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Abstract

This paper presents the problem of safe and fast transportation of packages by an Unmanned Aerial Vehicle (UAV) kind
quadrotor. A mathematical model and a control strategy for a special class of underactuated mechanical systems, composed of a
quadrotor transporting a cable-suspended payload, is proposed. The Euler-Lagrange formulation is used to obtain the dynamic
model of the system, where the integrated dynamics of the quadrotor, cable and payload are considered. An Interconnection
and Damping Assignment-Passivity Based Control (IDA-PBC) is chosen because of its inherent robustness. Two cases are
considered to obtain two different control laws, in the first case, the designed control law depends on the swing angle of the
cable, in the second case the control law does not depend on it. The control objective is to transport the payload from point
to point, with swing reduction along trajectory. Experimental results using a monocular vision based navigation are shown
to evaluate the proposed control law.

1 Introduction

The autonomous aerial transportation of a cable-suspended payload is an interesting and important topic that has
attracted the research interest in recent years. It can be applied to a wide range of useful tasks, such as deploying
supplies in military operations, or delivering first-aid kits for personal assistance to the victims in disasters like floods,
earthquakes, fires, industrial accidents, among others. It is also a basic technology for other future applications, such
as, building platforms in hazardous environments [1]. Even more, important global companies for delivery services
have announced their wide interest in using UAVs in the short term for package delivery.

These applications often require aggressive maneuvers for fast transportation of fragile payloads. The pendulum like
behavior of the slung load gives a high risk of oscillations that can result in dangerous situations [2]. Furthermore,
unstable oscillations can occur at high speeds due to the different aerodynamic shapes of the slung loads. Hence,
it is very important to cancel or reduce oscillations of the suspended payload to avoid damage on the load, the
environment and the people around and guarantee safety in the operation.

In such context, one can choose between several approaches. For example, one option is to design control strategies
that stabilize the oscillation to zero [3]-[10]. Another approach is applying control techniques to solve swing-free
trajectory tracking [11]-[22].

The design of controllers that rapidly stabilize the payload swing and the general problem of an UAV transporting a
cable-suspended payload, as the one depicted in Figure 1, has been investigated in a few recent works. For example,
[3] presents an adaptative controller for a quadrotor transporting a point-mass payload connected by a flexible
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Fig. 1. Experimental platform for a quadrotor with a cable-suspended payload.

cable. The cable is modeled as serially-connected rigid links and the payload is modeled as a point-mass. Meanwhile,
[4] explores the effect of dynamic load disturbances introduced by instantaneously increased payload mass and
how this affect a quadrotor under proportional integral derivative flight control. [5] proposes a nested saturation
controller to stabilize the system and to control the oscillations of the suspended load. The control law guarantees
asymptotic stability without any restrictions on the position and velocity of the aerial vehicle. [6] introduces a
nonlinear controller to stabilize the quadrotor and the load, during positioning and trajectory tracking tasks. Also,
experiments of transportation and accurate deployment of payloads with single/multiple autonomous aerial vehicles
are presented in [7]. Moreover, [8] develops a geometric nonlinear control to exponentially stabilize the position of
the quadrotor while aligning the links to the vertical direction below the quadrotor. As well, a geometric control but
for multiple quadrotors transporting a rigid-body load is also developing in [9]. A model based algorithm controller
in order to control the position and attitude of the system of interest is used in [10].

On the other hand, for the swing-free trajectory tracking, a technique based on dynamic programming is proposed
in [11]. In addition, [12] presents an adaptive controller considering changes in the center of gravity and an optimal
trajectory generation also based on dynamic programming. [13] introduces a model-free approach for solving this
problem involving a reinforcement learning algorithm. Similarly, [14] and [15] integrates the swing-free path tracking
and sampling-based path planning to solve the aerial cargo delivery task. In that work, each of the modules is
evaluated separately, and showed that learning converges to a single policy, and performs minimal residual oscillation
delivery task. Also, [16] proposes a method for learning control of nonlinear motion systems through combined
learning of state-value and action-value functions applied to an UAV carrying a suspended load. [17] and [18] present
an online control policy based on supervised machine learning, Least Squares Axial Sum Policy Approximation
(LSAPA), that generates trajectories for robotic preference-balancing tasks under stochastic disturbances. [19] and
[20] extend this issue by defining an hybrid system for the lift maneuver for the case of a planar version of the
problem. They demonstrate that the hybrid model is indeed a differentially-flat hybrid system. Moreover, [21] and
[22] use the differentially-flat property to design trajectories and preliminary results have been demonstrated in
simulations and in experiments for a quadrotor transporting a cable-suspended load along the longitudinal plane.

However, in the above mentioned works, the control laws explicitly depend on the swing angle of the cable, and
therefore, they require extra sensors to measure it or designing an observer to estimate it. Furthermore, experimental
results are usually obtained with the help of an expensive motion capture system. In this article the IDA-PBC
methodology is used for precise and fast payload positioning with asymptotic stabilization of the swing angle to the
minimum of the desired energy function in a short time, without dependance on the angle of oscillation (second
case), and without requiring an external motion capture system for the implementation.

There are some works where IDA-PBC is applied to UAVs. For example, [23] develops a robust control of under-
actuated aerial manipulators via IDA-PBC, while, [24] presents a nonlinear control technique based on passivity to
solve the path tracking problem for the quadrotor. As well, a controller for a VTOL aircraft via PBC methodology is
designed in [25]. There, the path tracking problem is solved for a realistic quadrotor model, in addition, an integral
control action is added to the control strategy for sustained disturbance rejection. Also, [26] proposes a damping
assignment passivity-based controller that is able to change the apparent dynamical parameters of a quadrotor.

In our previous work [27], we studied the problem of a quadrotor with a cable-suspended payload but only within the
longitudinal plane. The two-dimensional mathematical model was obtained and a simple PBC strategy, without total
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energy-shaping, is designed. It only presented numerical simulations to validate the control approach. Then, in [28]
the dynamical model was extended to the three-dimensional case and real-time experimental results were included. In
the present work, the mathematical model is obtained via the Euler-Lagrange formalism for a quadrotor transporting
a cable-suspended payload evolving in a three-dimensional space. The novelty with respect to our previous works is
that the mathematical model is represented in two different ways, according to the control objectives. In the first
model, the inertia matrixM depends on the angle of oscillation. In the second model, the inertia matrixM does not
depend on this angle and this simplifies the energy-shaping phase of the IDA-PBC strategy. Moreover, the IDA-PBC
methodology is used to incorporate information about the underactuated system structure and to deal with the
concept of energy in the control strategy. Then, two cases are considered to obtain two different control laws for
planar maneuvers and compare the obtained performances. In contrast to [27] and [28], the kinetic energy-shaping
is included for both controllers. In the first case, the designed control law depends on the swing angle of the cable,
but the total energy is shaped. On the other hand, the second control law does not explicitly depend on the swing
angle, hence, no extra measurement is required. However, the energy-shaping only acts on the actuated coordinates.

In short, the main contribution of this paper is to present a nonlinear dynamic model and two control systems,
for a quadrotor UAV with a cable-suspended payload that explicitly incorporate a total energy-shaping. Also, real-
time experimental results are presented using monocular vision based navigation, demonstrating the validity and
good performance of the control scheme. Real-time validation of similar algorithms can be found in the literature,
nevertheless they usually use expensive motion capture systems, as VICON and OptiTrack systems. In our work, we
validate the proposed algorithm using an inexpensive localization system based only in a monocular camera fused
with inertial sensors. This localization system can be adapted and used quickly in several environments. This is also
a practical contribution in our work, and in our best knowledge this localization system has not been used before for
experiences with quadrotors transporting a payload. An External motion capture system was used only to obtain
the graph of the payloads swing angles of the experimental results presented in the paper.

This article is organized as follows: the mathematical model of a three-dimensional quadrotor transporting a cable-
suspended payload is described in section II. The control strategy: Interconnection and Damping Assignment-
Passivity Based Control is developed in section III. Experimental results are presented in section IV. Conclusions
and perspectives are finally given in section V.

2 DYNAMIC MODEL

In this section, a brief description of the model is presented. Figure 2 shows a quadrotor with a payload connected
by a cable. The system under consideration has eight degrees of freedom and only four degrees are actuated.

Fig. 2. Three-dimensional quadrotor with a cable-suspended payload.

To facilitate the control design, the dynamic model for a quadrotor with a swinging load, is based on the following
assumptions:

(1) The cable connecting payload and helicopter fuselage is rigid, massless and inelastic.
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(2) The length of the connecting cable is constant and known.
(3) The angle of the payload is restricted according to the following inequality −π/2 < α < π/2.
(4) The payload can be considered as a mass point.
(5) The aerodynamic effects on the load are neglected.

According to Figure 2, the following notation is used, let us consider an inertial coordinate frame I = {ex, ey, ez},
fixed to the ground and a body fixed coordinate frame B = {e1, e2, e3} which coincides with the center of mass of

the quadrotor. Then, the configuration variables are q =
[
ξ η µ

]T
∈ <8, where ξ

4
=
[
x y z

]T
∈ <3 denotes the

position of the center of mass of the UAV relative to the fixed inertial frame O, η
4
=
[
ψ θ φ

]T
∈ <3 are the Euler

angles yaw, pitch and roll, respectively. µ
4
=
[
α β

]T
∈ <2 denotes the swing angles of the cable. l is the length of

the cable, while d is the distance between the motors. Finally, f1, f2, f3 and f4 are the thrust forces provided by
each rotor.

The control input is defined as u =
[
f τ

]T
∈ <4, where f = f1 + f2 + f3 + f4 is the total thrust magnitude,

τ =
[
τψ τθ τφ

]T
, τψ = Σ4

i=1τMi , τθ = (f2 − f4)d and τφ = (f3 − f1)d are the input torques, as τMi is the moment

produced by motor Mi, i = 1, ..., 4, around the center of gravity of the aircraft. R is the rotational matrix from the
body frame to the inertial one, which using the short notation sθ = sin(θ), cθ = cos(θ) and tθ = tan(θ) is given by

R =


cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ cθsφ cθcφ


2.1 Euler-Lagrange equations

Under these assumptions, the mathematical model is obtained via the Euler-Lagrange formalism. The expressions for
the kinetic and potential energy will be presented in order to obtain the Lagrangian of the system. The total kinetic
energy function K(q, q̇) of the quadrotor transporting a cable-suspended payload, resulting from the translational
and rotational motion can be partitioned as the sum of the quadrotor kinetic energy

KUAV =
1

2
Mξ̇T ξ̇ +

1

2
η̇TJη̇ (1)

and the cable-suspended payload kinetic energy

Kp =
1

2
mξ̇Tp ξ̇p +

1

2
Ip(α̇

2 + β̇2) (2)

where the matrix J = J(η) acts as the inertia matrix for the full rotational kinetic energy of the quadrotor expressed
in terms of the generalized coordinates η (for further details, the interested reader is referred to [29]), and is defined
as

J =


Iψs

2
θ + Iθc

2
θs

2
φ + Iφc

2
θc

2
φ cθcφsφ(Iθ − Iφ) −Iψsθ

cθcφsφ(Iθ − Iφ) Iθc
2
φ + Iφs

2
φ 0

−Iψsθ 0 Iψ


In the above expressions, Ip is the mass moment of inertia of the payload, Iψ, Iθ and Iφ are the mass moments of
inertia of the quadrotor, while M and m represent the mass of the quadrotor and the payload, respectively. Finally,
the position of the payload center in the cartesian coordinate are denoted by

ξp = ξ + lr, (3)
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with ξp =
[
xp yp zp

]T
and r =

[
sαcβ sαsβ −cα

]T
. Then, The total kinetic energy function K(q, q̇) is

K(q, q̇) =
1

2
Mξ̇T ξ̇ +

1

2
η̇TJη̇ +

1

2
mξ̇Tp ξ̇p +

1

2
Ip(α̇

2 + β̇2) (4)

The total potential energy function V (q) of the system results from the sum of the potential energy of the quadrotor
and the cable-suspended payload as

V (q) = Mgz +mg(z − lcα) (5)

Using (4) and (5), the lagrangian may be written as

L=
1

2
(M +m)(ẋ2 + ẏ2 + ż2) +

1

2
(Iψs

2
θ + Iθc

2
θs

2
φ + Iφc

2
θc

2
θ)ψ̇

2 +
1

2
(Iθc

2
φ + Iφs

2
φ)θ̇2 − Iψsθψ̇2φ̇2

+(Iθcθcφsφ − Iφcθcφsφ)ψ̇2θ̇2 +
1

2
Iψφ̇

2 +mlβ̇sα(cβ ẏ − sβ ẋ) +mlα̇cα(sβ ẏ + cβ ẋ) +
1

2
ml2α̇2

+
1

2
ml2s2αβ̇

2 +mlżsαα̇+
1

2
Ip(α̇

2 + β̇2)−Mgz −mg(z − lcα) (6)

By applying the Euler-Lagrange formulation,

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= bu (7)

we obtain the equations modeling the total motion of the system expressed in matrix form as

M(q)q̈ + C(q, q̇)q̇ +G(q) = bu (8)

where M(q) ∈ <8×8 is the inertia matrix, which is symmetric and positive definite, C(q, q̇) ∈ <8×8 is the Coriolis
and centrifugal matrix, G(q) ∈ <8 is the gravitational vector and the matrix b ∈ <8×4 is determined by the manner
in which the control u ∈ <4 is the input of the system, and is not invertible because the system is underactuated.
These matrices are given by:

M(q) =



M +m 0 0 0 0 0 mlcαcβ −mlsαsβ
0 M +m 0 0 0 0 mlcαsβ mlsαcβ

0 0 M +m 0 0 0 mlsα 0

0 0 0 Iψs
2
θ + c2θ(Iθs

2
φ + Iφc

2
φ) m45 −Iψsθ 0 0

0 0 0 (Iθ − Iφ)(cθsφcφ) m55 0 0 0

0 0 0 −Iψsθ 0 Iψ 0 0

mlcαcβ mlcαsβ mlsα 0 0 0 ml2 + Ip 0

−mlsαsβ mlsαcβ 0 0 0 0 0 ml2s2α + Ip


where m45 = (Iθ − Iφ)(cθsφcφ) and m55 = Iθc

2
φ + Iφs

2
φ.
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C(q) =



0 0 0 0 0 0 −ml(cαsβ β̇ + cβsαα̇) −ml(cαsβα̇+ cβsαβ̇)

0 0 0 0 0 0 ml(cαcβ β̇ − sαsβα̇) ml(cαcβα̇− sαsβ β̇)

0 0 0 0 0 0 mlcαα̇ 0

0 0 0 c44 c45 c46 0 0

0 0 0 c54 c55 c56 0 0

0 0 0 c64 c65 0 0 0

0 0 0 0 0 0 0 −ml2sαcαβ̇
0 0 0 0 0 0 ml2sαcαβ̇ ml2sαcαα̇


where c44 = Iψ θ̇sθcθ − (Iθ + Iφ)(θ̇sθcθs

2
φ) + (Iθ − Iφ)φ̇c2θsφcφ, c45 = Iψψ̇sθcθ − (Iθ − Iφ)(θ̇sθcφsφ + φ̇cθs

2
φ) − (Iθ +

Iφ)(ψ̇sθcθc
2
φ− φ̇cθc2φ), c46 = −(Iψ θ̇cθ−(Iθ−Iφ)(ψ̇c2θsφcφ)), c54 = ψ̇sθcθ(−Iψ+Iθs

2
φ+Iφc

2
φ), c55 = −(Iθ−Iφ)(φ̇sφcφ),

c56 = Iψψ̇cθ + (Iθ − Iφ)(−θ̇sθcφ + ψ̇cθc
2
φ− ψ̇cθs2φ), c64 = −(Iθ − Iφ)(ψ̇c2θsφcφ) and c65 = −Iψψ̇cθ + (Iθ − Iφ)(θ̇sφcφ +

ψ̇cθs
2
φ − ψ̇cθc2φ).

G(q) =
[

0 0 (M +m)g 0 0 0 mlgsα 0
]T

b(q) =


sφsψ + cφcψsθ cφsθsψ − cψsφ cθcφ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


T

This mathematical model can be expressed as

(M +m)ξ̈ +mlr̈ + (M +m)ge3 = fRe3 (9)

Jη̈ + Cr(η, η̇)η̇ = τ (10)

r× (Mgle3 − flRe3 +Mlξ̈) = 0 (11)

In order to simplify the design of the control strategy (specifically the energy-shaping stage), the mathematical
model (9) through (11) is expressed so that the inertia matrix does not depend on q, with details in Appendix A,
the model (8) can also be represented as

(M +m)
(
ξ̈p + ge3

)
= (r · fRe3 −Ml(ṙ · ṙ)) r (12)

Jη̈ + Cr(η, η̇)η̇ = τ (13)

Mlẇ = −fRr× e3 (14)

where Cr(η, η̇) =


c44 c45 c46

c54 c55 c56

c64 c65 c66

 and w ∈ <2 is the angular velocity of the suspended load. The expressions (12)

through (14) are the load position, the quadrotor attitude and the load attitude dynamics, respectively.
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Finally, with the objective to represent the behavior of the payload oscillation in a clearer manner, we define the
new swing angles αx with respect to xz plane and βy with respect to yz plane, as follows

αx = sin−1(sinα cosβ)

βy = tan−1(tanα sinβ)

2.2 Simplified dynamic model for the longitudinal plane

With the objective of simplifying the control design, let us consider the system within the longitudinal plane and
then in the transverse plane.

Consider the system (12) through (14) within the longitudinal plane (i.e., y = β = ψ = φ = 0). Then, the equations
for the translational motion are

−fc(θ+α)sα = (M +m)ẍp +Mlα̇2sα (15)

fc(θ+α)cα = (M +m) (z̈p + g)−Mlα̇2cα (16)

and the rotational motion
τθ = Iθ θ̈ (17)

−fs(θ+α) = Mlα̈ (18)

This mathematical model can be expressed in the matrix form (8), where the matrices are given by:

M =


M +m 0 0 0

0 M +m 0 0

0 0 Iθ 0

0 0 0 Ml

 , C(q, q̇) =


0 0 0 Mlsαα̇

0 0 0 −Mlcαα̇

0 0 0 0

0 0 0 0

 (19)

G =


0

(M +m)g

0

0

 , b(q) =


−c(θ+α)sα 0

c(θ+α)cα 0

0 1

−s(θ+α) 0



where q =
[
xp zp θ α

]T
and u =

[
f τθ

]T
. For the transverse plane a similar model is obtained with x = θ = ψ = 0

and β = π/2.

Under the same conditions, the model (9) through (11) within the longitudinal plane can be expressed as (8), where
the matrices are given by:

M(q) =


M +m 0 0 mlcα

0 M +m 0 mlsα

0 0 Iθ 0

mlcα mlsα 0 ml2

 , C(q, q̇) =


0 0 0 −mlsαα̇
0 0 0 mlcαα̇

0 0 0 0

0 0 0 0

 (20)
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G(q) =


0

(M +m)g

0

mlgsα

 , b(q) =


sθ 0

cθ 0

0 1

0 0


3 CONTROL STRATEGY

Interconnection and damping assignment is a passivity based control methodology applied to a special class of
underactuated mechanical systems, which is based on systems described by the Port Controlled Hamiltonian (PCH)
model. This methodology consists in assigning a new PCH model in closed loop with the interconnection and damping
assignment.

In the present work, the IDA-PBC methodology is used to incorporate information about the underactuated system
structure and to deal with the concept of energy in the control strategy. The main advantage of the IDA-PBC
strategy is its inherent robustness with respect to unmodeled dynamics [31] and parametric uncertainties [32].

3.1 General IDA-PBC theory

The basic philosophy of the IDA-PBC strategy is to assign the closed loop dynamics of a Hamiltonian systems with
total energy

H(q, p) =
1

2
pTM−1(q)p+ V (q) (21)

where q ∈ <n, p ∈ <n, are the generalized position and momentum, respectively and H(q, p) is the Hamiltonian.
The motion equations can be written as[

q̇

ṗ

]
=

[
0 In

−In 0

][
∇qH
∇pH

]
+

[
0

b(q)

]
u (22)

with In ∈ <n×n as the identity matrix, ∇qH = ∂H/∂q and ∇pH = ∂H/∂p.

We propose the following form for the desired energy function:

Hd(q, p) =
1

2
pTMd

−1(q)p+ Vd(q) (23)

where Md = MT
d > 0 and Vd represent the desired closed loop inertia matrix and potential energy function,

respectively. We will require that the function Vd has an isolated minimum at q∗, that is

q∗ = arg minVd(q) (24)

In PBC, the control input is naturally decomposed into two terms,

u = ues(q, p) + udi(q, p) (25)

where the first term is designed to achieve the energy-shaping and the second one injects the damping. The desired
port controlled Hamiltonian dynamics are taken as the following form [30]

[
q̇

ṗ

]
= [Jd(q, p)−Rd(q, p)]

[
∇qHd

∇pHd

]
(26)
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where

Jd = −JTd =

[
0 M−1Md

−MdM−1 J2(q, p)

]
, Rd = RTd =

[
0 0

0 bKvb
T

]
≥ 0

with J2 as a skew-symmetric matrix and Kv = KT
v > 0, both containing design parameters.

The damping injection is achieved through the negative feedback of the new passive output y = bT∇pHd. Thus, the
damping injection term is given by

udi(q, p) = −Kvb
T∇pHd (27)

To obtain the energy-shaping term ues of the controller, we replace (25) and (27) in (22) and make it equal to (26)
to obtain

[
0 In

−In 0

][
∇qH
∇pH

]
+

[
0

b(q)

]
ues =

[
0 M−1Md

−MdM−1 J2(q, p)

][
∇qHd

∇pHd

]
(28)

The first row of the equations is clearly satisfied. The second can be expressed as

bues = ∇qH −MdM−1∇qHd + J2M−1d p

In the underactuated case, whereas the b⊥(q) ∈ <(n−m)×n is the full rank left annihilator of b, i.e., b⊥b = 0

b⊥{∇qH −MdM−1∇qHd + J2M−1d p} = 0 (29)

The energy-shaping term is given by

ues =
(
bT b
)−1

bT
(
∇qH −MdM−1∇qHd +J2M−1d p

)
(30)

Using (23) the PDEs (29) can be separated into terms that depend on p and terms which are independent of p

b⊥
{
∇q(pTM−1p)−MdM−1∇q(pTM−1d p) +2J2M−1d p

}
= 0 (31)

b⊥
{
∇qV −MdM−1∇qVd

}
= 0 (32)

3.2 IDA-PBC methodology for a quadrotor transporting a cable-suspended payload

To simplify the control design, let us consider only planar maneuvers. Then, the control problem is to move, in a short

time, the payload from any initial position qi =
[
xi zi θi αi

]T
, to a final desired position qD =

[
xD zD θD αD

]T
,

in this case θD = αD = 0. Specifically we apply the IDA-PBC approach to the two models represented by (8)
with matrices given by (19) and (20) to achieve a precise positioning of the payload and a swing-attenuation of the
cable-suspended payload.

In order to compare them, two different control laws are considered. In the first case, a control scheme with total
energy-shaping is designed, however, the control law depends on the oscillation angle. In the second case, the control
strategy does not depend on the oscillation angle.
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3.2.1 Case 1

In this case the IDA-PBC control strategy is applied to the simplified dynamic model for the longitudinal plane
described by (8) and (19). Then, the same technique is employed for the transverse plane.

In the energy-shaping we note that the inertia matrix M is independent of q and it is constant, hence, we can take
J2 = 0 and select Md to be a constant matrix [31] of the form.

Md =


a1 0 a2 a3

0 a4 0 0

a2 0 a5 0

a3 0 0 a6

 , a1a5a6 > a2
2a6 + a3

2a5 (33)

where a1 = a4 = 0.4, a2 = a3 = a6 = 0.1 and a5 = 0.177. We have that b is a function of two coordinates, an actuated

coordinate θ and another unactuated α, thus the range of b⊥ under these conditions is 1. With b⊥ =
[
cα sα 0 0

]
,

the potential energy PDE (32) takes the form:

cα

[
a1

M +m

∂Vd
∂x

+
a2
Iθ

∂Vd
∂θ

+
a3
Ml

∂Vd
∂α

]
+ sα

[
a4

M +m

∂Vd
∂z
− g(M +m)

]
= 0 (34)

which is solved and thus the desired energy potential is obtained:

Vd = −g(M +m)Ml

a3
ln(cα) + Φ

where Φ(x, z, θ, α) is an arbitrary differentiable function. Note that the selection of Φ(x, z, θ, α) is governed by the
condition given by (24). For this, the necessary condition ∇qVd(q∗) = 0 and the sufficient condition ∇2

qVd(q∗) > 0
will hold if the Hessian of Φ(x, z, θ, α) at q∗ is positive [30]. In our case, we choose Φ(x, z, θ, α) to be a quadratic
function which leads to

Vd = − g(M+m)Ml
a3

ln(cα) + 1
2kpx

(
θ − a2(M+m)

a1Iθ
(x− xD)

)2
+ 1

2kpz

(
z − zD + a4Ml

a3(M+m) ln(cα)
)2

+ 1
2kpα

(
α− a3Iθ

a2Mlθ
)2 (35)

where (xD, zD, 0, 0) denotes the equilibrium configuration and the kpx, kpz and kpα terms are proportional gains
and are used as tuning parameters. To compute the final control law we first determine the energy-shaping term ues
from (30), which, in this case, takes the form:

uesx =


s(α+θ)

[
a6

(
kpαγ+(M+m)gϑ+ϑkpzδ

Ml − ρa3kpxχ
)]

+ c(α+θ)cα

[
g(M +m)− a4

M+mkpzδ
]

+c(α+θ)sα

[
a2 (Iθkpxχ− ςkpαγ) + a3

(
kpαγ+(M+m)gϑ+ϑkpzδ

Ml

)
− ρa1kpxχ

]
kpx
Iθ

(
a22−a5(M+m)

(M+m)

)
χ+ a5ςkpαγ

 (36)

where

χ(x, θ) = θ − a2
Iθ

(x− xD), δ(z, θ) = z − zD −
Ml

a3
ln(cα), γ(α, θ) = α− Iθa3

a2Ml
θ, ϑ(α) =

Ml

a3
tα,
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ρ =
a2

Ip(M +m)
, ς =

a3
Mla2

and second we determine the damping injection term udi from (27)

udix =

 λa5(M +m)ẋ+
(
−a22a6+a

2
3a5−a1a5a6

a4(a22a6+a
2
3a5−a1a5a6)

)
(M +m)c(α+θ)cαż − λa6Iθ θ̇ +$Mlα̇

− a2a6(M+m)
a22a6+a

2
3a5−a1a5a6

ẋ− (a23−a1a6)Iθ
a22a6+a

2
3a5−a1a5a6

θ̇ − a2a3Ml
a22a6+a

2
3a5−a1a5a6

α̇

 (37)

where

λ =
a3s(α+θ) − a6c(α+θ)sα
a22a6 + a23a5 − a1a5a6

, $ =
s(α+θ)(a

2
2 − a1a5) + a3a5c(α+θ)sα

a22a6 + a23a5 − a1a5a6

Stability

Proposition 2: The control law (25) with (36) and (37) guarantees asymptotic stability at the equilibrium of
(q, p) = (q∗, 0) = (xD, zD, 0, 0, 0, 0, 0, 0) with the desired energy function given by (23) with (33) and (35) for any

constants satisfying 0 < a2 <
√
a1a5 −

a23a5
a6

and the attraction domain (q, p) ∈ <2×(−π/2, π/2)×(−π/2, π/2)×<4.

Proof. Md is positive definite for any constants satisfying 0 < a2 <
√
a1a5 −

a23a5
a6

, also the desired potential energy

function (35) is positive define for any q ∈ <2 × (−π/2, π/2)× (−π/2, π/2), then, the desired total energy function
is positive definite and is a Lyapunov function.

Then, differentiating (23) along the trajectories of the system

Ḣd = pTM−1d ṗ+ [∇qVd]T q̇

Taking into account that ∇pHd = M−1d p and [∇qHd]
T

= [∇qVd]T , we obtain

Ḣd = [∇pHd]
T
ṗ+ [∇qHd]

T
q̇

From (26), q̇ = M−1Md∇pHd and ṗ = −MdM
−1∇qHd − bKvb

T∇pHd, it follows that

Ḣd = [∇pHd]
T (−MdM

−1∇qHd − bKvb
T∇pHd

)
+ [∇qHd]

T (
M−1Md∇pHd

)
Note that [∇pHd]

T (−MdM
−1∇qHd

)
= [∇qHd]

T (
M−1Md∇pHd

)
, thus, we obtain the following

Ḣd = −[∇pHd]
T
bKvb

T∇pHd 6 0

Using the LaSalle’s invariance principle, all the trajectories of the system converge to the equilibrium points and
this implies asymptotic stability.

Let X be the set of all points where Ḣd = 0. If Ḣd = 0, then, X =
{

(q, p )| Ḣd = 0
}

. Therefore Hd is constant.

Moreover, Ḣd = 0 implies that ∇pHd ∈ span
(

(b⊥)
T
)

. If the equilibrium point is (q∗, 0) ∈ X and Vd(q∗) = 0 then,

Ḣd = [∇qHd]
T
q̇ = 0. Hence, q̇ = ∇pHd = 0 so p = 0 or ∇pHd = 0. From the above, it can be concluded that in both

cases the states remain at the equilibrium.
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Simulations

Similarly we can obtain the controller to the simplified dynamic model for the transverse plane. Then, the control
law is applied to the mathematical model given in (8) and (19). It is important to notice that the controllers for
both two-dimensional dynamic systems are applied separately, i.e., the controller for the longitudinal dynamic is
switched to the controller for the transverse dynamic at the second 15. Figure 3 shows the evolution of the states
with desired equilibrium condition as xD = 3, zD = 1, θD = αxD = 0 for the case of the longitudinal dynamic and
yD = 4, zD = 2.5, φD = βxD = 0 for the transverse dynamic, where it is observed that the simulation goal for the
proposed control scheme is accomplished and the control objective is achieved in less than 8 seconds.

Note that the angles αx and βy present a reduced swing (αx < 2◦ and βy < 2◦) in less than 1.5 seconds (see
Figure 3(c)). This behavior is that fast thanks to the energy-shaping and the fact that the swing angle α is explicitly
considered by the controller given by (36) and (37). Concerning the control inputs, Figure 3(d) presents the evolution
of f , τα and τφ.
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Fig. 3. Simulation results for the states and inputs evolution.

3.2.2 Case 2

Our aim is to find a control law that does not depend on the swing angle. Hence, the mathematical model with a
inertia matrix M(q) described in (8) and (20) is taken into account for the longitudinal plane.

In the energy-shaping phase, we can select J2 = 0, while Md(q) is chosen such that the resulting control law will
not depend on α, i.e.

Md(q) =


M +m 0 a12 −mlcα

0 M +m 0 mlsα

a12 0 Iθ 0

−mlcα mlsα 0 ml2

 > 0
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note howMd(q) is very similar toM(q) in (20) and the q-dependent terms are exactly the same. Then, the energy-
shaping term of the controller (30) is reduced to

ues =
(
bT b
)−1

bT
(
∇qH −MdM−1∇qHd

)
(38)

Under these conditions and with b⊥ =

[
−cθ sθ 0 0

0 0 0 1

]
, the potential energy PDE (32) takes the form:

cθ

[
∂Vd
∂x + a12

Iθ
∂Vd
∂θ

]
− sθ

[
∂Vd
∂z − g(M +m)

]
= 0

glmsα − ∂Vd
∂α = 0

(39)

which is solved and thus the desired energy potential is obtained:

Vd = −glm(cα) +
g(M +m)Iθ

a12
ln(cθ) + Φ

Analogously to the former case, Φ(x, z, θ) is picked out as a quadratic function

Vd = −glm(cα) +
g(M +m)Iθ

a12
ln(cθ) +

1

2
kpx

(
θ − a12(x− xD)

Iθ

)2

+
1

2
kpz

(
z − zD −

Iθ
a12

ln(cθ)

)2

To compute the final control law for this case, we first determine the energy-shaping term ues from (38), which, in
this case, takes the form:

uesx =

 cθ (kpz (z − zd + Iθ
a12

ln(cθ)
)

+ g(M +m)
)

+
kpxa12sθ

Iθ

(
θ − a12

Iθ
(x− xd)

)
kpx
Iθ

(
θ − a12

Iθ
(x− xd)

)
+ Iθg(M+m)

a12
tθ + kpz

Iθ
a12
tθ

(
z − zd + Iθ

a12
ln(cθ)

)  (40)

and second we determine the damping injection term udi from (27)

udix =

 kb (a12κ ẋ− (M+m)
κ θ̇

)
− kasθ

(
Iθ
κ ẋ−

a12
κ θ̇
)
− kacθ 1

M+m ż

kc

(
a12
κ ẋ−

(M+m)
κ θ̇

)
− kbsθ

(
Iθ
κ ẋ−

a12
κ θ̇
)
− kbcθ 1

M+m ż

 (41)

where κ = Iθ(M + m) − a12 and ka, kb, kc are the Kv matrix terms that act on the derivatives of the error and
inject damping into the system.

Simulations

Simulations were carried out to test the performance of the new proposed control law, in a similar way to the
previous case. Some results are presented through Figure 4, where the evolution of the states are depicted, with
desired equilibrium condition as xD = 3, zD = 1, θD = αxD = 0 for the case of the longitudinal dynamic and
yD = 4, zD = 2.5, φD = βxD = 0 for the transverse dynamic. It can be seen that the control objective is achieved
in less than 10 seconds, as can be seen from Figure 4(c) where the swing angles remain small (αx < 2◦ and βy < 2◦

after 5 seconds), in spite of not being explicitly considered by the control law (40), (41). This behaviour prevents
the use of extra sensors to measure these angles. Concerning the control inputs, Figure 4(d) presents the evolution
of f , τα and τφ.
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Fig. 4. Simulation results for the states and inputs evolution.

The main difference between the two cases is that, in the first case the control law depends on the swing angle and
in the second case, the control law does not depend on it. This is accomplished by choosing a suitable Md matrix.
However, the choice of the controller depends on the requirements. We can choose between a fast controller that
explicitly depends on α (first case) and a controller not so fast that does not depend on it. The main advantage for the
practical implementation of the second case is that it does not require an extra measurement for the oscillation angle.
However, in the energy-shaping phase the same terms of the matrix M which depend on not-actuated coordinates,
are selected for the matrix Md.

4 REAL-TIME EXPERIMENTS

4.1 Experimental Setup

In order to validate the proposed control strategy, an experimental platform was developed. It consists of a low-cost
commercial quadrotor kind Parrot AR.Drone, with an extra payload attached to it by a two-degrees of freedom
rigid rod, as showed in Figure 1. However, in order to avoid interferences with the down-looking sensors, such as the
ultrasonic sensor and the camera used for the optic flow calculation, the cable-suspended payload is not centered
at the body frame, instead it is placed at the rear. The AR.Drone measures 53 × 52cm, weights 0.42kg and offers
robustness to crashes. Meanwhile, the added payload weights about 0.05kg and the cable measures 40cm. The
considered UAV is equipped with three-axis gyroscopes and accelerometers, an ultrasonic altimeter, an air pressure
sensor and a magnetic compass. It also provides videos from two cameras. The first one is looking downwards with
a resolution of 320×240 pixels at a rate of 60fps, and is used to estimate the horizontal velocities by means of
optic flow. The second camera is looking forward and has a resolution of 640×360 at 30fps. This latter is used for
monocular vision based navigation. However, neither the software nor the hardware can be modified easily from the
AR.Drone. All sensor measurements are sent to a ground station at a frequency of 200Hz.

A vision-based navigation algorithm that consists of a monocular Simultaneous Localization and Mapping (SLAM)
and an Extended Kalman Filter (EKF) data fusion algorithms is employed. The solution for monocular SLAM is
based on Parallel Tracking and Mapping (PTAM) [33], where the tracking and mapping are split into two different
tasks and are processed in parallel, resulting in a nice method for estimating camera pose in an unknown scene. It
was originally conceived for augmented reality applications and then successfully extended for micro aerial vehicles
(MAVs) localization [34], [35], and released as open-source software for Robot Operating System (ROS). For more
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details see [35], [36]. This navigation algorithm is computed at a ground station computer with ROS, along with the
proposed control strategy.

Finally, an OptiTrack motion capture system is used to estimate the swing angles for the payload. It consists of a set
of twelve infrared cameras capable of tracking the pose of an object from a set of spheres markers. It is important
to note that the described system does not depend on the motion capture system, and it is only used to obtain the
graph of the payload’s swing angles.

4.2 Experimental Results

The proposed passivity based control strategy for a quadrotor with a cable-suspended payload was successfully
implemented and tested, for planar maneuvers in the longitudinal and the transverse planes, one at a time, using
the previously described experimental platform. The ψ state is controlled by means of a proportional derivative
controller. The practical objective was to transport the payload, fast and with reduced swing, through different
given way-points with a separation of 2m from each other. Please note that the rigid rod is not centered for the y
axis, producing a slight difference in the behavior along each axis. Several tests were carried out and the results can
be studied through Figures 5-9. Also, a video can be watched at https://www.youtube.com/watch?v=XAuI_3_uIUM.
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Fig. 5. Quadrotor position.

Figure 5 displays the position of the quadrotor during the test. We can notice that huge changes in position are
demanded and accomplished in a short time, about 2m in 5s. Figure 6 presents the payload swing angles αx and
βy. Remember that the main objective of this works is to stabilize these angles while transporting the payload. We
can observe in Figure 6 the good behavior of the overall system since the swing angles always remains well bounded
in small values, with a Root Mean Square (RMS) oscillation of 4.3592o and 5.9379o for αx and βy, respectively,
and seldom bigger than 15o only when there are changes of trajectories in the seconds 0.5, 16, 30 and 41.5. These
changes are represented by the black vertical lines in Figure 6. Despite the absence of a direct measurement of the
swing angles, the proposed control strategy is able to accomplish satisfactorily its goal.

The quadrotor attitude is presented in Figure 7, while the control inputs are depicted at Figure 8. Finally, a three-
dimensional view of the trajectory followed by the UAV during the experiment is shown in Figure 9, where we can
observe the consistency and good performance of the control strategy and the experimental setup, in spite of the
lack of an expensive motion capture system or any other external reference for positioning.

Several trials were performed and some of the obtained results are presented on the Tables 1 and 2, where we
measured in each cycle the RMS, the setting time (Ts), the final swing (FS) and the maximum swing (MS). The
different trials were performed for the same regulation problem of transporting the load for 2m in each axis, under
similar conditions. The observed variation along the different trials can be explained for the delays and uncertainties
introduced by the vision system for positioning, as well as some noise in the measurement of the swing angle.
The vision navigation system offers a good inexpensive alternative for localization without the need of any special
external marker or motion capture system. On the other hand, variations on the results for each coordinate, x
and y, is explained due to the fact that the load is not well aligned with respect to the center of mass of the
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Fig. 6. Swing angles αx and βy.
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Fig. 8. Control inputs responses.

quadrotor because it caused interference with the down-looking sensors attached at the bottom of the UAV, such as
the ultrasound altitude sensor and the camera for measure the optic flow.

The experimental results were compared with some related published results. For example, in [6] Ts =3s, MS= 11o

16



−2
−1

0
1

2

−2
−1

0
1

2

0

0.5

1

1.5

2

 

y (m)x (m)
 

z 
(m

)

real
desired

Fig. 9. Three-dimensional trajectory.

and FS=2o, with M = 0.5kg, m = 0.1kg and l = 50cm, here the payload is moved 1m in x and 0.5m in z,
nevertheless, the results only are presented in simulation. Also, in [8] are obtained the following parameters: Ts =4s,
MS= 14o and FS=5o, with M = 0.791kg, m = 0.036kg and l = 70cm, however, the payload is only transported 0.5m
in x and 0.5m in z, here the payload is moved simultaneously in the two planes. On the other hand, in [12] with
M = 0.710kg, m = 47g and l = 62cm, the payload is moved 1m in y with a swing-stabilization time of 4s. In short,
even though there exist other works presenting better performances, our work presents an alternative approach to
solve the problem of transporting the payload from point to point with swing stabilization.

5 CONCLUSIONS

We obtained a three-dimensional mathematical model via the Euler-Lagrange formalism of an unmanned aerial
vehicle transporting a cable-suspended payload with two degrees of the freedom. The equations of motion are
expressed in the Hamiltonian formalism. In order to simplify the energy-shaping phase of the control strategy, the
mathematical model is represented in two different ways. In the first one, the inertia matrix M is dependent of q
and in the second one, the inertia matrix M is independent of q.

Furthermore, we have presented an IDA-PBC strategy to stabilize the swing of the payload connected by a cable to
a quadrotor. The behavior of the proposed control law was quite acceptable when moving a payload from any initial
position to a desired position. Two cases were studied to develop two different control laws. The advantage of the
control scheme in the second case is that it does not require an extra measurement for the oscillation angle, since it
does not depend on it. Furthermore, the control strategy obtained in the second case was successfully implemented
and validated in real-time experiments, employing a monocular vision based algorithm for localization. Hence, it is
not constrained to an external motion capture system.

Future work includes extending the control law for the tree-dimensional case and and considering a flexible cable.
Also, it would be interesting to design controllers for the trajectory tracking of the swing angle.
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RMS (o) Ts (s) MS (o) FS (o)

5.7438 6.1 19 3

5.3347 5.4 16 4

5.5324 5.9 17 3

5.4143 5.6 17 3

6.0024 6.9 19 3

Table 1
Summary of trials performance for the longitudinal maneuvers.
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RMS (o) Ts (s) MS (o) FS (o)

6.3124 5.2 23 6

6.1248 5 21 6

6.5432 5.8 26 6

6.0284 5 20 5

6.6143 6 28 7

Table 2
Summary of trials performance for the transverse maneuvers.
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A Appendix

Considering (3), the model (9) through (11) can also be expressed as

(M +m)ξ̈p −Mlr̈ + (M +m)ge3 − fRe3 = 0 (A.1)

Jη̈ + Cr(η, η̇)η̇ = τ (A.2)

r× (Mgle3 − flRe3 +Mlξ̈p −Ml2r̈) = 0 (A.3)

using (A.1) and (A.3) we obtain

r× (Mgle3 +Mlξ̈p) = 0 (A.4)

also, replacing (A.4) in (A.3) and defining ẇ = r× r̈

Mlẇ = −fRr× e3 (A.5)

let us consider the following equations

d
dt (r · ṙ) = 0

r× (r× r̈) = r(r · r̈)− r̈(r · r) = −(ṙ · ṙ)r− r̈

r̈ = −(ṙ · ṙ)r− r× (r× r̈)

then, by solving r× r̈ from (A.3), equation (A.1) becomes

−Ml(ṙ · ṙ)r− r× (r× (Mge3 − fRe3 +Mξ̈p))− (M +m)(ξ̈p + ge3) + fRe3 = 0

Finally, replacing (A.4) in the previous equation gives

(M +m)
(
ξ̈p + ge3

)
= (r · fRe3 −Ml(ṙ · ṙ)) r
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