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Abstract 

Nuclear organization can impact on all aspects of genome life cycle. This organization is 

thoroughly investigated by advanced imaging and chromosome conformation capture 

techniques, providing considerable amount of datasets describing the spatial organization of 

chromosomes. In this review, we will focus on polymer models to describe chromosome 

statics and dynamics in the yeast S. cerevisiae. We suggest that the equilibrium configuration 

of a polymer chain tethered at both ends and placed in a confined volume is consistent with 

the current literature, implying that local chromatin interactions play a secondary role in yeast 

nuclear organization. Future challenges are to reach an integrated multi-scale description of 

yeast chromosome organization, which is crucially needed to improve our understanding of 

regulation of genomic transaction. 

 

Running head: Chromatin Organization in yeast 

Keywords: Nuclear structure; chromatin dynamics; chromatin organization; Saccharomyces 

cerevisiae 



 3 

Introduction: the necessary jump toward integrative view of chromatin organization 

The driving forces responsible for the establishment and maintenance of high-order chromatin 

structure remain the subject of intense research. Our understanding of genome organization 

has always been intimately linked to technical progresses, which fed new insights that 

confirmed or contradicted working hypotheses [1,2]. From the seminal use of dyes by 

Flemmings to identify chromatin, microscopy was, and still is, a central tool to study nuclear 

organization [3]. Carl Rabl suggested that interphase chromosome organization was guided by 

the tethering of centromeres and telomeres in opposite directions, a folding latter named 

"Rabl-organisation" [4]. Rabl-like configuration of budding yeast chromosome was 

established more than 100 year later [5-8]. At smaller length scales, the heterogenous 

distribution of chromatin in the nucleus was observed in 1928 by Emil Heitz [9] using optical 

microscopy of Giemsa stained chromosomes. This organization was confirmed by 

Transmitted Electron Microscopy (TEM) with considerable gain in resolution [10]. Further 

after extraction of the soluble material, TEM led to the observation of the "nuclear matrix" as 

a nucleo-skeleton onto which chromatin was attached [11]. Live cell imaging of fluorescently 

labeled nuclear components were developed, collectively called F-techniques, and showed 

that a large fraction of nuclear proteins, some of which present in nuclear matrix fraction, 

were highly dynamic [12]. Techniques to label chromosome loci based on fluorescent 

operator-repressor system (FROS), which involve LacI-GFP or TetR-GFP binding to array of 

256 lacO or 112 tetO, equivalently ~10 kb of DNA, have also been set up, and time-lapse 

analysis of chromosome motion revealed the mobility of DNA in vivo [13-15]. Over the last 

decade we witnessed the advent of genomic methods to sense nuclear architecture, such as 

Chromatin immunoprecipitation (ChIP), DNA adenine methyltransferase identification 

(DamID), and the most widely used intra-molecular ligation of cross-linked DNA, named 

chromosome conformation capture (3C), and its genome wide derivatives including Hi-C 

[16,17]. This booming field calls for new models to integrate datasets of different nature 

(microscopic distance measurements, ChIP, DamID, contact frequency map from 3C), and 

coarse-grained polymer physics models met some success in the recapitulation of 

heterogeneous data with a single and unified representation [18]. Necessary improvements are 

still needed to enhance the spatial resolution of polymer models so as to recapitulate the 

folding principle of DNA, chromatin, and chromosomes. Here we wish to discuss the 

successes of these models in the context of S. cerevisiae nuclear architecture, as well as to 
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discuss the clarifications that are needed to reach a better understanding of chromosome 

organization in vivo. 

 

Models of nuclear architecture: Direct vs indirect modeling 

In the last 25 years, essentially two classes of models have been proposed to describe genome 

organization: direct (or data driven) modeling or inverse (or physics driven) modeling (for 

review, see [19]). In direct modeling, experimental datasets are used as inputs, and modeling 

is built by minimizing the discrepancy of the model to the data. Therefore, such models are 

tailored to recapitulate input data but by construction, they have little or no predictive value, 

and new datasets must be obtained before generating a modified model. They can be however 

very useful since they recapitulate complex data in a frame which is usually amenable to be 

visually interpreted directly. The other approach consists to build a model with a set of 

assumptions involving, among others, the mechanics of chromosomes (rigidity and friction) 

and the geometry of the nucleus. The output of the model can be compared with experiments 

[20-22], and its predictive value can be challenged with novel datasets or whenever the set of 

microscopic parameters that fit experiments appear to be inconsistent with the literature. In 

fact the consistency of the model with experiments does not imply its validity, especially 

because the essential parameters to describe large-scale nuclear architecture remain elusive. 

At this step we propose to highlight some of the main conclusions inferred from modeling of 

eukaryotic organization with polymer physics. 

 

What do we learn from Chromosome Conformation Capture? 

The genome wide implementation of the 3C technique (Hi-C) enables the mapping the self 

contacts resulting from the DNA molecules being folded in chromosomes within the live 

nucleus and is therefore reflecting this architecture (See on figure 1a this contact map for the 

yeast genome, [23]). Direct 3D modeling [24] applied on this contact map leads to a 3D 

structure which recapitulates known features of yeast chromosomes organization such as 

strong centromere clustering, weaker telomere co-localization and the spatial segregation of 

long and short chromosomal arms (Figure 1b). A pending question is whether or not this 

organization is quantitatively compatible with polymer physics. In the seminal Hi-C paper, 

the authors compared their data with two polymer models describing chromosomes as 
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crumple or equilibrium globules [25]. These models differ in their predictions on the decrease 

of the contact probability p between two loci on the same chromosomes as a function of their 

genomic distance s (see figure 1c). The finding that p(s) followed a power law decrease with s 

characterized by an exponent close to -1 (p(s)~s-1.08) appeared to be in agreement with the 

crumple globule model. Other results were later published on different organisms, including 

the yeast S. cerevisiae [26]. They seemed to indicate that metazoan genomes shared common 

folding principles with a similar exponent of -1 whereas the yeast genome, which has shorter 

chromosomes is organized as an equilibrium globule in agreement with physical models (see 

figure 1d) [21,22]. This simple view have been however challenged as additional Hi-C data 

obtained with standardized protocols became available [27], because it was for instance found 

that the exponent of p(s) somewhat varied in the range of -1.5 to -1 for different human cell 

lines [28]. The general relevance of the crumpled globule model has therefore been called into 

question, because p(s)~s-1.5 is expected to be detected in equilibrium globules. Concerning the 

yeast S. cerevisiae, only two genome-wide datasets are available [23,29], and more data and 

analysis are needed to confirm or invalidate the actual folding scheme. Notably possible 

fixation artifacts (some of which can be normalized) in 3C techniques, and the difficulties to 

convert contact frequency to physical distances should not be ignored [30-33]. It has been 

suggested that one way around these technical limitations was to combine 3C methods with 

microscopy observations, which are now combined [17,25]. We thus conclude that the folding 

principles of chromosomes at the entire genome level remain controversial, but the number of 

contributions in this booming field should rapidly clarify these central questions. Conversely 

the motion of a chromosome locus is associated to the local properties of chromatin, and the 

main results obtained by physical modeling of spatial fluctuations will be described in the 

following paragraph. 

 

What do we learn from chromosome motion analysis? 

Chromatin loci are in constant random motion within some finite volume of confinement 

detectable with long time-lapse acquisitions [13,14,34,35]. When locus is release from 

chromosome (i.e. through inducible excision of tagged chromatin rings), chromatin is 

diffusing in the nucleoplasm, and boundaries are defined by the nuclear envelope [34,36]. 

Chromosomal loci instead seem to be confined in a "gene territory", as defined by the region 

of preferential steady-state localization [37]. For shorter time scales, the displacement of 
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chromosome loci was mainly analyzed based on the mean square displacement (MSD). The 

MSD was adjusted with models of diffusion or sub-diffusion, meaning that power-law scaling 

describing its temporal dependence was characterized by an exponent of 1 or lower than 1, 

respectively. Notably normal diffusion is expected to occur for isolated objects, i.e. influenced 

by thermal fluctuations and viscous friction only. In the case of polymer loci, elastic 

interactions between neighboring monomers and long-range hydrodynamic interactions 

associated to solvent flux have to be considered [38]. The nucleus is a concentrated 

environment composed of DNA, diffusing and bound proteins, as well as RNA, which are 

expected to screen out hydrodynamic interactions. As was described for the bacterial 

chromosome [39], the dynamics of chromosomes in yeast was proposed to follow the Rouse 

model, which assumes that chromatin fiber behaves as a homogeneous series of beads 

connected by elastic springs, with the notable exception of ribosomal DNA (rDNA) in the 

nucleolus [40,41]. For an isolated chain and disregarding volume exclusion, the motion of a 

locus in chain composed of N monomers, of known stiffness characterized by the Kuhn length 

(Lk) is described by 3 consecutive regimes (Figure 2).  For very short time intervals, elastic 

interactions between neighboring monomers do not restrain motion. This is only valid for 

small displacements (MSD<<Lk; <~30 nm for chromatin), which are difficult to access 

experimentally (see below). For long displacements larger than the polymer diameter 

(MSD ≫𝐿𝑘. √𝑁 ), the entire polymer chain diffuses freely in solvent. In the yeast nucleus, 

this behavior is not relevant because chromosomes are confined in the nucleus and tethered at 

their centromere [7,42,43] and telomere [44,45]. Notably this tethering also induces 

topological constraints that do not allow for reptation, i.e. longitudinal diffusion of a 

monomer along the contour path of the chain. In between those two regimes 

(for  Lk ≪ MSD ≪𝐿𝑘. √𝑁), Rouse regime is characterized by 𝑀𝑆𝐷(𝜏) = 𝛤𝜏𝛼 , with scaling 

exponent α of 0.5, which increases to 0.54 whenever volume exclusion is considered. 

Although this simplistic model overlooks local variations in chromatin structure, it appeared 

to be consistent with the motion of loci located on chromosome XII, XIV and IV in S. 

cerevisiae [40,41]. These results are further supported by molecular simulations using a 

polymer model of the entire yeast genome [40,41]. A recent publication however challenged 

the relevance of the Rouse model by monitoring the motion in 3D of GAL genes and control 

loci in the 0.5-5 s time domain [46]. These authors indeed showed that the exponent of 

subdiffusion was α ~0.7, which is apparently not compatible with Rouse regime. The authors 

suggested that fractional Brownian motion (fBm) could account for this scaling exponent, 
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though the underlying physics accounting for this behavior remains unclear. Another 

possibility is that the Rouse model remains valid despite the unexpected exponent. High 

precision 3D microscopy is achieved with strains in which chromosome loci are characterized 

by high signal-to-noise ratio. These imaging conditions are obtained by increasing the number 

of bacterial operator binding sites from 56 to 224 tetO sequences, equivalently 2.5 to 11 kb of 

DNA, in order to enhance brightness of the locus. However, due to the increased length of the 

labeled DNA, the initial free diffusive motion is expected to be slower than for a single 

monomer (Fig. 2). The transition to the Rouse regime should hence be delayed, leading to an 

“intermediate” exponent lower than 1 but greater than 0.54 in the short time regime, as was 

for instance discussed for particle migration in a dense meshwork [47]. In fact we recently 

observed the same behavior in clones with long FROS labels (Fig. 2). The dynamics of a 

locus on chromosome XII showed a smooth transition to the Rouse regime after ~5 s. Note 

that this two-phase response was not detected in our previous report using clones with shorter 

FROS labels [40,45]. Consequently, the Rouse polymer model does not seem to be 

invalidated by analyzing the MSD over a limited temporal domain comprised between 0.5-5 s. 

Nevertheless we suggest that further validations of the Rouse model to describe chromosome 

motion require additional analyses, including among others step distribution functions, 

velocity autocorrelation function of locus trajectories [48], or probability of backward motion. 

 

Conclusion: toward an integrated view of nuclear organization and dynamics 

This overview suggests that the implementation of a physics model providing an integrated 

picture of yeast nuclear organization is under rapid and constant improvement. Based on the 

current literature, we may propose that each chromosome arm extends in the nucleus from its 

centromere, behaving as a space-filling polymer in a preferential path dictated by the 

centromere to nucleolus axis (Fig. 3). Volume exclusion in the nuclear volume defines a 

characteristic tube in which chromosome can be described as a series of polymer beads, called 

blobs, in which the chain behaves as an ideal constraint-free polymer. In this description, the 

Rabl-like organization of yeast chromosomes is marginally dictated by polymer-polymer 

interactions, rather chromosomes behave as extended polymer chains organized by volume 

exclusion. This description covers the length spectrum from the Kuhn length to the nucleus 

size, and disregards the folding of chromatin fiber. We argue that the next challenge is to 

build multi-scale models with improved description at every spatial dimension to explore 
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gene specific properties: Gene relocalization documented in yeast during gene expression 

such as tRNA gene preferential interaction with NPC or nucleolus [49,50], peripheral 

recruitment of SAGA-regulated genes [51-53], the formation of replication factory [54] or 

increased motility toward DNA damage [55-57]. The benefits of this effort are expected to 

help clarify how the cells organize its genome for gene expression regulation or efficient 

repair. Finally, the recent organization of chromosome arm in fission yeast in globule by local 

cohesin association at specific sites demonstrate that combination of biophysical properties of 

chromatin and mapping chromatin bound factors will allow tremendous progress in our 

understanding of chromatin architecture in vivo [58]. 

  



 9 

Figures captions 

 

Figure 1 : 3C insights on the structure of the S. cerevisiae chromosomes. 

(A) Contact map of the 16 chromosomes as obtained by genome-wide 3C ([23], individual 

chromosomes are labeled with roman numbering). The map has been normalized so that the 

sum over each line and column is equal to one [32]. Note that the colorscale is in log 10. (B) 

Direct 3D modeling from this map [24]. The colorcode for each chromosome on the structure 

is indicated in (A). Telomeres are centromeres are labeled with respectively purple and black 

beads.  (C) Zoom on the intra chromosomal contact map of chromosome XV, corresponding 

to the blue bow in (A). The value p(s) is obtained for each genomic distance s with averaging 

the signal in the red box. (D) Plot of the mean number of contacts obtained in the experiment 

with varying distances (s). Note that these number of contacts were not normalized. Picture 

adapted from [22]. 

 

Figure 2: Rouse model of polymer dynamics. 

(A) This figure describes the difference in segmental dynamics of one monomer or a fragment 

with n monomers (color-coded in green or blue, respectively). In the short time limit, the 

motion of the locus is not restricted by elastic interations with its neighboring polymer 

segments, leading to a regime of free diffusion. The larger dimension of a fragment with n 

monomers is associated to a slow down in diffusion (the blue curve is below the green one). 

This second regime corresponds to Rouse model of polymer dynamics, in which the MSD 

increases with time with a power-law scaling of 0.54. The red rectangle represents the 

observation window in a real experiment with finite temporal and spatial resolutions. (B) The 

blue dataset represents the average MSD over 45 trajectories for a selected bright locus 

located at position 380 kb on chromosome XII (room temperature). Note that standard errors 

are indicated as vertical caps. Two regimes can be distinguished with a sharp increase of the 

MSD at short time scales (scaling exponent of 0.75) followed by a behavior consistent with 

the Rouse regime (scaling exponent of 0.54). Respective trend lines are shown in black and 

red. 
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Figure 3 : Two schematic representation of yeast nucleus. 

 (A) Schematic representation of yeast nucleus for biology point of view. Chromosome arms 

are depicted in color lines. Centromeres (CEN; yellow circle) are attached to spindle pole 

body (SPB; black circle) by microtubules (red lines). Telomeres (TEL) (green circle) are 

distributed near nuclear envelope (NE) (double-black-lines circle). Nucleolus (red crescent 

abutting NE) contains rDNA (bold purple line). Blue and brown crosses depicts respectively 

nuclear and nucleolar center (B) Schematic representation of yeast nucleus for polymer 

physics point of view. The color circles represent polymer blobs, containing Rouse chain 

(lines within blob). Each chains represent one chromosome arms anchored at both end 

(yellow circle and green circle). Blobs are fulfilling nucleoplasm (gray circle). Nuclear and 

nucleolar center are forming a central axis around which chromosome are organized. Note 

that rDNA in the nucleolus has property distinct from nucleoplasm. 
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