composed of
two parts of identical length controlled by two revolute joints
moving in a plane, see figure 2. The end-effector of the system
is endowed with a 1-pixel (punctual) camera which is only
sensitive to illumination in such a manner that it can only
send two values: s = 0 if the illumination is zero and s = 1

otherwise. For the sake of simplicity, the system is driven by
two motor commands m1 and m2, which are supposed to
represent directly the two joint angles, so that by convention
m1, m2 2 [�⇡, ⇡[ (m1 = m2 = 0 makes the arm horizontal
on the right in Figure 2).

Suppose now that the environment is made of a black and a
white areas separated by a straight line, as depicted in Figure 3.
Of course, the agent does not have access to this information
and can only rely on its sensorimotor flow, i.e variations of
m1, m2 and their sensory consequences. At the very begin-
ning, the set of all motor commands m = (m1, m2) have not
been distinguished from each other so that the representation
of the sensorimotor interaction is the coarsest partition {M}.
After having explored this black and white environment, the
agent is able to obtain a finer representation. Indeed, two
equivalent classes can be easily formed by regrouping all the
motor commands m giving the same sensation, namely, for
an environment state ✏, K

✏
0 and K

✏
1 . Then, the set {K

✏
0 , K

✏
1}

forms a partition of the set {M} such that {K

✏
0 , K

✏
1}  {M},

which can be represented as a two nodes graph, see Figure 4.
This partition is also drawn directly in the motor space in
Figure 3b. Of course, for this specific environment state, the
representation above, based on sensory invariances, is the
finest possible. It is clear the agent will never be able to
separate different motor configurations that led to identical
sensations in this environment state. Actually, this means that
a representation in only valid for one specific environment
state, thus highlighting the environment dependency of the
representation, formally captured by the dependency to the
environment state ✏ in the equivalence relation = ✏ . This
dependency has been discussed in many publications [13],

Fig. 2. The 2D serial agent with 2 degrees of freedom and the 1-pixel camera
(red) and its working space (dashed line).
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(b) Sensorimotor clusters for envi-
ronment ✏.

Fig. 3. Representation of the environment state ✏ (left), and its corresponding
sensorimotor clusters (right).

[16], [19], [23], and no clear solutions have been proposed
so far to deal with the environment variability. In these works,
the environment is systematically considered static and often
restrict their study to cases where the environment changes do
not influence the sensorimotor flow (by working one the agent
body, for instance, like in [22]).

However if the environment happens to change, it is possible
that previously inseparable motor configurations (thus re-
grouped in one equivalence class) are now generating different
sensations. This would allow the agent to fragment again
the previous equivalence class, i.e. to refine the sensorimo-
tor representation. This will be formalized in the following
subsection.

B. Generalization to multiple environments

1) Mathematical formalization: Following the ideas de-
tailed in §II-A, let’s consider a naive agent that has built, for
one environment state ✏, the partition M/= ✏

. If the environ-
ment state switches from ✏ to ✏0, then the agent can build a
new representation on the basis of a new equivalence relation
= ✏0 , leading to the new motor space partition M/= ✏0

. It
should be highlighted that for any m1,m2 2 M, m1 = ✏

m2 < m1 = ✏0 m2 and m1 6= ✏ m2 < m1 6= ✏0 m2. It
clearly means that the two partitions M/= ✏

and M/= ✏0
can’t be directly compared, as they are both representing one
specific motor partition dedicated to a given environment state.
However, one can define a new multi-environment equivalence

K1�
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Fig. 4. Clustering of the motor space M in two equivalence classes K✏
0 and

K✏
1 after the sensorimotor flow analysis. The partition {K✏

0 ,K
✏
1} = M/= ✏

is finer than {M}.

relation = (✏,✏0) as

m1 = (✏,✏0) m2 ,

0

B@
m1 = ✏ m2

and
m1 = ✏0 m2

1

CA . (4)

It is obvious that, according to its definition, this equivalence
relation leads to equivalent classes K

(✏,✏0)
m

verifying K

(✏,✏0)
m

✓

K

✏
m

and K

(✏,✏0)
m

✓ K

✏0
m

. In terms of the partial order , this
property can also be written
8
>><

>>:

{{m}|m 2M} M/= (✏,✏0)
M/= ✏

 {M}

and
{{m}|m 2M} M/= (✏,✏0)

M/= ✏0
 {M},

(5)

which shows that, by definition, the partition M/= (✏,✏0)
is

a refinement of both partitions M/= ✏
and M/= ✏0

. Note
that this multi-environment equivalence relation = (✏,✏0) does
not depend on the order of ✏ and ✏0. Consequently, the tuple
(✏, ✏0) can be written as a subset E = {✏, ✏0}.

Based on the idea that intersecting partitions obtained on
multiple environments gives a finer representation, one can de-
fine the generic multi-environment equivalence relation = E ,
for any subset E ✓ E , as

m1 = E m2 ,m1 = ✏ m2, 8✏ 2 E. (6)

Note that the notation = E represents the equivalence relation
defined in (6), i.e. on all ✏ 2 E. The notation  E will be
formally defined as a function in §III-A3, see relation (14).

It is then possible to derive interesting properties of the
order relation  on subsets of E . For instance, let’s consider
two non-empty subsets E1, E2 ✓ E such that E2 ✓ E1. One
then have

M/= E1
M/= E2

, (7)

i.e. M/= E1
is finer than M/= E2

since E1 might contain
environment states which are not in E2, thus inducing a
refinement of the partition obtained on E2. Consequently,
considering the extreme case where E = E , then it is clear
that M/= E

is the finer representation the agent can have
access to. As such, it constitutes the greatest lower bound for
all possible sets of equivalence classes i.e.

M/= E
M/= E

 {M}, 8E 2 P(E )

3
. (8)

In the same veine, Equation (8) indicates that the set {M}

trivially constitutes the least upper bound of all sets of
equivalence classes. Among all these partitions, M/= E

is
of particular importance. Indeed it is made of equivalence
classes which can never be further fragmented. In that sense,
these equivalent classes constitutes the so-called sensorimotor
refinement points which are closely related to points in space,
see §III-A2.

3The power set of E is the set of all subsets in E , including the empty set
and the set E itself.
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Fig. 5. Representation of the environment state ✏0 (left), and its corresponding
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(b) Sensorimotor clusters for the
sequence (✏,✏0) in motor space.

Fig. 6. Sequence {✏, ✏0}: black area is for sequence (black&black), dark gray
is for sequence (black&white), light gray is for sequence (white&black) and
white for sequence (white&white).

2) Illustrative example (cont’d): Let’s come back now to
the example used in §II-A2 as an illustration of the theory.
Imagine the same agent is now experiencing a new environ-
ment state ✏0 which corresponds to a new black and white
separation of the robot working space, as shown in Figure 5.
Considering this new environment state ✏0 alone, it is clear
that the agent can partition its motor space in two equivalence
classes K

✏0
0 and K

✏0
1 , thus leading to a new representation

which is structurally identical to Figure 4, the variable ✏ being
here trade for ✏0. However, the agent has now the possibility
to build a finer representation for having sequentially experi-
mented the environment states ✏ and ✏0. The resulting multi-
environment partitioning can be easily deduced in this case,
and is shown in Figure 6. In this intuitive example, the agent is
now able to separate the equivalence class K

✏
0 , which relates

to all the motor configurations giving the same 0 sensation
value for the environment state ✏, into two new subsets that are
denoted K

E
00 and K

E
01, with E = {✏, ✏0}. Of course, the same

applies for the initial equivalence class K

✏
1 , now partitioned

in two subsets K

E
10 and K

E
11. Following the conventions used

in Figure 4, one can then illustrate this refinement with the
binary tree shown in Figure 7. If the experiment is iteratively
reproduced, then the multi-environment representation will
again be refined, with all the equivalence classes being more
and more partitioned into smaller subsets. The tree structure
would then of course shows a monotonically growing number
of nodes. In this example, there might be an uncountable

number of possible motor configurations as well as (black
& white) environments so that the number of nodes will
most likely diverges to infinity: all the equivalence classes can
always be further partitioned with a new specific environment.
However, taking the limit of the refinement in the number of
exploited environments states one obtains pointwise clusters:
the sensorimotor refinement points.

In Figure 7, one can see the tree structure of the refine-
ment: while the number of environment grows, each node is
further separated into new nodes. For the moment, at each
level of refinement, there is an unconnected graph so that
equivalence classes are not linked together by edges which
represent a neighborhood relation in the graph. However, the
fact that some equivalence classes in one level were inside
a common equivalence class in the previous level should
imply the existence of a topological relation between them.
As an example, looking at Figure 7, the colored nodes at
the bottom corresponds to the colored areas in Figure 6 (left).
The black and dark gray nodes have a common ”ancestor” K

✏
0

and they are topologically neighbors as they share a frontier
in Figure 6 (the same applies for the light gray and white
nodes). Furthermore, exchanging the order (✏

0
, ✏) would give

a different refinement tree where there would be a common
ancestor to dark gray and white nodes but also to light gray
and black nodes which are all neighbors in the working space
as they share common frontiers. Then, two questions arise:

• what is the interpretation of the obtained finest represen-
tation in the physical space ?

• how to compute the neighborhood relations and what is
their interpretation in the physical space ?

These two points will be formalized in the next section.

III. SPACE REPRESENTATION: FROM MOTOR SPACE
REFINEMENT TO POSE SPACE REPRESENTATION

The previous section was devoted to the introduction of
the notion of refinement, exploited here to model how a
naive agent can refine its motor space into finer partitions by
integrating its sensorimotor experience along successive envi-
ronment states. But it is not clear how this motor representation
can actually captures any information about space, or at least
about the agent working space. This link is precisely described
in this section by introducing a new intermediary pose space
X between the motor configuration space M and the sensory
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Fig. 7. Clustering of the motor space (cont’d): two equivalence classes (K✏
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and K✏
1 ) built when experiencing the environment state ✏ can be partitioned

again in 4 subsets after experiencing the sequence (✏, ✏0).
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space S . This new set will be shown as fundamental to
understand why and how the agent can discover properties
about the physical space during its sensorimotor exploration.

This section is organized as follows. In a first subsection,
spatial considerations will be introduced through the pose
space X of the sensors as well as a new equivalence relation
to form, for any E 2 P(E ), a new quotient set X/=�E

which
will be shown to be isomorphic to M/= E

, i.e. the refined
partition of M. Again, the example used all along the paper
will be exploited to illustrate the theory. The second subsection
introduces some topological considerations into the formalism
as well as a minimum number of hypothesis required to
prove that it is possible, just from the refinement process,
to obtain a representative space with topological properties
directly inherited from continuity in the physical space. This
will further justify the introduction of technical topological
properties in the formalism and the choice of M/= E

as a
good candidate to represent the agent’s working space.

A. From the motor quotient space to the sensor pose
For the sake of clarity, the previous section has highlighted

the only two spaces the agent can be aware of: the motor
configuration space M and the sensory space S , where all
its motor and sensory states lie respectively. Both spaces are
linked together through the sensorimotor law  . But one have
to keep in mind that the sensory state s 2 S is outputted
by rigid sensors whose spatial state in the world is entirely
described by their sensors pose x 2 X , with X the sensors
pose space which has been so far omitted. So let’s first focus
on this new set and highlight the links between X , M and S .

1) Definition of the sensor pose space: It is well known
in robotics that the forward kinematics function f(.), which
accounts for the relative movements allowed at each joint and
is dependent on the geometry of the robot, is a function linking
the motor state m to the corresponding sensors pose x usually
in Euclidean space, so that x = f(m). In all the following,
the pose x –which is the sensors spatial state in the physical
world– refers to the sensors positions and their orientations
relatively to the frame of the agent’s body. The overall state of
the sensors in the physical space is composed of an extrinsic,
thus not directly accessible, spatial state: their pose x and
an intrinsic sensory state s corresponding to the response of
the transducers to the world physical state ✏ at their specific
location and orientation x in space. Of course, both spatial and
sensory states are linked together through the forward sensory
function �✏, so that s = �✏(x). In the end, the sensorimotor
law  ✏ can be written as the composition  ✏ = �✏ �f , which
is summarized by

M X S

 ✏

f �✏
. (9)

One have to keep in mind that the agent has no way to
directly access to the sensor spatial state space X in any
way. Introducing X is only a convenient theoretical way to
understand how the motor refinement strategy outlined in
Section II helps the agent to build its own interpretation of
space through the analysis of sensorimotor invariants.

In order to generalize, the two functions f and �✏ can
be both considered surjective. While this is obvious for f

(the sensors pose space X is by definition the image of
M by f ), �✏ can be rendered surjective by restricting S to
S✏ = �✏(X ), with S✏ ✓ S . This means that two different
motor configurations can lead to the same sensors pose (i.e.
the surjectivity of f captures the agent kinematics redundancy)
and in a specific environment state ✏ two different sensors
poses can lead to the same sensory state (i.e. the surjectivity
in �✏ captures the agent environment local physical states
redundancies but also poses redundancy such as rotational
symmetry). In the vein of Equations (1) and (6), then, for
any ✏ 2 E , one can again define an equivalence relation =�✏

for two poses with

x1 =�✏ x2 , �✏(x1) = �✏(x2), (10)

or, the equivalence relation =�E for any subset E ✓ E , with

x1 =�E x2 , �✏(x1) = �✏(x2), 8✏ 2 E. (11)

These two equations can be understood as: two poses are
said equal after having seen environment ✏ 2 E (resp: all
environments in E ✓ E ) if the sensations they produce
are equal (resp: equal for all environment in E). Following
the same reasoning as in §II-B1 which has conducted to
Equation (8), one can then write immediately

{{x}

x2X }  X/=�E
 X/=�E

 {X}, 8E 2 P(E ), (12)

where X/=�E
represents the pose quotient set refining the

trivial partition {X} of X .
Among all pose partitions, X/=�E

is of particular interest.
Exactly like in II-B1 for M/= E

, this quotient set is made
of equivalence classes which can not be further fragmented
in subsets. It is interesting to see that the finest equivalence
classes can only be coarser than the points in the sensors
pose space. This highlights the possible difficulties or even the
impossibility for an agent to directly represent the positions
and orientations of its sensors, as they may contain a sensory
redundancy. As an example, the spatial state of a heat sensor
varies with a rotation on itself but its temperature should not.
As such, these equivalent classes can also be envisioned as
the new pose refinement points, which will be shown to be
closely related to the sensorimotor refinement points obtained
on the finest motor partition.
But how could the agent build X/=�E

, since it has no way
to access to X in the first place? This will be illustrated in
the next subsection with the same ”black and white” example,
before the formal demonstration of the existence of a bijection
between M/= E

and X/=�E
.

2) Illustrative example (cont’d): Let’s come back to the
illustrative example used all along the paper, where a two-
DOF robot arm explores a black and white environment. In
this simple case:

• the environment state ✏ can be fully described by a
straight line delimiting the working space in two areas4,

4This line can be parameterized by its podal point coordinates in R2, which
is the shortest point from the line to the center of the working space



7

together with a binary value indicating which one is
black, so that ✏ 2 E ⇢ R2

⇥ {0, 1};
• the agent’s motor configuration set M is made of

the set of the two joint angles ✓1, ✓2 so that M =

{(✓1, ✓2), ✓1, ✓2 2 [�⇡, ⇡[};
• the forward kinematics function f gives the punctual end-

effector position (x, y) 2 X ⇢ R2 as a function of ✓1, ✓2

and L, the length of the two body parts, with (x, y) =

(L(cos ✓1 + cos(✓1 + ✓2)), L(sin ✓1 + sin(✓1 + ✓2)));
• the pointwise sensor, placed on (x, y), delivers a sensa-

tion5
s = �✏(x, y) 2 S✏ = {0, 1}.

The agent is there endowed with a pointwise sensor, a
pose x in X is nothing else but a point in a 2D Euclidean
space. Since two distinct points in the 2D euclidean plane can
always been separated by a straight line, equivalently for two
distinct poses in X , there always exists an environment state
✏ 2 E for which the corresponding sensations are distinct.
Then, for a given pose x, the equivalent class K

E
x

regrouping
all the poses leading to the same sensation obtained at x for
all ✏ 2 E is the singleton {x}. This means that the finest
partition X/=�E

of the working space is the set of singletons,
i.e. X/=�E

= {{(x, y)}, (x, y) 2 X}. In this particular case,
the pose refinement points are exactly the pose space points
in the working space.

Following the same lines, it is clear that the equivalence
classes in the motor configurations space M are the set of
motor configurations leading to a same and unique pose in
the working space through the forward kinematics function
f . Consequently, the finest partition M/= E

is made of
equivalence classes K

E
m

individually corresponding to one
equivalence class K

E
x

= K

E
f(m). In this particular case,

sensorimotor refinement points in M/= E
have all one and

unique corresponding pose refinement point in X/=�E
, which

have been shown to represent pose points in the working
space. Then, without any knowledge on the forward kinematics
function f –and through a refinement strategy– the agent can
build the set M/= E

which captures all its kinematics redun-
dancies and constitutes a very good candidate for representing
its working space.

All these considerations are represented in Figure 8. The
working space is represented in the middle, where each pose
can be reached by the agent from one or multiple motor
configurations due to the kinematics redundancy. For instance,
the pose x1 (resp. x3) can be reached by the 2 different
motor configurations m1 and m2 (resp. m3 and m4) in M.
The same applies for the pose x5 located at the limit of the
working space, which can be obtained with a unique motor
configuration m5. Another particular case is the pose x6 ob-
tained when the sensor is exactly in the center of the working
space, which can be reached with all motor configurations
m = (m1, m2) such that m2 = �⇡, thus building the set
M6 2M. As explained above, each of these poses is linked to
an equivalent class in M/= E

once the agent has experienced
all the possible environment states ✏ in E . For instance, the
two motor configurations m1 and m2 (resp. m3 and m4) can

5In the particular case where the sensor is placed exactly on the straight
line splitting the working space in two areas, it is arbitrary chosen that s = 0.

be regrouped in the equivalent class K

E
m1

= {m1,m2} (resp.
K

E
m3

= {m3,m4}) in M/= E
. Then, one can see on this

illustration that each undividable equivalent class obtained on
the finest partition in M/= E

forms a sensorimotor refinement
point, each of them being associated to one and only one
pose space point in the working space, i.e. a point in the
2D Euclidean space. Thus, the agent knows for instance that
any motor configuration selected in M6 would correspond
to a sensorimotor refinement point K

E
m62M6

and so to a
unique pose space point in the working space. In that sense,
along the refinement, one can qualitatively understand that the
embedding from M to the set of equivalence classes point-
wise converges to a map which has the same kernel than the
forward kinematics function.

This simple example allows to illustrate the link between
M/= E

and X/= E
, but one can prove in the general case

the existence of a bijection between these two sets. This will
be detailed in the following subsection.

3) Theoretical generalization: Before demonstrating the
aforementioned bijection, let’s introduce the notion of sensory
sequence for a motor configuration along with the successive
experienced environment states. As an example, in the previ-
ous illustration such sequence would be made of a sequence
of 0 or 1 obtained for each environment state ✏ in fixed motor
configuration. One can then define the set SE of all sensory
sequences being possibly experienced for any specific subset
E ✓ E by

SE =

Y

✏2E

S, (13)

where
Q

denotes the Cartesian product of sets. On this basis,
one can now precisely define the maps �E and  E , already
used for the notations of the equivalence relations in (6)
and (11), as the functions mapping each motor configuration
(resp. pose) to their respective sensory sequences indexed by
the subset E, with

�E : X ! SE

x 7! (�✏(x))✏2E

and  E : M! SE (14)
M 7! ( ✏(m))✏2E

Consequently, the equivalence relations =�E and = E can
now equivalently be respectively defined by, for any x1,x2 2

X ,

x1 =�E x2 , 8✏ 2 E, �✏(x1) = �✏(x2),

, �E(x1) = �E(x2),
(15)

and, for any m1,m2 2M,

m1 = E m2 , 8✏ 2 E, ✏(m1) =  ✏(m2),

,  E(m1) =  E(m2).
(16)

The set SE does contain sensory sequences that are never
obtained from the motor configurations in M so that both
functions �E and  E are rendered surjective by restricting
the image set to be the sensory sequences that actually
occurred for each motor configuration in M: ˜

SE ✓ SE . Let’s
now denote the canonic projection that maps points in M

(resp. in X ) to their equivalence classes in M/= E
(resp. in

X/=�E
) by ⇡ E (resp. ⇡�E ). One can now state the following

proposition.
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E
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0

✓1
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Fig. 8. Illustration of the link between M, X and M/= E
for the simple example used in the paper. (Left) Sensorimotor representative space, i.e. the finest

partition of the motor space. (Middle) Pose space, with the punctual camera represented as a square. (Right) Motor configuration space. In the end, and for
the finest motor representation, each sensorimotor refinement point KE

mi
in M/= E

represents one and only one point in the agent working space.

Proposition 1. For any subset E ✓ E , X/=�E
and M/= E

are equinumerous.

Proof. It is clear that the sets X/=�E
and ˜

SE are equinu-
merous. Indeed, by definition of ˜

SE , there are as many
equivalence classes in X than there are different sequences
of sensations in ˜

SE . Thus there exists a unique bijective map
˘

�E linking them together in X/=�E
and ˜

SE . M/= E
and

˜

SE are also equinumerous for the same reason. Thus, there
exists a unique bijective map ˘

fE , mapping equivalence classes
together between M/= E

and X/=�E
.

This property can be summarized with the following commu-
tative diagram:

M X

˜

SE

M/= E
X/=�E

 E

f

⇡ E

�E

⇡�E

f̆E
�̆E

.

From the illustration example, the agent is theoretically
able to build the motor quotient space M/= E

from
sensory invariances and by repeating its motor configurations
after each environment change. At the end, these motor
configurations can theoretically be regrouped into equivalence
classes for which sensors always send the same sensations
so they are referred as sensorimotor refinement points. Each
sensorimotor refinement point does not always corresponds
to a unique sensors pose in space because they might be
other poses that always give an identical sensation, and the
agent can not distinguish them using only sensory invariants.
So the space represented by the sensorimotor representation
space M/= E

is the quotient pose space X/=�E
composed

of pose refinement points which include this redundancy.

In order for the motor quotient space to be a representative
of the pose quotient space, it has to (i) contain the same
number of points (which has been proved here), and (ii)
represent the topological properties of the points. It has been
postulated in the example that some of these properties can
be extracted from the refinement process. The next subsection

deals with the hypothesis and methods needed to build such
structure in the set of sensorimotor refinement points.

B. Towards topological considerations

1) First topological considerations in M, X and X/=�E
:

Here, one can suppose some topological structures in both
space M and X . Let’s call ⌧M the intrinsic topology
in the motor configuration space and let’s call ⌧X the
extrinsic topology in the pose space. The motor topology
is derived from the action and proprioception capabilities
of the agent while the extrinsic topology is deduced from
possible movements of the sensors in the physical space.
As an example for the 2 DOF agent introduced in Figure 2
the motor topology would be the 2-torus because of the
two revolute joints, while the topology of the pose space
is a surface. From the refinement, one can build a natural
topology in the quotient space X/=�E

, the quotient topology
⌧E , which is coinduced6 by the function ⇡�E on X . Both
topologies ⌧X and ⌧E are extrinsic and are derived from the
continuity in the physical world. In order for the agent to
build a correct representation of the interaction of the sensors
with the physical world, the agent should be able to build,
in the representative space M/= E

, a topological structure
which is equivalent to ⌧E .
Before exploiting the topological properties of the refinement,
there are two hypothesis that the agent motor topology ⌧M
should satisfy in order to obtain exploitable results.

(H1) The forward kinematics map f is continuous.

Such an hypothesis means that open sets in the topological
space (X , ⌧X ) have open preimages by f in (M, ⌧M), this in-
tuitively means that small sensors displacements are generated
by small motor movements.

For now, M, X and X/=�E
can all be considered as

topological spaces, and the links between them have been
highlighted. In addition to these considerations, this study
will be restricted to a motor configuration space verifying the

6⌧E is the finest topology that makes the canonical projection ⇡�E
continuous
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following hypothesis.

(H2) The motor configuration space M is compact.

H2 is a quite technical hypothesis7. Basically it implies that
if M is a subsect of a Euclidean space, then H2 translates
to ”M has to be closed and bounded”. For instance, this
hypothesis avoids the case where the agent would be able to
perform infinite translations of its sensors.

2) On stochastic properties of the refinement: It’s clear that
the refinement process carries some topological information
from the successive inclusion of partitions, originating from
the interactions with the corresponding environment states.
However, the agent can not control these states changes: from
its point of view, they can be seen as random events. One
then should introduce some stochastic properties to actually
exploit the refinement.

(H3) The refinement follows a Bernouilli process.

To illustrate H3, let’s consider two poses xi and xj belong-
ing the theoretical pose equivalence classes K

xi and K

xi in
the finest pose quotient space X/=�E

. Then one have, for any
✏ 2 E , �✏(xi) =

˘

�✏(Kxi) and �✏(xj) =

˘

�✏(Kxj ). However,
there will be environment states for which the sensations for
both equivalence classes are identical ˘

�✏(Kxi) =

˘

�✏(Kxj ) and
others for which they are different. Let’s consider a successive
sequence of environment states the agent can interact with,
indexed by the sample number k 2 N so that at sample k the
environment is in a state ✏[k] 2 E . Let’s introduce a binary
random variable �k(K

xi , Kxj ) such that

�k(K

xi , Kxj ) =

(
1 if ˘

�✏[k](Kxi) 6=
˘

�✏[k](Kxj ),

0 otherwise.
(17)

H3 states that �k(K

xi , Kxj ) has a Bernouilli distribution, i.e.

Pr
⇣
�k(K

xi , Kxj ) = x

⌘
=

8
<

:

⇢(K

xi , Kxj ) if x = 1,

1� ⇢(K

xi , Kxj ) if x = 0,

0 otherwise,
(18)

such that

⇢ : X/=�E
⇥ X/=�E

! [0, 1] (19)

One can notice that ⇢ does not depend on the time step
k, so that ⇢ represents the probability for two equivalence
classes K

xi and K

xj to be associated to a different sensation
in any environment state or equivalently the probability to
sample an environment for which the associated sensations are
different. Thus for any pair of equivalence classes, and for any
k 2 N, the random variables �k are identically distributed, and
supposed mutually independent. Consequently, the sequences
of �k constitute Bernouilli processes. One important property
on ⇢ follows.

Proposition 2. For any pair of equivalence classes K

xi ,
K

xj 2 X/=�E
, K

xi = K

xj iff ⇢(K

xi , Kxj ) = 0

7Formally, a topological space X is said compact iif every open cover of
X has a finite subcover.

Proof. If K

xi = K

xj then it is obvious that ⇢(K

xi , Kxj ) = 0.
Now let’s take equivalence classes K

xi and K

xj such that
⇢(K

xi , Kxj ) = 0. If there exists some environmental states
for which their respective sensations are different, then by
definition of ⇢, the probability of sampling any number of
these environments states is 0, the equivalence classes are
identical with probability 1, which will be simplified as pure
equality as these states can be removed from the set E without
loss of generality.

From the previous statements, one can obtain the following
property.

Proposition 3. The map ⇢ is a metric in X/=�E
.

Proof. It is obvious that, according to Equation (19) and
proposition 2, ⇢ is symmetric positive-definite. Let’s show that
it also satisfies the triangular inequality. For any K1, K2 and
K3 2 X/=�E

, having �k(K1, K2) = 1 –which means that
K1 is associated to a different sensation than K2 at environ-
ment sample k–, should lead to (�k(K1, K3), �k(K2, K3)) =

(0, 1), (1, 0) or (1, 1). Therefore

�k(K1, K2)  �k(K1, K3) + �k(K2, K3), (20)

in a deterministic way. Applying the expectation symbol
on (20), and recalling that E[�k(K1, K2)] = ⇢(K1, K2) from
Equation (18), then ⇢(K1, K2)  ⇢(K1, K3)+⇢(K3, K2).

X/=�E
is now endowed with a metric which is calculable

by the naive agent. It is well- known that the metric ⇢, which
will now be called the refinement distance, defines a topology
⌧⇢ on X/=�E

, which is generated by open balls Br(K) of
radius r > 0 centered at all K 2 X/=�E

as the set Br(K) =

{K

0
2 X/=�E

, ⇢(K, K

0
) < r}.

3) Link between the finest quotient topologies: In order
to deduce spatial interpretation from this newly defined
topology, one has to add one last important hypothesis.

(H4) ⌧⇢ is coarser than the quotient topology ⌧E .

This means that continuous actions in the topological space
(X/=�E

, ⌧⇢) are also physically continuous transformation in
the space (X/=�E

, ⌧�E ). The hypothesis H4 guarantee the
conservation of the physical continuity through the maximum
refinement.

Proposition 4. The topological spaces (X/=�E
, ⌧⇢) and

(X/=�E
, ⌧E ) are equal.

Proof. From H4, as (X/=�E
, ⌧⇢) is a metric space, it is also

Hausdorff, moreover (X/=�E
, ⌧E ) is also Hausdorff because

it has a finer topology. Let’s remember that (X/=�E
, ⌧E ) is

compact as the continuous image of the compact space M

(hypothesis H2), therefore (X/=�E
, ⌧⇢) is compact because of

its coarser topology. Both space are compact Hausdorff spaces,
therefore their topology are either incomparable or equal. As
⌧⇢ is coarser than ⌧E they are comparable thus equal. More
details about this proof in [24].
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Therefore, the agent can build a topology in the represen-
tative space M/= E

as the topology ⌧̆⇢ =

˘

fE
�1

(⌧⇢), which
can be built by computing the metric ⇢ and applying it to the
motor states generating the sensations, then:

Proposition 5. The topological spaces (M/= E
, ⌧̆⇢) and

(X/=�E
, ⌧E ) are topologically equivalent.

Proof. From proposition 1, ˘

fE is a bijective map. From propo-
sition 4, it is obvious that it is continuous, with a continuous
inverse, so it is a homeomorphism.

The authors have shown that, under technical but natural
hypothesis and by definition of a refinement distance ⇢, it is
theoretically possible to build an intrinsic representative space
of the outside physical space. Apart from the hypothesis, this
space is built with no a priori information and uniquely from
the repetition of motor configurations and the exploitation of
sensory invariances. In the next section will be shown some
of the results that can be obtained in a simulated context.

IV. SIMULATIONS

This section is devoted to some simulations used as proofs
of concept illustrating how a sensorimotor refinement strategy
can be numerically applied to actually compute a represen-
tation of the quotient pose space unknown to the agent. The
results will be obtained by using the agent introduced in Fig-
ure 2 endowed with light sensors and environments that satisfy
the hypothesis shown in the previous section. The simulation
setup is introduced in a first subsection, together with some
numerical considerations regarding the refinement distance
estimation and a short conclusion. In the next subsection,
some first results are proposed concerning the example used all
along the paper. It will illustrate how the refinement strategy
can be implement and how topological information can be
captured in the representative space. Finally, a more complex,
environment is used in the third subsection to emphasize the
generality of the approach.

A. Simulation setup

Refining a representation is an iterative process per se –
as formalized in §III-B2– where each iteration is enumerated
by the sample number k and corresponds to a supposed
static environment ✏[k]. At each iteration, the agent samples
a finite number N of motor configurations mi in M ✓ RM

where M is the number of degrees of freedom of the agent’s
actuators. In order to obtain meaningfull statistical results, the
agent will repeat the same movements along the refinement
process. Thereby to each environment state ✏[k] and motor
configuration mi correspond a sensation si[k] 2 S where S

is a finite set possibly corresponding to a numerical encoding
of all possible values the sensors can return.

1) Estimation of the metric ⇢: in the vein of Equa-
tion (17), let’s define the sensory equivalence between
two motor configurations mi and mj at sample k by
�k(mi,mj) = (si[k] 6= sj [k]). From the successive iterations
along the refinement process, one can define the refinement

distance estimator at sample k between two motor configura-
tions mi and mj as

Dij [k] =

1

k

kX

`=1

�`(mi,mj). (21)

Imagine now that the two motor configurations mi and mj

belong to two theoretical equivalence classes in the finest
motor quotient space that the agent is trying to represent,
K

mi = ⇡ E (mi) and K

mj = ⇡ E (mj) respectively. Then,
according to the law of large numbers,

1

k

kX

`=1

�`(mi,mj)
a.s
�!

k!1
⇢(K

mi , Kmj ). (22)

Therefore the refinement distance estimator Dij [k] is a consis-
tent estimator of the refinement distance ⇢(K

mi , Kmj ). The
refinement distance estimator can be further computed using
the hamming distance between two sequences of sensations as
the percentage of sensations that differs, i.e.

Dij [k] = hamming distance(si[1 : k], sj [1 : k]). (23)

From the N sampled motor configurations used in the simula-
tion, one can then build the symmetric refinement distance
matrix D[k] 2 [0, 1]

N⇥N made of the components Dij [k]

estimating the distance between mi and mj . Importantly, as
shown in the following, D[k] contains all the topological
structure of the representative space at sample k. In the
end, the numerical implementation used in the following is
reproduced in Algorithm 1.

2) Intrinsic performance: From an internal point of view,
the only thing an agent can intrinsically evaluate, without
any knowledge about the finest pose quotient topology, is
the convergence of D[k] as the number of samples goes to
infinity. First, from property 2 each zero in the matrix D[k]

corresponds to an equivalence class. If Dij [k] = 0 then the
motor configurations mi and mj have always given the same
sensation at all samples before k. If number of zeros in
the refinement matrix converges to some value and does not
change anymore along iterations, then the agent can suppose
that its representative space is not likely to be further refined.
The finest representation has been obtained and the agent can
focus on the convergence of pairwise distances.
From relation (22), one can say that D[k] is a consistent
representation of the topology in the finest quotient pose space.
However, the estimated distances are constantly updated along
with the environment sampling. Let’s introduce a stopping rule
that tells the agent when its final representation is obtained.
One solution is to check whether topological properties are
conserved in successive samples. This can be assessed by
verifying the existence of a monotonous function between
the estimated distance at two samples D[k] and D[k � �]

where � is a given number of samples. Indeed, if both
pairwise distance matrices have the same ordering of their
distances, then it is obvious that, for both matrices, each
points have the same neighbors. Consequently, they will have
an identical topological structure, this property is used as an
example in non-metric multidimensional scaling [25] and more
recently for a similar application in [26]. When trying evaluate



11

Algorithm 1 Computation of the refinement distance matrix
Inputs:
- N : number of target motor configurations.
- m0: rest motor configuration.
- hamming distance: percentage of pairwise different values.
- (q,�, ⌘): stopping rule.
Ouputs:
- mi: motor configurations for i 2 [1, N ].
- si[k]: sensation at step k and for the motor state mi.
- D[k]: refinement distance matrix at step k.

1: {Step 1: motor babbling}

2: Go to rest motor configuration m0,
3: for n = 1 until n = N do

4: random action
5: mn  current proprioception.
6: end for

7: Go to the rest motor configuration m0,
8:
9: {Step 2: environment sampling and interaction}

10: for k = 1 do

11: suppose steady environment at state ✏[k],
12: for n = 1 until n = N do

13: action from mn�1 to mn,
14: sn[k] current sensation,
15: end for

16: go to the rest motor configuration m0.
17:
18: {Similarity computations}
19: for all pairs of motor configurations i, j do

20: Dij [k] hamming distance(si[1 : k], sj [1 : k]),
21: end for

22: {Stopping rule}
23: if q(D[k],D[k ��]) > 1� ⌘ then

24: break
25: end if

26: k  k + 1,
27: end for

the monotonicity between two arrays of values one should
consider using the Spearman correlation.
Let spear corr(x, y) be the Spearman correlation of two
arrays x, y, with

spear corr(x, y)

�
= corr(sort ind(x), sort ind(y)), (24)

where corr is the Pearson correlation and sort ind(x)

gives the rank of each value in x, for instance
sort ind([14, 13, 11, 12]) = [4, 3, 1, 2]. One interesting
property of the Spearman correlation is that
spear corr(x, y) = ±1 iff there exists a monotonic function
h such that y = h(x). Therefore one can derive, similarly to
the Spearman score in [26], a measure q of the topological
similarity between two distance matrices D and D

0:

q(D,D

0
)

�
= |spear corr(vec(D), vec(D0

))|, (25)

where vec() denotes the flattening operator. When q(D,D

0
)

is sufficiently close to 1 and for a big enough � to avoid any
premature stops, then the refinement can end.

3) Extrinsic evaluation of the algorithm, topological prop-
erties conservation: From an external point of view, one can
envisage other ways to assess the quality of the representation.
Indeed, the programmer has access to data which are not
accessible to the agent, like the actual working space for
instance. To evaluate extrinsically the algorithm, the quotient
pose space X/=�E

will be considered as a metric subspace of
the Euclidean space, i.e. X/=�E

✓ RX , so that the Euclidean
distance, denoted by d, generates its topology. Let then K

mi

and K

mj be the theoretical finest equivalence classes of
motor configurations mi and mj . One can then define D

⇤

as the target Euclidean distance matrix, with components
D

⇤
ij = d(K

mi , Kmj ). Again, D

⇤ contains all the theoretically
available topological structure from the discrete data. The
idea of the extrinsic evaluation consists in checking whether
topological properties are conserved by the representative
space built by the agent. This can be assessed by verifying the
existence of a monotonous function between D[k] and D

⇤:
indeed, one can use the measure of topological similarity q

defined previously in (25). Let’s call q

⇤
[k] = q(D[k],D

⇤
) the

refinement score. Thus, q

⇤ constitutes an extrinsic evaluation
of the refinement, since q

⇤
[k] = 1 corresponds to the best

topologically correct representation of the extrinsic quotient
pose space built by the agent from the available data. However,
a bad refinement score does not imply a bad representation as
will be shown in subsection IV-C.

B. Illustrative example.

Let’s now work again with the example used all along the
paper. Recall that the agent is a 2 degrees of freedom serial
arm with revolute joints, endowed with a single pixel camera
placed at the end-effector and that reacts to the presence of
light in the environment, see § III-A2. Each environment
state is parameterized by a straight line separating the working
space into two black and a white complementary areas. Each
line is picked randomly to obtain a uniform distribution of
their distances to the center of the working space.

1) Illustration of the refinement: A simulated example of
the space refinement described in section II-A is shown
in Figure 9 with a growing number of environments, i.e. a
growing number of straight lines delimiting the working space
in two areas. On the top is drawn the agent working space and
its partitioning into equivalence classes, shown with multiple
colors. The corresponding partitions of the motor equivalence
classes are shown on the bottom. One can see in (a, d), that
even though the pose equivalence classes are convex subsets of
the working space, the motor equivalence classes can possibly
be separated subsets (see the yellow subset) or non-convex
subsets (see the blue subset). This is a direct consequence
of the forward kinematics function, which is a not-trivially a
non-linear continuous map. For this specific agent/environment
setup, and if a finite number of motor states is used, then
from (H4), there exists a finite number of environment states
beyond which the equivalence classes cannot be partitioned
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(a) (b) (c)

-⇡

⇡

⇡

-⇡

(d)

-⇡

⇡

⇡

-⇡

(e)

-⇡

⇡

⇡

-⇡

(f)

Fig. 9. Illustration of the refinement process. (a), (b) and (c) are refined
partitions of the working space, whereas (d), (e) and (f) are refined partitions
of the motor configuration space. From left to right are shown the partitions
after k = 3, 20 and 100 environment states.

anymore. Then, it is obvious that if enough environments
are experienced by the agent, all different sensor poses will
be separated by at least one straight line, and thus will be
associated to different sensations. The finest representation is
then actually obtained when the number of equivalence classes
does not grow anymore. In this extreme case, each point in
the working space is associated to one and only one motor
state. While difficult to illustrate, Subfigures (c,f) exhibits
a pretty advanced step in the refinement where very small
regions (points) in the working space are associated to one
and only one subsets in the motor space (sensorimotor points).
When this maximum number of equivalence classes is reached,
the refinement distance can still evolve with the successive
environments, so that the representation should converge to a
topologically correct representation. This is illustrated in the
next subsection.

2) Illustration of the topological conservation: Algorithm 1
is now ran with N = 400, and has stopped around k = 1000

samples. The N motor states are each associated to their
corresponding sensor poses (a point in the working space),
which are shown in Figure 9e with a color depending on
their distance to the center. After running the algorithm, the
agent obtains a refinement distance matrix D[1000] which
can be compared to the euclidean distance matrix D

⇤ using
the refinement score q

⇤
[1000]. The comparison is shown in

Subfigure 10b which is a scatter plot of the refinement distance
estimates compared with pairwise 2D euclidean distances
between the poses in the working space. In this plot, one
can directly verify if the refinement distances are a monotonic
transformation of the euclidean distances between the poses.
If so then the representative space has a correct topology.
Here, both distances are almost linearly correlated with a
refinement score of q

⇤
[1000] = 0.9979, therefore topological

properties are conserved by the refinement. Actually, this is
not a surprise, since this simple environment setup –with a
straight line delimiting two areas– can be totally formalized,

(a) 400 target poses

corr. = 0.9979

(b) Comparison of D and
D⇤ after 1000 samples.

(c) Projected representa-
tive space with cMDS.

Fig. 10. Results for the illustrative example. The two subfigures on the
right show how topological properties are conserved through the refinement
distances.

(a) Low frequency (b) Medium frequency (c) High frequency

Fig. 11. States from three environments with different illumination distribu-
tions.

and it can be proved that the refinement distance matrix D[k]

converges to the matrix ↵D

⇤ where ↵ is a positive scalar.
Furthermore, to properly visualize the obtained topology, one
can project the refinement distance matrix D[1000] into a
2D euclidean space by using a dimensionality reduction
techniques. Importantly, this projection is only used here to
provide some insight to the reader and to illustrate how the
representative space, whose topology is entirely captured in
the refinement distance matrix D, has the same topology
than the agent working space. As an example, let’s project
the refinement distance matrix into the 2D euclidean space,
by applying the classical MultiDimensional Scaling (cMDS)
algorithm [27]. The result of the projection is shown in Sub-
figure 10c, colored with the same color as the corresponding
target poses in Subfigure 10a. As expected, the low dimen-
sional representation is almost identical to the sensor poses in
the 2D working space, up to a rotation and a scaling factor:
points which are close/far from the working space center are
also close/far from the low-dimensional projection center. The
working space topology has thus been correctly estimated. But
what would happen with a more complex environment state,
for which one would not be able to easily demonstrate the
convergence of the representation? This case is simulated in
the next subsection.

C. A more complex 2D environment

In the following simulations, the environment is now made
of images of normalized spatially coherent noise whose
statistics are invariant through translation or rotation. The
implemented noise function is very similar to Perlin noise [28].
Different environments with different spatial frequencies are
presented to the agent, as shown in figure 11. The agent is
still endowed with a single pixel camera which send a 0
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corr. = 0.9930

(a) Low frequency

corr. = 0.9864

(b) Medium frequency

corr. = 0.3807

(c) High frequency

Fig. 12. Comparison of the refinement distance with the pairwise euclidean
distance of the sensor poses.

when luminance is < 0.5 and 1 otherwise. For three different
environments sets (low, medium and high illumination fre-
quencies), algorithm 1 is ran with N = 400. Let’s compare
the obtained pairwise refinement distances to the pairwise eu-
clidean distances in the working space in Figure 12. From the
subfigures, its obvious that lower is the illumination frequency,
better is the refinement score. Looking more carefully to the
distance curves, one can remark that for the high frequency
environments, the refinement distances saturate around 0.5 for
high poses distances in the working space. This means that
if two sensor poses are farther to each other than a certain
distance in the working space, then they have probability 0.5
to generate a different binary sensation, this can be explained
by the fact that the physical stimuli, here the illuminations, at
two points in space tend to be uncorrelated if these points are
far from each other. On the contrary, for smaller distances in
the working space the physical stimuli tends to be more and
more correlated and the refinement distance tends to 0. This
is characterized, in the subfigure 12c, by the monotonous part
for pose distances below 0.7.
Since topological information is by definition kept by local
structures, the agent has properly extracted the topological
information even-though the refinement score is not close to
1.

In order to illustrate how the topology is correctly conserved
by the representation, let’s consider an artificial target pose
space with some highlighted topological structures such as the
target pose space in subfigure 13a. One can remark that the
working space now excludes points inside 4 different circles,
each of them being spotted with different colors. The projected
representation from cMDS with the more complex high fre-
quency environment is shown in subfigure 13b: the projection
does not appear to conserve the topology of the original
working space. Since cMDS does not specifically privilege
small distances, it can not keep topological properties by
projecting the refinement distance matrix in 2D. However, to
show that the representation is still topologically correct, one
can apply an other algorithm that favors small distances such
as Isomap [29]. Isomap works by translating the distance
matrix into a neighborhood graph where edges are linking
nodes that are closer than a distance parameter ✏. Then a new
distance matrix is computed using the shortest path between all
pair of nodes and this new dissimilarity matrix is embedded in
a low dimension euclidean space using again cMDS. Applying
now Isomap with ✏ = 0.4 in 2D produces subfigure 13c.

(a) Original (b) cMDS (c) Isomap, ✏ = 0.4

Fig. 13. Refinement 2D projections with cMDS and Isomap for high
frequency environments.

In this subfigure, its clear that topological information has
been kept in the representative space. More generally a good
topological representation is always obtained as long as small
distances in the working space corresponds to small refinement
distances.

D. Conclusion

In this section, the authors have a proposed an algorithm
that enable a naive agent to numerically build a topologically
correct representation of the interaction of its sensors with the
environment. It has been shown that the agent is also intrin-
sically able to evaluate the convergence of its representation
until it has stable topological properties. The approach has
been tested in different types of environments where the agent
has been able to build a correct topological representation of
the pose spaces. Moreover it has been shown the difficulty to
extrinsically evaluate the representation in the case of a highly
varying environment, however in this case the representation is
still carrying good topological properties. It can be noted that
the refinement approach is not limited to number of degrees
of freedom of the agent.
For the sake of clarity the authors have focused on simple
agents in simple environments however the approach is clearly
generalizable to more complex sensors and natural environ-
ments as will show extended works.

V. CONCLUSION

This paper, rooted in the sensorimotor contingencies theory,
has proposed a mathematical formalization to handle changing
environments states. While often considered as static in other
contributions, these changes have been explicitly exploited
here to define a refinement approach to space representation.
Some important theoretical results have followed: definition of
sensorimotor points, representation of the quotient pose space,
etc. These theoretical ideas have been assessed successfully
in realistic simulations, and a simple algorithm with guar-
anteed convergence properties has been proposed. Ongoing
theoretical and experimental works are now concerned with
continuous changes in the environment states. Since a real
implementation of the approach on a real robotic agent is
targeted in the near future, some plausible experimental issues
also have to be considered, especially regarding noise in the
sensory and proprioceptive data. First raw results seem to
exhibit a good robustness of the approach, but this has to
be confirmed, and more importantly, understood. This might
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constitute an important step before exploiting the SMC theory
in the real world.
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