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This paper presents a stability analysis of the interaction between a human and a linear mov-ing Force Augmenting Device (FAD). The analysis employs a mathematical model of the human arm, the FAD and their interaction. As a depart from past works, this article presents a stability analysis considering time-delays in the human model. A key ingredient in the analysis is the use of the Rekasius substitution for replacing the time-delay terms. It is proved that the human machine interaction is stable when the human model has no delays. When delays are considered in the human model, the analysis provides an upper bound for the time-delays preserving a stable interaction. Numerical simulations allow to assess the human-FAD interaction. An experiment is performed with a laboratory prototype, where a human operator lifts a load. It is observed that the human machine interaction is stable and the human opera-tor is able to move the load to a desired position by experiencing very little effort.

Introduction

Recently, there has been a lot of interest in developing exoskeletons and force augmenting devices [START_REF] Guizzo | The rise of the body bots [robotic exoskeletons[END_REF], i.e. mechanical systems that are worn by humans in such a way as to increase their force. There exist many possible applications for these devices; for instance, in industries where it is commonly required to move heavy loads. This task is mostly done by machines, which are usually controlled by humans who do not necessarily feel the force exerted on the load. This may lead to unsafe operations in confined spaces with obstacles. Exoskeletons and force augmenting devices (FAD) represent a possible solution to this problem [START_REF] Kim | Development of the heavy load transferring task oriented exoskeleton adapted by lower extremity using qausi-active joints[END_REF]. Indeed a FAD amplifies the human strength and allows the operator handling heavy loads but still feeling the effort performed to move a load [START_REF] Snyder | A novel material handling system[END_REF].

There are many papers in the literature dealing with human-machine interaction [START_REF]Hardiman 1 prototype project[END_REF][START_REF] Kazerooni | Human machine interaction via the transfer of power and information signals[END_REF][START_REF] Kazerooni | Human-robot interaction via the transfer of power and information signals[END_REF][START_REF] Lee | Power assist control for leg with hal-3 based on virtual torque and impedance adjustment[END_REF][START_REF] Yamamoto | Development of power assisting suit for assisting nurse labor[END_REF][START_REF] Kazerooni | The Berkeley lower extremity exoskeleton[END_REF][START_REF] Kong | Control of exoskeletons inspired by fictitious gain in human model[END_REF], however the stability of the proposed control algorithms has not been thoroughly studied. In order to study the stability of the human machine interaction we need to introduce a model for the human behaviour. There are several possible models for the human operator [START_REF] Merton | Speculations on the servo-control of movement[END_REF][START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF][START_REF] Schweighofer | Role of the cerebellum in reaching movements in humans. i. distributed inverse dynamics control[END_REF][START_REF] Schweighofer | Role of the cerebellum in reaching movements in humans. ii. a neural model of the intermediate cerebellum[END_REF][START_REF] Oshima | Robotic analyses of output force distribution developed by human limbs[END_REF] and we have selected the model proposed in [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF] because it takes into account the delays present in the human reflexes.

In this paper we present a simple controller for the FAD and a stability proof of its interaction with a human operator. We first study the stability of the interaction considering no delays in the human model. The closed loop system is of 4 th order and the proof of the stability is carried out using the Routh-Hurwitz stability criterion. Furthermore, we have also studied the stability considering delays in the human model. An upper bound for the delays has been found such that the stability is preserved. The human-FAD interaction is illustrated through numerical simulations.

The paper is organized as follows: The next section introduces a model of the FAD, a model of a human operator and the control algorithm proposed in [START_REF] Gadi | Stability analysis and experiments for a force augmenting device[END_REF][START_REF] Gadi | Stability analysis for a force augmenting device considering delays in the human model[END_REF] for the FAD. This is followed by a section providing the stability proof for the system ignoring delays in the human model. Subsequently, the stability is studied considering that both delays in the human model are equal. In the next section a stability analysis is performed assuming that both delays in the human model are independent. Simulation and experimental results support the results obtained. Concluding remarks are given in the final section. 

Mathematical Model

The force augmenting device (FAD) considered in this paper is shown in Figs. 1a and b depicts its block diagram. This figure also shows the interaction between a human operator and the FAD. The FAD has a moving block of 24 kg connected to a ball-screw mechanism, and acts as the load to be lifted by the human operator. The ball-screw mechanism is driven by a DC servo motor. Force and position sensors are attached to the FAD to capture the force exerted by the human on the moving block and to measure its position respectively. The total force exerted on the moving block (F ) can be decomposed as

F (t) = F A (t) + F e (t) -W (1)
where F A is the force exerted by the motor on the moving block, F e is the force exerted by the human on the moving block, W = Mg is the weight of the moving block, M is the mass of the moving block, g is the acceleration due to gravity and t is the time. Considering zero initial conditions, the dynamics of the moving block can be written as

y e (s) F (s) = 1 Ms 2 + K f s (2)
where y e is the position of the moving block, K f is the viscous friction coefficient of the FAD and s is the Laplace transform complex variable. The human model used for describing the human operator arm is based on a servo hypothesis proposed in [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF], where the spinal cord actuates the muscles of the musculoskeletal system by processing the signals received from the brain, and the position and velocity feedback signals produced by the sensory organs of the musculoskeletal system. The position reached by the human arm is not exactly equal to the position commanded by the spinal cord due to the arm inertia, so the command given by the spinal cord to the musculoskeletal system is termed as the virtual position [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF][START_REF] Latash | Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements[END_REF]. The human brain generates a desired trajectory along which the arm must move; based on the desired trajectory the brain computes a signal and sends it to the spinal cord [START_REF] Schweighofer | Role of the cerebellum in reaching movements in humans. i. distributed inverse dynamics control[END_REF], which is the virtual desired position [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF]. The musculoskeletal system is modeled as a second order linear transfer function.
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The human arm can be modeled as a second order linear dynamic system [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF][START_REF] Schweighofer | Role of the cerebellum in reaching movements in humans. i. distributed inverse dynamics control[END_REF]. The torque produced at the joint is a function of the actual arm position and its velocity and the desired arm position and velocity. The authors of [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF] presented a mathematical model for this torque. This model is an improved version based on the virtual trajectory control hypothesis. This model was experimentally validated by the authors of [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF][START_REF] Schweighofer | Role of the cerebellum in reaching movements in humans. i. distributed inverse dynamics control[END_REF] at various velocities. It is observed that this model is valid up to a velocity around 0.32 m s 1 . Figure 1b shows the dynamics of the musculoskeletal system, which can by modeled as:

τ h (s) = J θh (s) + B θh (s) + K(θ h (s) -θ v (s)) (3)
where τ h is the external torque acting on the human joint, θ h is the human arm position, θ v is the output of the spinal cords reflex action, J is the human arm moment of inertia, B is the viscous friction in the human arm movement and K is the muscle stiffness.

The term θ v represents the virtual arm position. In a human being, the sensory feedback received by the spinal cord is delayed. This delay makes the stability issue challenging. The following equation represents the spinal cord reflex action:

θ v (s) = θ vd (s) + G p (θ vd (s) -θ h (s)e -sd 1 ) +sG v (θ vd (s) -θ h (s)e -sd 2 ) (4)
where θ vd is the virtual desired position, G p and G v are the control parameters of the spinal chord, d 1 is 0.15 0.16 0.17 the delay in the position reflex feedback and d 2 is the delay in the velocity reflex feedback.

The force exerted by the human arm F e on the moving block can be expressed as

F e (t) = -F h (t) = (y h (t) -y e (t))E (5) y h (t) = θ h (t)l a (6)
where F h is the force exerted by the moving block on the human arm, E is the physical compliance of the human flesh, y h is the human arm displacement at the end of the arm and l a is human arm length. The torque exerted by the moving block on the human arm, τ h , can be given as τ h (t) = F h (t)l a = (y e (t)y h (t))El a [START_REF] Lee | Power assist control for leg with hal-3 based on virtual torque and impedance adjustment[END_REF] The following control algorithm [START_REF] Gadi | Stability analysis and experiments for a force augmenting device[END_REF] is applied to the FAD: [START_REF] Yamamoto | Development of power assisting suit for assisting nurse labor[END_REF] where K A is the augmenting factor that amplifies the force exerted by the human operator, K d is the derivative gain and K p is the proportional gain.

F A (t) = (K A -1)F e (t) -K d ẏe (t) -K p y e (t)
Since the input terms W , y vd and sy vd do not affect the stability, these terms can be neglected for the stability study. The characteristic equation for the closed loop system can be written as

P (s) = C 4 s 4 + C 3 s 3 + C 2 s 2 + C 1 s + C 0 ( 9 
)
where

C 4 = J M ( 10 
)
C 3 = M(B + G v Ke -sd 2 ) + J (K d + K f ) ( 11 
)
C 2 = M(El 2 a + K(G p e -sd 1 + 1)) +(K d + K f )(B + G v Ke -sd 2 ) +J (K p + EK A ) ( 12 
)
C 1 = (B + G v Ke -sd 2 )(K p + EK A ) +(K d + K f )(El 2 a + K(G p e -sd 1 + 1)) (13) C 0 = (K p + EK A )(El 2 a + K(G p e -sd 1 + 1)) -E 2 K A l 2 a (14)
In the following section we will study the stability of the above polynomial.

Stability Analysis When the Delays are Zero

Considering that d 1 = d 2 = 0, Eq. 9 can be rewritten as 

P (s) = A 4 s 4 + A 3 s 3 + A 2 s 2 + A 1 s + A 0 ( 15 
A 4 = J M ( 16 
)
A 3 = M(B + G v K) + J (K d + K f ) ( 17 
)
A 2 = M(El 2 a + K(G p + 1)) +(K d + K f )(B + G v K) +J (K p + EK A ) ( 18 
)
A 1 = (B + G v K)(K p + EK A ) +(K d + K f )(El 2 a + K(G p + 1)) ( 19 
)
A 0 = EK p l 2 a + (G p + 1)KK p +E(G p + 1)KK A ( 20 
)
As per the Routh-Hurwitz stability criterion, the closed loop system is stable if and only if

A 0 > 0; A 1 > 0; A 2 > 0; A 3 > 0; A 4 > 0; A 5 > 0 (21) b 1 := A 3 A 2 -A 4 A 1 A 3 > 0 (22) c 1 := b 1 A 1 -A 3 A 0 b 1 > 0 ( 23 
)
The above conditions are indeed satisfied for all the positive values of the involved parameters [START_REF] Gadi | Modelado y control de un dispositivo de aumento de fuerza[END_REF]. In the succeeding sections, a numerical example is introduced to study the stability considering the delays.

Stability Considering Identical Delays

Assume that both delays are the same, i.e. 

e -sd = 1 -T s 1 + T s T ∈ , d ∈ + (24) 
which is defined when s = jω, ω ∈ . Unlike Pad approximation, this is an exact substitution. This substitution allows to replace the exponential transcendental term associated to the time-delay (i.e. e -sd ) by a rational expression of the variables s and T . It is observed that using this substitution leads to less conservative stability results than the approach employing Lyapunov-Krasovskii functionals [START_REF] Ebenbauer | Stability analysis for timedelay systems using rekasius's substitution and sum of squares[END_REF]. We are using this fact to identify the exact point at which the system goes from stable to unstable. As opposed to other techniques, the values obtained with this approach are accurate. The relation between d , T and ω can be given as [START_REF] Olgac | The direct method for stability analysis of time delayed LTI systems[END_REF][START_REF] Rekasius | A stability test for systems with delays[END_REF] 

d = 2 ω arctan (T ω) + lπ l = -∞, ... -1, 0, 1, ..., ∞ (25) 
where for a fixed ω each T maps to infinitely many values of d. Substituting (24) into (9), we get

P (s) = B 5 s 5 + B 4 s 4 + B 3 s 3 + B 2 s 2 + B 1 s + B 0 ( 26 
)
where

B 5 = J MT (27) B 4 = J M + BMT + J (K d + K f )T -G v KMT (28) B 3 = EMT l 2 a + BM + J (K d + K f ) +G v KM + B(K d + K f )T + J K p T + KMT +EJ K A T -G v K(K d + K f )T -G p KMT (29) B 2 = B(K d + K f ) + J K p + KM + EJ K A +G v K(K d + K f ) + G p KM + BK p T +K(K d + K f )T + EMl 2 a +E(K d + K f )T l 2 a + BEK A T -G p K(K d + K f )T -G v KK p T -EG v KK A T (30) B 1 = BK p + K(K d + K f ) + BEK A +G p K(K d + K f ) + G v KK p + KK p T +E(K d + K f )l 2 a +EK p T l 2 a + EG v KK A + EKK A T -G p KK p T -EG p KK A T (31) B 0 = EK p l 2 a + KK p + EKK A + G p KK p EG p KK A ( 32 
)
The estimated values for the laboratory setup shown in Fig. 1a are M = 23.4 kg and K f = 0 N m -1 . The authors in [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF] use the following parameters for a human arm: flesh is given in [START_REF] Pataky | Viscoelastic response of the finger pad to incremental tangential displacements[END_REF]. Taking l a = 0.35 m and the control parameters K A = 125, K d = 65 kg s -1 and K p = 45 kg s -2 . Substituting these values in P (s), Eq. 26 is rewritten as Since the system is stable when the delays are zero, all the poles are in the left hand side of the complex plane. New poles are introduced from the left hand side of the complex plane as a consequence of the presence of delays [START_REF] Michiels | Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach[END_REF]. The position of the poles in the complex plane as a function of the delay is continuous [START_REF] Michiels | Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach[END_REF][START_REF] Neimark | D-subdivisions and spaces of quasipolynomials[END_REF]. As the delays increase, the poles move towards the right hand side of the plane and finally cross the jω axis. The substitution ( 24) is valid at the moment when the poles are on the imaginary axis just before crossing it.

J = 0.1 N m rad -1 s -1 , B = 0.89 N m rad -1 s -1 , K = 4 N m rad -1 , G p = 2 and G v = 0.
P (s) = 2.
A Routh array can be constructed for Eq. 33 as As per the Routh-Hurwitz stability criterion, when the poles are on the imaginary axis, a row of the Routh array becomes zero and its previous row is called the auxiliary polynomial. The auxiliary polynomial gives the location of the poles on the imaginary axis. Solving B 11 = 0 and considering only real values for T , the solution is T = 2.44372 or T = 0.11131. The auxiliary polynomial (P A ) is given by the next expression 

s
P A = B 21 s 2 + 1.
d| l=-1 = -2.9817
The smallest positive delay at which the poles cross the imaginary axis for the first time is called the critical delay (d c ). The critical delay for this system occurs for the values l = 0, d = d c = 0.1599. Repeating the above calculations for the different values of K A , we can obtain the critical delay corresponding to each value of K A . Figure 2 shows the change in the critical delay as a function of the augmenting factor K A .

Stability Considering Independent Delays

In this section let us consider different delays d 1 and d 2 . A Rekasius substitution similar to Eq. 24 for the two time-delays is

e -sd 1 = 1 -T 1 s 1 + T 1 s T 1 ∈ , d 1 ∈ + (35) e -sd 2 = 1 -T 2 s 1 + T 2 s T 2 ∈ , d 2 ∈ + (36) 
and the relation between T 1 , ω 1 , and d 1 and T 2 , ω 2 , and d 2 is given by

d 1 = 2 ω arctan (T 1 ω) + lπ l = -∞, ... -1, 0, 1, ..., ∞ (37) 
d 2 = 2 ω arctan (T 2 ω) + lπ l = -∞, ... -1, 0, 1, ..., ∞ (38) 
Substituting ( 35) and (36) into ( 9), we get a characteristic polynomial of order six. Using the values for the parameters B, E, G p , G v , J , K, K A , K d , K f , K p , l a , M given in the previous section, the following polynomial is obtained. Giving T 1 a numerical value in Eq. 39, results in P (s) depending only on T 2 , giving a similar situation to Eq. 33. The computation for solving T given in the previous section can be used to obtain T 2 , therefore the critical delays corresponding to T 1 and T 2 can be computed using (37) and (38).

P (s) = T 1 T 2 s 6 + (T 1 + T 2 -0.
Varying T 1 in the region [0.001 10] and solving for T 2 critical delays for d 1 and d 2 are obtained, see Fig. 3a. Also, varying K A from 50 to 200, results in Fig. 3b which shows the critical delays of d 1 and d 2 as a function of K A .

Simulation Results

A simulation has been performed on the system shown in Fig. 1a using MATLAB Simulink. A Runge-Kutta solver of 4 th order with a step size of 1 ms is used for the numerical simulation. Simulation is performed with the system parameters given in the previous sections and K A is taken as 125. Let p = (d 1 , d 2 ) be any point on Fig. 3a representing delays. Simulation is performed at p 0 = (0.1599, 0.1599), p 1 = (0, 0.15), p 2 = (0.1, 0.15), p 3 = (0.2, 0.15), p 4 = (0.6, 0.15), p 5 = (0.7, 0.15), p 6 = (0.6, 0.05), p 7 = (0.6, 0.35), p 8 = (0.6, 0.375). The simulation results are shown in Fig. 4.

Another simulation was performed to simulate the interaction between the human and the FAD at a high value of the force augmenting factor i.e. K A = 100 × 10 3 , and considering d 1 = d = 2 = 40 ms. It has been observed from the simulations that the interaction is unstable for the values G p = 2 and G v = 1.11. However, it is observed that the interaction goes from the unstable region to the stable region just by changing the values of the constants internal to the human body, i.e. changing the value of G v to 0.3. These results are shown in Fig. 5. Hence, through the simulations, it is also possible to verify that the human's learning capability helps stabilizing the interaction.

Experimental Results

The prototype designed at the laboratory uses a computer with Windows XP operating system, which runs MATLAB-SIMULINK along with the WinCon software. This setup allows performing a real time experiment with the FAD. We have used a sampling time of 1 ms. The control parameters used for the experiments are K A = 125, K d = 65 kg s -1 and K p = 45 kg s -2 . Figure 6a andb show the experimental results. It can be noted from Fig. 6b that the human operator is experiencing a load of ≈ 2 N ≈ 204 g while lifting a mass of 24 kg.

The prototype at our laboratory remains stable for very high values of the gains. We have tried to reach the instability region by increasing the value of K A but we have not succeeded to render it unstable. The following reasons may be a possible explanation for this behavior. 1. The delays in the human subject's reflex path are very small as compared to the critical delays of the system. 2. The torque produced by the electric motor driving the ball-screw mechanism saturates for high values of K A , and such a non-linearity stabilizes the system.

Conclusion

In this paper we have analysed the stability of the interaction of a human and a FAD. We have considered a general human operator model proposed in [START_REF] Mcintyre | Servo hypotheses for the biological control of movement[END_REF].

We have proved the stability in the case of zero delays using the Routh-Hurwitz criterion. When the human model includes time-delays, we have also found an upper bound for the delays such that the stability is preserved.

It should be pointed out that the actual delays presented by any healthy human being are about four times smaller than the upper bound found for the delays in this study, beyond which instability will occur in the system. For this reason from a practical point of view, it can be considered that the scheme presented is robust enough to delays.

The numerical simulations presented show that if the delays are maintained below the upper bound found, the system is stable.

A real time experiment was conducted in a prototype. It was observed that the human machine interaction is stable and it is also observed that the damping introduced is sufficient enough to maintain the system without any oscillation. It is also observed that the operator is actually exerting a small fraction of the total force needed to lift the weight.

In this paper the stiffness and the viscosity parameters of the human arm have been considered constant. The stability analysis proves that the closed loop will remain stable for any positive values of these two coefficients. In the future we aim at improving the performance of the control strategy in the presence of variations of the stiffness and the viscosity parameters which may occur when changing the user.
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