
HAL Id: hal-01682504
https://hal.science/hal-01682504

Submitted on 29 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability Analysis of a Human Arm Interacting with a
Force Augmenting Device

Sk Gadi, Antonio Osorio-Cordero, Rogelio Lozano, Ruben Garrido

To cite this version:
Sk Gadi, Antonio Osorio-Cordero, Rogelio Lozano, Ruben Garrido. Stability Analysis of a Human
Arm Interacting with a Force Augmenting Device. Journal of Intelligent and Robotic Systems, 2017,
86 (2), pp.215-224. �10.1007/s10846-016-0420-6�. �hal-01682504�

https://hal.science/hal-01682504
https://hal.archives-ouvertes.fr


Abstract 

This paper presents a stability analysis of the 
interaction between a human and a linear mov-ing 
Force Augmenting Device (FAD). The analysis 
employs a mathematical model of the human arm, 
the FAD and their interaction. As a depart from 
past works, this article presents a stability analysis 
considering time-delays in the human model. A key 
ingredient in the analysis is the use of the Rekasius 
substitution for replacing the time-delay terms. It is 
proved that the human machine interaction is stable 
when the human model has no delays. When delays 
are considered in the human model, the analysis pro-
vides an upper bound for the time-delays preserving a 
stable interaction. Numerical simulations allow to 
assess the human-FAD interaction. An experiment is 
performed with a laboratory prototype, where a 
human operator lifts a load. It is observed that the 
human machine interaction is stable and the human 
opera-tor is able to move the load to a desired 
position by experiencing very little effort.

Delayed system · Force augmenting device · Stability 
analysis
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1 Introduction

Recently, there has been a lot of interest in develop-
ing exoskeletons and force augmenting devices [1], 
i.e. mechanical systems that are worn by humans in
such a way as to increase their force. There exist many
possible applications for these devices; for instance,
in industries where it is commonly required to move
heavy loads. This task is mostly done by machines,
which are usually controlled by humans who do not
necessarily feel the force exerted on the load. This
may lead to unsafe operations in confined spaces with
obstacles. Exoskeletons and force augmenting devices
(FAD) represent a possible solution to this problem
[2]. Indeed a FAD amplifies the human strength and
allows the operator handling heavy loads but still
feeling the effort performed to move a load [3].
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There are many papers in the literature dealing
with human-machine interaction [4–10], however the
stability of the proposed control algorithms has not
been thoroughly studied. In order to study the stability
of the human machine interaction we need to intro-
duce a model for the human behaviour. There are
several possible models for the human operator [11–
15] and we have selected the model proposed in [12]
because it takes into account the delays present in the
human reflexes.

In this paper we present a simple controller for
the FAD and a stability proof of its interaction with
a human operator. We first study the stability of the
interaction considering no delays in the human model.
The closed loop system is of 4th order and the proof
of the stability is carried out using the Routh-Hurwitz
stability criterion. Furthermore, we have also studied
the stability considering delays in the human model.
An upper bound for the delays has been found such
that the stability is preserved. The human-FAD inter-
action is illustrated through numerical simulations.

The paper is organized as follows: The next section
introduces a model of the FAD, a model of a human
operator and the control algorithm proposed in [16,
17] for the FAD. This is followed by a section provid-
ing the stability proof for the system ignoring delays in
the human model. Subsequently, the stability is stud-
ied considering that both delays in the human model
are equal. In the next section a stability analysis is per-
formed assuming that both delays in the human model
are independent. Simulation and experimental results
support the results obtained. Concluding remarks are
given in the final section.

2 Nomenclature

θh Human arm position
θvd Virtual desired position
θv Output of the spinal cords reflex action
τh External torque acting on the human joint
B Viscous friction in the human arm movement
d1 Delay in the position reflex feedback
d2 Delay in the velocity reflex feedback
E Physical compliance of the human flesh
F Total force exerted on the moving block

FA Force exerted by the motor on the moving block
Fe Force exerted by the human on the moving block
Fh Forceexertedby themovingblockon thehumanarm

g Acceleration due to gravity
Gp Control parameter of the spinal chord
Gv Control parameter of the spinal chord
J Human arm moment of inertia
K Muscle stiffness

KA Force augmenting gain
Kd Derivative gain
Kf Viscous friction coefficient of FAD
Kp Proportional gain
la Human arm length
M Mass of the moving block
s Laplace transform complex variable
t Time

W Weight of the moving block
ye Position of the moving block
yh Human arm displacement at the end of the arm

3 Mathematical Model

The force augmenting device (FAD) considered in this
paper is shown in Figs. 1a and b depicts its block dia-
gram. This figure also shows the interaction between a
human operator and the FAD. The FAD has a moving
block of 24 kg connected to a ball-screw mechanism,
and acts as the load to be lifted by the human opera-
tor. The ball-screw mechanism is driven by a DC servo
motor. Force and position sensors are attached to the
FAD to capture the force exerted by the human on the
moving block and to measure its position respectively.
The total force exerted on the moving block (F ) can
be decomposed as

F(t) = FA(t) + Fe(t) − W (1)

where FA is the force exerted by the motor on the
moving block, Fe is the force exerted by the human on
the moving block, W = Mg is the weight of the mov-
ing block, M is the mass of the moving block, g is the
acceleration due to gravity and t is the time. Consider-
ing zero initial conditions, the dynamics of the moving
block can be written as

ye(s)

F (s)
= 1

Ms2 + Kf s
(2)

where ye is the position of the moving block, Kf is
the viscous friction coefficient of the FAD and s is the
Laplace transform complex variable.

The human model used for describing the human
operator arm is based on a servo hypothesis proposed
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Fig. 1 Human operating a force augmenting device

in [12], where the spinal cord actuates the muscles of
the musculoskeletal system by processing the signals
received from the brain, and the position and veloc-
ity feedback signals produced by the sensory organs
of the musculoskeletal system. The position reached
by the human arm is not exactly equal to the position
commanded by the spinal cord due to the arm inertia,
so the command given by the spinal cord to the muscu-
loskeletal system is termed as the virtual position [12,
18]. The human brain generates a desired trajectory
along which the arm must move; based on the desired
trajectory the brain computes a signal and sends it to
the spinal cord [13], which is the virtual desired posi-
tion [12]. The musculoskeletal system is modeled as a
second order linear transfer function.

The human arm can be modeled as a second order
linear dynamic system [12, 13]. The torque produced
at the joint is a function of the actual arm position and
its velocity and the desired arm position and veloc-
ity. The authors of [12] presented a mathematical
model for this torque. This model is an improved ver-
sion based on the virtual trajectory control hypothesis.

This model was experimentally validated by the
authors of [12, 13] at various velocities. It is observed
that this model is valid up to a velocity around 0.32 m
s1. Figure 1b shows the dynamics of the muscu-
loskeletal system, which can by modeled as:

τh(s) = J θ̈h(s) + Bθ̇h(s) + K(θh(s) − θv(s)) (3)

where τh is the external torque acting on the human
joint, θh is the human arm position, θv is the output
of the spinal cords reflex action, J is the human arm
moment of inertia, B is the viscous friction in the
human arm movement and K is the muscle stiffness.

The term θv represents the virtual arm position. In
a human being, the sensory feedback received by the
spinal cord is delayed. This delay makes the stability
issue challenging. The following equation represents
the spinal cord reflex action:

θv(s) = θvd(s) + Gp(θvd(s) − θh(s)e
−sd1)

+sGv(θvd(s) − θh(s)e
−sd2) (4)

where θvd is the virtual desired position, Gp and Gv

are the control parameters of the spinal chord, d1 is



0.15 0.16 0.17 0.18 0.19
50

75

100

125

150

175

200

dc (s)

K
A

Unstable region

Stable region

Fig. 2 Critical delay dc at 50 ≤ KA ≤ 200 in equal delay case
(i.e. d1 = D2)

the delay in the position reflex feedback and d2 is the
delay in the velocity reflex feedback.

The force exerted by the human arm Fe on the
moving block can be expressed as

Fe(t) = −Fh(t) = (yh(t) − ye(t))E (5)

yh(t) = θh(t)la (6)

where Fh is the force exerted by the moving block on
the human arm, E is the physical compliance of the
human flesh, yh is the human arm displacement at the
end of the arm and la is human arm length.

The torque exerted by the moving block on the
human arm, τh, can be given as

τh(t) = Fh(t)la = (ye(t) − yh(t))Ela (7)

The following control algorithm [16] is applied to
the FAD:

FA(t) = (KA − 1)Fe(t) − Kdẏe(t) − Kpye(t) (8)

where KA is the augmenting factor that amplifies
the force exerted by the human operator, Kd is the
derivative gain and Kp is the proportional gain.

Since the input terms W , yvd and syvd do not affect
the stability, these terms can be neglected for the sta-
bility study. The characteristic equation for the closed
loop system can be written as

P(s) = C4s
4 + C3s

3 + C2s
2 + C1s + C0 (9)

where

C4 = JM (10)

C3 = M(B + GvKe−sd2) + J (Kd + Kf ) (11)

C2 = M(El2a + K(Gpe−sd1 + 1))

+(Kd + Kf )(B + GvKe−sd2)

+J (Kp + EKA) (12)

C1 = (B + GvKe−sd2)(Kp + EKA)

+(Kd + Kf )(El2a + K(Gpe−sd1 + 1)) (13)

C0 = (Kp + EKA)(El2a + K(Gpe−sd1 + 1))

−E2KAl2a (14)

In the following section we will study the stability
of the above polynomial.

4 Stability Analysis When the Delays are Zero

Considering that d1 = d2 = 0, Eq. 9 can be rewritten
as

P(s) = A4s
4 + A3s

3 + A2s
2 + A1s + A0 (15)

where
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Fig. 4 Simulation results

A4 = JM (16)

A3 = M(B + GvK) + J (Kd + Kf ) (17)

A2 = M(El2a + K(Gp + 1))

+(Kd + Kf )(B + GvK)

+J (Kp + EKA) (18)

A1 = (B + GvK)(Kp + EKA)

+(Kd + Kf )(El2a + K(Gp + 1)) (19)

A0 = EKpl2a + (Gp + 1)KKp

+E(Gp + 1)KKA (20)

As per the Routh-Hurwitz stability criterion, the
closed loop system is stable if and only if

A0 > 0; A1 > 0; A2 > 0; A3 > 0; A4 > 0; A5 > 0 (21)

b1 := (
A3A2 − A4A1

)/
A3 > 0 (22)

c1 := (
b1A1 − A3A0

)/
b1 > 0 (23)

The above conditions are indeed satisfied for all
the positive values of the involved parameters [19]. In



the succeeding sections, a numerical example is intro-
duced to study the stability considering the delays.

5 Stability Considering Identical Delays

Assume that both delays are the same, i.e. d1 = d2 =
d. The substitution proposed by Rekasius is [20, 21]

e−sd = 1 − T s

1 + T s
T ∈ �, d ∈ �+ (24)

which is defined when s = jω, ω ∈ �. Unlike Pad
approximation, this is an exact substitution. This sub-
stitution allows to replace the exponential transcen-
dental term associated to the time-delay (i.e. e−sd ) by
a rational expression of the variables s and T . It is
observed that using this substitution leads to less con-
servative stability results than the approach employing
Lyapunov-Krasovskii functionals [22]. We are using
this fact to identify the exact point at which the sys-
tem goes from stable to unstable. As opposed to other
techniques, the values obtained with this approach are
accurate. The relation between d , T and ω can be
given as [20, 21]

d = 2

ω
arctan (T ω) + lπ

l = −∞, ... − 1, 0, 1, ..., ∞ (25)
where for a fixed ω each T maps to infinitely many
values of d. Substituting (24) into (9), we get

P(s) = B5s
5 + B4s

4 + B3s
3 + B2s

2 + B1s + B0 (26)

where

B5 = JMT (27)

B4 = JM + BMT + J (Kd + Kf )T

−GvKMT (28)

B3 = EMT l2a + BM + J (Kd + Kf )

+GvKM + B(Kd + Kf )T + JKpT + KMT

+EJKAT − GvK(Kd + Kf )T

−GpKMT (29)

B2 = B(Kd + Kf ) + JKp + KM + EJKA

+GvK(Kd + Kf ) + GpKM + BKpT

+K(Kd + Kf )T + EMl2a

+E(Kd + Kf )T l2a + BEKAT

−GpK(Kd + Kf )T

−GvKKpT − EGvKKAT (30)

B1 = BKp + K(Kd + Kf ) + BEKA

+GpK(Kd + Kf ) + GvKKp + KKpT

+E(Kd + Kf )l2a

+EKpT l2a + EGvKKA + EKKAT

−GpKKpT − EGpKKAT (31)

B0 = EKpl2a + KKp + EKKA + GpKKp

EGpKKA (32)

The estimated values for the laboratory setup
shown in Fig. 1a are M = 23.4 kg and Kf =
0N m−1. The authors in [12] use the following param-
eters for a human arm: J = 0.1N m rad−1 s−1, B =
0.89N m rad−1 s−1, K = 4N m rad−1, Gp = 2 and
Gv = 0.3 s. The value E = 920N m rad−1 for human

Time (s)

0

0.1

0.2

0.3

0.4

0.5

Po
si

tio
n 

(m
)

ye

(a) Simulation results with

0 10 20 30 0 10 20 30
Time (s)

0

0.1

0.2

0.3

0.4

Po
si

tio
n 

(m
)

ye

(b) Simulation results with
andand

Fig. 5 Simulation results showing the effect of Gv in the stability of the human FAD interaction



flesh is given in [23]. Taking la = 0.35 m and the
control parameters KA = 125, Kd = 65 kg s−1 and
Kp = 45 kg s−2. Substituting these values in P(s),
Eq. 26 is rewritten as

P(s) = 2.3 × 105T s5

+(2.3 × 105 − 7.5 × 104T )s4

+(1.4 × 109T + 5.5 × 106)s3

+(1.5 × 109 − 2.9 × 109T )s2

+(2.5 × 1010 − 4.6 × 1010T )s

+1.4 × 1011 (33)

Since the system is stable when the delays are zero,
all the poles are in the left hand side of the complex
plane. New poles are introduced from the left hand
side of the complex plane as a consequence of the
presence of delays [24]. The position of the poles in
the complex plane as a function of the delay is contin-
uous [24, 25]. As the delays increase, the poles move
towards the right hand side of the plane and finally
cross the jω axis. The substitution (24) is valid at the
moment when the poles are on the imaginary axis just
before crossing it.

A Routh array can be constructed for Eq. 33 as

s5 2.3 × 105T (140.3T + 0.6) × 106 B53

s4 (2.3 − 0.8T ) × 105 (1.5 − 2.9T ) × 109 B43

s3 B31 B32 0
s2 B21 1.4 × 1011 0
s1 B11 0 0
s0 1.4 × 1011 0 0

where

B53 = (2.5 − 4.6T ) × 1010

B43 = 1.4 × 1011

B31 = 1 × 108
(
563.5T 2 − 12.8T + 1.3

)

/(
23.4 − 7.5T

)

B32 = 5 × 1010
(
6.8T 2 − 89.9T + 11.6

)

/(
23.4 − 7.5T

)

B21 = −1 × 108
(
16113.9T 3 − 8528.6T 2

+114.2T − 5.3
)/(

563.5T 2 − 12.8T + 1.3
)

B11 = −1 × 1010
(
14.7T 4 − 37.7T 3 + 4.5T 2

−0.07T + 2416.6
)/(

16.1T 3 − 8.5T 2 + 0.1T

−0.005
)

As per the Routh-Hurwitz stability criterion, when
the poles are on the imaginary axis, a row of the Routh
array becomes zero and its previous row is called
the auxiliary polynomial. The auxiliary polynomial
gives the location of the poles on the imaginary axis.
SolvingB11 = 0 and considering only real values for T ,
the solution is T = 2.44372 or T = 0.11131.
The auxiliary polynomial (PA) is given by the next
expression

PA = B21s
2 + 1.4 × 1011 (34)
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Solving (34) at T = 2.44372 and T = 0.11131,
yields respectively s = jω = ±j (j5.0048) and s =
jω = ±j11.1765. Since ω ∈ �, T = 0.11131, ω =
11.1765 is the required value. As can be observed
from Eq. 25, for given values of ω ∈ � and T ∈ �,
an infinite number of time delays are generated for
which a pair of poles are transferred from the left to
the right complex plane. Equation 25 is used to obtain
the following values:

d|l=0 = 0.1599

d|l=1 = 3.3015

d|l=−1 = −2.9817

The smallest positive delay at which the poles cross
the imaginary axis for the first time is called the criti-
cal delay (dc). The critical delay for this system occurs
for the values l = 0, d = dc = 0.1599. Repeating
the above calculations for the different values of KA,
we can obtain the critical delay corresponding to each
value of KA. Figure 2 shows the change in the critical
delay as a function of the augmenting factor KA.

6 Stability Considering Independent Delays

In this section let us consider different delays d1 and
d2. A Rekasius substitution similar to Eq. 24 for the
two time-delays is

e−sd1 = 1 − T1s

1 + T1s
T1 ∈ �, d1 ∈ �+ (35)

e−sd2 = 1 − T2s

1 + T2s
T2 ∈ �, d2 ∈ �+ (36)

and the relation between T1, ω1, and d1 and T2, ω2,
and d2 is given by

d1 = 2

ω
arctan (T1ω) + lπ l = −∞, ... − 1, 0, 1, ...,∞ (37)

d2 = 2

ω
arctan (T2ω) + lπ l = −∞, ... − 1, 0, 1, ...,∞ (38)

Substituting (35) and (36) into (9), we get a charac-
teristic polynomial of order six. Using the values for
the parameters B, E, Gp, Gv , J , K , KA, Kd , Kf ,

Kp, la , M given in the previous section, the following
polynomial is obtained.

P(s) = T1T2s
6 + (T1 + T2 − 0.3T1T2)s

5

+(23.7T1 − 0.3T2 + 6 × 103T1T2 + 1)s4 + (6 × 103T1
+6 × 103T2 − 1 × 104T1T2 + 23.7)s3

+(1.1 × 105T1 − 1.2 × 104T2
−2 × 105T1T2 + 6.2 × 103)s2

+(6 × 105T2 − 2 × 105T1 + 1.1 × 105)s

+6 × 105 (39)

Giving T1 a numerical value in Eq. 39, results in
P(s) depending only on T2, giving a similar situation
to Eq. 33. The computation for solving T given in the
previous section can be used to obtain T2, therefore
the critical delays corresponding to T1 and T2 can be
computed using (37) and (38).

Varying T1 in the region [0.001 10] and solving for T2
critical delays for d1 and d2 are obtained, see Fig. 3a.
Also, varying KA from 50 to 200, results in Fig. 3b
which shows the critical delays of d1 and d2 as a function
of KA.

7 Simulation Results

A simulation has been performed on the system shown
in Fig. 1a using MATLAB Simulink. A Runge-Kutta
solver of 4th order with a step size of 1 ms is used
for the numerical simulation. Simulation is performed
with the system parameters given in the previous sec-
tions and KA is taken as 125. Let p = (d1, d2) be
any point on Fig. 3a representing delays. Simulation is
performed at p0 = (0.1599, 0.1599), p1 = (0, 0.15),
p2 = (0.1, 0.15), p3 = (0.2, 0.15), p4 = (0.6, 0.15),
p5 = (0.7, 0.15), p6 = (0.6, 0.05), p7 = (0.6, 0.35),
p8 = (0.6, 0.375). The simulation results are shown
in Fig. 4.

Another simulation was performed to simulate the
interaction between the human and the FAD at a high
value of the force augmenting factor i.e. KA = 100 ×
103, and considering d1 = d = 2 = 40 ms. It has
been observed from the simulations that the interac-
tion is unstable for the values Gp = 2 and Gv =
1.11. However, it is observed that the interaction goes
from the unstable region to the stable region just by
changing the values of the constants internal to the
human body, i.e. changing the value of Gv to 0.3.
These results are shown in Fig. 5. Hence, through



the simulations, it is also possible to verify that
the human’s learning capability helps stabilizing the
interaction.

8 Experimental Results

The prototype designed at the laboratory uses a com-
puter with Windows XP operating system, which runs
MATLAB-SIMULINK along with the WinCon soft-
ware. This setup allows performing a real time exper-
iment with the FAD. We have used a sampling time of
1 ms. The control parameters used for the experiments
are KA = 125, Kd = 65 kg s−1 and Kp = 45 kg s−2.
Figure 6a and b show the experimental results. It can
be noted from Fig. 6b that the human operator is expe-
riencing a load of ≈ 2N ≈ 204 g while lifting a mass
of 24 kg.

The prototype at our laboratory remains stable for
very high values of the gains. We have tried to reach
the instability region by increasing the value of KA

but we have not succeeded to render it unstable. The
following reasons may be a possible explanation for
this behavior.

1. The delays in the human subject’s reflex path are
very small as compared to the critical delays of
the system.

2. The torque produced by the electric motor driving
the ball-screw mechanism saturates for high val-
ues of KA, and such a non-linearity stabilizes the
system.

9 Conclusion

In this paper we have analysed the stability of the
interaction of a human and a FAD. We have consid-
ered a general human operator model proposed in [12].
We have proved the stability in the case of zero delays
using the Routh-Hurwitz criterion. When the human
model includes time-delays, we have also found an
upper bound for the delays such that the stability is
preserved.

It should be pointed out that the actual delays pre-
sented by any healthy human being are about four
times smaller than the upper bound found for the
delays in this study, beyond which instability will
occur in the system. For this reason from a practical
point of view, it can be considered that the scheme
presented is robust enough to delays.

The numerical simulations presented show that if
the delays are maintained below the upper bound
found, the system is stable.

A real time experiment was conducted in a proto-
type. It was observed that the human machine interac-
tion is stable and it is also observed that the damping
introduced is sufficient enough to maintain the sys-
tem without any oscillation. It is also observed that
the operator is actually exerting a small fraction of the
total force needed to lift the weight.

In this paper the stiffness and the viscosity parame-
ters of the human arm have been considered constant.
The stability analysis proves that the closed loop will
remain stable for any positive values of these two
coefficients. In the future we aim at improving the
performance of the control strategy in the presence of
variations of the stiffness and the viscosity parameters
which may occur when changing the user.
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